1 /* libs/pixelflinger/codeflinger/MIPSAssembler.cpp 2 ** 3 ** Copyright 2012, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 19 /* MIPS assembler and ARM->MIPS assembly translator 20 ** 21 ** The approach is to leave the GGLAssembler and associated files largely 22 ** un-changed, still utilizing all Arm instruction generation. Via the 23 ** ArmToMipsAssembler (subclassed from ArmAssemblerInterface) each Arm 24 ** instruction is translated to one or more Mips instructions as necessary. This 25 ** is clearly less efficient than a direct implementation within the 26 ** GGLAssembler, but is far cleaner, more maintainable, and has yielded very 27 ** significant performance gains on Mips compared to the generic pixel pipeline. 28 ** 29 ** 30 ** GGLAssembler changes 31 ** 32 ** - The register allocator has been modified to re-map Arm registers 0-15 to mips 33 ** registers 2-17. Mips register 0 cannot be used as general-purpose register, 34 ** and register 1 has traditional uses as a short-term temporary. 35 ** 36 ** - Added some early bailouts for OUT_OF_REGISTERS in texturing.cpp and 37 ** GGLAssembler.cpp, since this is not fatal, and can be retried at lower 38 ** optimization level. 39 ** 40 ** 41 ** ARMAssembler and ARMAssemblerInterface changes 42 ** 43 ** Refactored ARM address-mode static functions (imm(), reg_imm(), imm12_pre(), etc.) 44 ** to virtual, so they can be overridden in MIPSAssembler. The implementation of these 45 ** functions on ARM is moved from ARMAssemblerInterface.cpp to ARMAssembler.cpp, and 46 ** is unchanged from the original. (This required duplicating 2 of these as static 47 ** functions in ARMAssemblerInterface.cpp so they could be used as static initializers). 48 */ 49 50 51 #define LOG_TAG "MIPSAssembler" 52 53 #include <stdio.h> 54 #include <stdlib.h> 55 #include <cutils/log.h> 56 #include <cutils/properties.h> 57 58 #if defined(WITH_LIB_HARDWARE) 59 #include <hardware_legacy/qemu_tracing.h> 60 #endif 61 62 #include <private/pixelflinger/ggl_context.h> 63 64 #include "MIPSAssembler.h" 65 #include "CodeCache.h" 66 #include "mips_disassem.h" 67 68 // Choose MIPS arch variant following gcc flags 69 #if defined(__mips__) && __mips==32 && __mips_isa_rev>=2 70 #define mips32r2 1 71 #else 72 #define mips32r2 0 73 #endif 74 75 76 #define NOT_IMPLEMENTED() LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__) 77 78 79 80 // ---------------------------------------------------------------------------- 81 82 namespace android { 83 84 // ---------------------------------------------------------------------------- 85 #if 0 86 #pragma mark - 87 #pragma mark ArmToMipsAssembler... 88 #endif 89 90 ArmToMipsAssembler::ArmToMipsAssembler(const sp<Assembly>& assembly, 91 char *abuf, int linesz, int instr_count) 92 : ARMAssemblerInterface(), 93 mArmDisassemblyBuffer(abuf), 94 mArmLineLength(linesz), 95 mArmInstrCount(instr_count), 96 mInum(0), 97 mAssembly(assembly) 98 { 99 mMips = new MIPSAssembler(assembly, this); 100 mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *)); 101 init_conditional_labels(); 102 } 103 104 ArmToMipsAssembler::~ArmToMipsAssembler() 105 { 106 delete mMips; 107 free((void *) mArmPC); 108 } 109 110 uint32_t* ArmToMipsAssembler::pc() const 111 { 112 return mMips->pc(); 113 } 114 115 uint32_t* ArmToMipsAssembler::base() const 116 { 117 return mMips->base(); 118 } 119 120 void ArmToMipsAssembler::reset() 121 { 122 cond.labelnum = 0; 123 mInum = 0; 124 mMips->reset(); 125 } 126 127 int ArmToMipsAssembler::getCodegenArch() 128 { 129 return CODEGEN_ARCH_MIPS; 130 } 131 132 void ArmToMipsAssembler::comment(const char* string) 133 { 134 mMips->comment(string); 135 } 136 137 void ArmToMipsAssembler::label(const char* theLabel) 138 { 139 mMips->label(theLabel); 140 } 141 142 void ArmToMipsAssembler::disassemble(const char* name) 143 { 144 mMips->disassemble(name); 145 } 146 147 void ArmToMipsAssembler::init_conditional_labels() 148 { 149 int i; 150 for (i=0;i<99; ++i) { 151 sprintf(cond.label[i], "cond_%d", i); 152 } 153 } 154 155 156 157 #if 0 158 #pragma mark - 159 #pragma mark Prolog/Epilog & Generate... 160 #endif 161 162 void ArmToMipsAssembler::prolog() 163 { 164 mArmPC[mInum++] = pc(); // save starting PC for this instr 165 166 mMips->ADDIU(R_sp, R_sp, -(5 * 4)); 167 mMips->SW(R_s0, R_sp, 0); 168 mMips->SW(R_s1, R_sp, 4); 169 mMips->SW(R_s2, R_sp, 8); 170 mMips->SW(R_s3, R_sp, 12); 171 mMips->SW(R_s4, R_sp, 16); 172 mMips->MOVE(R_v0, R_a0); // move context * passed in a0 to v0 (arm r0) 173 } 174 175 void ArmToMipsAssembler::epilog(uint32_t touched) 176 { 177 mArmPC[mInum++] = pc(); // save starting PC for this instr 178 179 mMips->LW(R_s0, R_sp, 0); 180 mMips->LW(R_s1, R_sp, 4); 181 mMips->LW(R_s2, R_sp, 8); 182 mMips->LW(R_s3, R_sp, 12); 183 mMips->LW(R_s4, R_sp, 16); 184 mMips->ADDIU(R_sp, R_sp, (5 * 4)); 185 mMips->JR(R_ra); 186 187 } 188 189 int ArmToMipsAssembler::generate(const char* name) 190 { 191 return mMips->generate(name); 192 } 193 194 uint32_t* ArmToMipsAssembler::pcForLabel(const char* label) 195 { 196 return mMips->pcForLabel(label); 197 } 198 199 200 201 //---------------------------------------------------------- 202 203 #if 0 204 #pragma mark - 205 #pragma mark Addressing modes & shifters... 206 #endif 207 208 209 // do not need this for MIPS, but it is in the Interface (virtual) 210 int ArmToMipsAssembler::buildImmediate( 211 uint32_t immediate, uint32_t& rot, uint32_t& imm) 212 { 213 // for MIPS, any 32-bit immediate is OK 214 rot = 0; 215 imm = immediate; 216 return 0; 217 } 218 219 // shifters... 220 221 bool ArmToMipsAssembler::isValidImmediate(uint32_t immediate) 222 { 223 // for MIPS, any 32-bit immediate is OK 224 return true; 225 } 226 227 uint32_t ArmToMipsAssembler::imm(uint32_t immediate) 228 { 229 // ALOGW("immediate value %08x at pc %08x\n", immediate, (int)pc()); 230 amode.value = immediate; 231 return AMODE_IMM; 232 } 233 234 uint32_t ArmToMipsAssembler::reg_imm(int Rm, int type, uint32_t shift) 235 { 236 amode.reg = Rm; 237 amode.stype = type; 238 amode.value = shift; 239 return AMODE_REG_IMM; 240 } 241 242 uint32_t ArmToMipsAssembler::reg_rrx(int Rm) 243 { 244 // reg_rrx mode is not used in the GLLAssember code at this time 245 return AMODE_UNSUPPORTED; 246 } 247 248 uint32_t ArmToMipsAssembler::reg_reg(int Rm, int type, int Rs) 249 { 250 // reg_reg mode is not used in the GLLAssember code at this time 251 return AMODE_UNSUPPORTED; 252 } 253 254 255 // addressing modes... 256 // LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0) 257 uint32_t ArmToMipsAssembler::immed12_pre(int32_t immed12, int W) 258 { 259 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, 260 "LDR(B)/STR(B)/PLD immediate too big (%08x)", 261 immed12); 262 amode.value = immed12; 263 amode.writeback = W; 264 return AMODE_IMM_12_PRE; 265 } 266 267 uint32_t ArmToMipsAssembler::immed12_post(int32_t immed12) 268 { 269 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, 270 "LDR(B)/STR(B)/PLD immediate too big (%08x)", 271 immed12); 272 273 amode.value = immed12; 274 return AMODE_IMM_12_POST; 275 } 276 277 uint32_t ArmToMipsAssembler::reg_scale_pre(int Rm, int type, 278 uint32_t shift, int W) 279 { 280 LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented"); 281 282 amode.reg = Rm; 283 // amode.stype = type; // more advanced modes not used in GGLAssembler yet 284 // amode.value = shift; 285 // amode.writeback = W; 286 return AMODE_REG_SCALE_PRE; 287 } 288 289 uint32_t ArmToMipsAssembler::reg_scale_post(int Rm, int type, uint32_t shift) 290 { 291 LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n"); 292 return AMODE_UNSUPPORTED; 293 } 294 295 // LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0) 296 uint32_t ArmToMipsAssembler::immed8_pre(int32_t immed8, int W) 297 { 298 // uint32_t offset = abs(immed8); 299 300 LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n"); 301 302 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, 303 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", 304 immed8); 305 return AMODE_IMM_8_PRE; 306 } 307 308 uint32_t ArmToMipsAssembler::immed8_post(int32_t immed8) 309 { 310 // uint32_t offset = abs(immed8); 311 312 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, 313 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", 314 immed8); 315 amode.value = immed8; 316 return AMODE_IMM_8_POST; 317 } 318 319 uint32_t ArmToMipsAssembler::reg_pre(int Rm, int W) 320 { 321 LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented"); 322 amode.reg = Rm; 323 return AMODE_REG_PRE; 324 } 325 326 uint32_t ArmToMipsAssembler::reg_post(int Rm) 327 { 328 LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n"); 329 return AMODE_UNSUPPORTED; 330 } 331 332 333 334 // ---------------------------------------------------------------------------- 335 336 #if 0 337 #pragma mark - 338 #pragma mark Data Processing... 339 #endif 340 341 342 static const char * const dpOpNames[] = { 343 "AND", "EOR", "SUB", "RSB", "ADD", "ADC", "SBC", "RSC", 344 "TST", "TEQ", "CMP", "CMN", "ORR", "MOV", "BIC", "MVN" 345 }; 346 347 // check if the operand registers from a previous CMP or S-bit instruction 348 // would be overwritten by this instruction. If so, move the value to a 349 // safe register. 350 // Note that we cannot tell at _this_ instruction time if a future (conditional) 351 // instruction will _also_ use this value (a defect of the simple 1-pass, one- 352 // instruction-at-a-time translation). Therefore we must be conservative and 353 // save the value before it is overwritten. This costs an extra MOVE instr. 354 355 void ArmToMipsAssembler::protectConditionalOperands(int Rd) 356 { 357 if (Rd == cond.r1) { 358 mMips->MOVE(R_cmp, cond.r1); 359 cond.r1 = R_cmp; 360 } 361 if (cond.type == CMP_COND && Rd == cond.r2) { 362 mMips->MOVE(R_cmp2, cond.r2); 363 cond.r2 = R_cmp2; 364 } 365 } 366 367 368 // interprets the addressing mode, and generates the common code 369 // used by the majority of data-processing ops. Many MIPS instructions 370 // have a register-based form and a different immediate form. See 371 // opAND below for an example. (this could be inlined) 372 // 373 // this works with the imm(), reg_imm() methods above, which are directly 374 // called by the GLLAssembler. 375 // note: _signed parameter defaults to false (un-signed) 376 // note: tmpReg parameter defaults to 1, MIPS register AT 377 int ArmToMipsAssembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg) 378 { 379 if (op < AMODE_REG) { 380 source = op; 381 return SRC_REG; 382 } else if (op == AMODE_IMM) { 383 if ((!_signed && amode.value > 0xffff) 384 || (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) { 385 mMips->LUI(tmpReg, (amode.value >> 16)); 386 if (amode.value & 0x0000ffff) { 387 mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff)); 388 } 389 source = tmpReg; 390 return SRC_REG; 391 } else { 392 source = amode.value; 393 return SRC_IMM; 394 } 395 } else if (op == AMODE_REG_IMM) { 396 switch (amode.stype) { 397 case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break; 398 case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break; 399 case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break; 400 case ROR: if (mips32r2) { 401 mMips->ROTR(tmpReg, amode.reg, amode.value); 402 } else { 403 mMips->RORIsyn(tmpReg, amode.reg, amode.value); 404 } 405 break; 406 } 407 source = tmpReg; 408 return SRC_REG; 409 } else { // adr mode RRX is not used in GGL Assembler at this time 410 // we are screwed, this should be exception, assert-fail or something 411 LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n"); 412 return SRC_ERROR; 413 } 414 } 415 416 417 void ArmToMipsAssembler::dataProcessing(int opcode, int cc, 418 int s, int Rd, int Rn, uint32_t Op2) 419 { 420 int src; // src is modified by dataProcAdrModes() - passed as int& 421 422 423 if (cc != AL) { 424 protectConditionalOperands(Rd); 425 // the branch tests register(s) set by prev CMP or instr with 'S' bit set 426 // inverse the condition to jump past this conditional instruction 427 ArmToMipsAssembler::B(cc^1, cond.label[++cond.labelnum]); 428 } else { 429 mArmPC[mInum++] = pc(); // save starting PC for this instr 430 } 431 432 switch (opcode) { 433 case opAND: 434 if (dataProcAdrModes(Op2, src) == SRC_REG) { 435 mMips->AND(Rd, Rn, src); 436 } else { // adr mode was SRC_IMM 437 mMips->ANDI(Rd, Rn, src); 438 } 439 break; 440 441 case opADD: 442 // set "signed" to true for adr modes 443 if (dataProcAdrModes(Op2, src, true) == SRC_REG) { 444 mMips->ADDU(Rd, Rn, src); 445 } else { // adr mode was SRC_IMM 446 mMips->ADDIU(Rd, Rn, src); 447 } 448 break; 449 450 case opSUB: 451 // set "signed" to true for adr modes 452 if (dataProcAdrModes(Op2, src, true) == SRC_REG) { 453 mMips->SUBU(Rd, Rn, src); 454 } else { // adr mode was SRC_IMM 455 mMips->SUBIU(Rd, Rn, src); 456 } 457 break; 458 459 case opEOR: 460 if (dataProcAdrModes(Op2, src) == SRC_REG) { 461 mMips->XOR(Rd, Rn, src); 462 } else { // adr mode was SRC_IMM 463 mMips->XORI(Rd, Rn, src); 464 } 465 break; 466 467 case opORR: 468 if (dataProcAdrModes(Op2, src) == SRC_REG) { 469 mMips->OR(Rd, Rn, src); 470 } else { // adr mode was SRC_IMM 471 mMips->ORI(Rd, Rn, src); 472 } 473 break; 474 475 case opBIC: 476 if (dataProcAdrModes(Op2, src) == SRC_IMM) { 477 // if we are 16-bit imnmediate, load to AT reg 478 mMips->ORI(R_at, 0, src); 479 src = R_at; 480 } 481 mMips->NOT(R_at, src); 482 mMips->AND(Rd, Rn, R_at); 483 break; 484 485 case opRSB: 486 if (dataProcAdrModes(Op2, src) == SRC_IMM) { 487 // if we are 16-bit imnmediate, load to AT reg 488 mMips->ORI(R_at, 0, src); 489 src = R_at; 490 } 491 mMips->SUBU(Rd, src, Rn); // subu with the parameters reversed 492 break; 493 494 case opMOV: 495 if (Op2 < AMODE_REG) { // op2 is reg # in this case 496 mMips->MOVE(Rd, Op2); 497 } else if (Op2 == AMODE_IMM) { 498 if (amode.value > 0xffff) { 499 mMips->LUI(Rd, (amode.value >> 16)); 500 if (amode.value & 0x0000ffff) { 501 mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); 502 } 503 } else { 504 mMips->ORI(Rd, 0, amode.value); 505 } 506 } else if (Op2 == AMODE_REG_IMM) { 507 switch (amode.stype) { 508 case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; 509 case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; 510 case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; 511 case ROR: if (mips32r2) { 512 mMips->ROTR(Rd, amode.reg, amode.value); 513 } else { 514 mMips->RORIsyn(Rd, amode.reg, amode.value); 515 } 516 break; 517 } 518 } 519 else { 520 // adr mode RRX is not used in GGL Assembler at this time 521 mMips->UNIMPL(); 522 } 523 break; 524 525 case opMVN: // this is a 1's complement: NOT 526 if (Op2 < AMODE_REG) { // op2 is reg # in this case 527 mMips->NOR(Rd, Op2, 0); // NOT is NOR with 0 528 break; 529 } else if (Op2 == AMODE_IMM) { 530 if (amode.value > 0xffff) { 531 mMips->LUI(Rd, (amode.value >> 16)); 532 if (amode.value & 0x0000ffff) { 533 mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); 534 } 535 } else { 536 mMips->ORI(Rd, 0, amode.value); 537 } 538 } else if (Op2 == AMODE_REG_IMM) { 539 switch (amode.stype) { 540 case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; 541 case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; 542 case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; 543 case ROR: if (mips32r2) { 544 mMips->ROTR(Rd, amode.reg, amode.value); 545 } else { 546 mMips->RORIsyn(Rd, amode.reg, amode.value); 547 } 548 break; 549 } 550 } 551 else { 552 // adr mode RRX is not used in GGL Assembler at this time 553 mMips->UNIMPL(); 554 } 555 mMips->NOR(Rd, Rd, 0); // NOT is NOR with 0 556 break; 557 558 case opCMP: 559 // Either operand of a CMP instr could get overwritten by a subsequent 560 // conditional instruction, which is ok, _UNLESS_ there is a _second_ 561 // conditional instruction. Under MIPS, this requires doing the comparison 562 // again (SLT), and the original operands must be available. (and this 563 // pattern of multiple conditional instructions from same CMP _is_ used 564 // in GGL-Assembler) 565 // 566 // For now, if a conditional instr overwrites the operands, we will 567 // move them to dedicated temp regs. This is ugly, and inefficient, 568 // and should be optimized. 569 // 570 // WARNING: making an _Assumption_ that CMP operand regs will NOT be 571 // trashed by intervening NON-conditional instructions. In the general 572 // case this is legal, but it is NOT currently done in GGL-Assembler. 573 574 cond.type = CMP_COND; 575 cond.r1 = Rn; 576 if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) { 577 cond.r2 = src; 578 } else { // adr mode was SRC_IMM 579 mMips->ORI(R_cmp2, R_zero, src); 580 cond.r2 = R_cmp2; 581 } 582 583 break; 584 585 586 case opTST: 587 case opTEQ: 588 case opCMN: 589 case opADC: 590 case opSBC: 591 case opRSC: 592 mMips->UNIMPL(); // currently unused in GGL Assembler code 593 break; 594 } 595 596 if (cc != AL) { 597 mMips->label(cond.label[cond.labelnum]); 598 } 599 if (s && opcode != opCMP) { 600 cond.type = SBIT_COND; 601 cond.r1 = Rd; 602 } 603 } 604 605 606 607 #if 0 608 #pragma mark - 609 #pragma mark Multiply... 610 #endif 611 612 // multiply, accumulate 613 void ArmToMipsAssembler::MLA(int cc, int s, 614 int Rd, int Rm, int Rs, int Rn) { 615 616 mArmPC[mInum++] = pc(); // save starting PC for this instr 617 618 mMips->MUL(R_at, Rm, Rs); 619 mMips->ADDU(Rd, R_at, Rn); 620 if (s) { 621 cond.type = SBIT_COND; 622 cond.r1 = Rd; 623 } 624 } 625 626 void ArmToMipsAssembler::MUL(int cc, int s, 627 int Rd, int Rm, int Rs) { 628 mArmPC[mInum++] = pc(); 629 mMips->MUL(Rd, Rm, Rs); 630 if (s) { 631 cond.type = SBIT_COND; 632 cond.r1 = Rd; 633 } 634 } 635 636 void ArmToMipsAssembler::UMULL(int cc, int s, 637 int RdLo, int RdHi, int Rm, int Rs) { 638 mArmPC[mInum++] = pc(); 639 mMips->MULT(Rm, Rs); 640 mMips->MFHI(RdHi); 641 mMips->MFLO(RdLo); 642 if (s) { 643 cond.type = SBIT_COND; 644 cond.r1 = RdHi; // BUG... 645 LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); 646 } 647 } 648 649 void ArmToMipsAssembler::UMUAL(int cc, int s, 650 int RdLo, int RdHi, int Rm, int Rs) { 651 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, 652 "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); 653 // *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) | 654 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; 655 mArmPC[mInum++] = pc(); 656 mMips->NOP2(); 657 NOT_IMPLEMENTED(); 658 if (s) { 659 cond.type = SBIT_COND; 660 cond.r1 = RdHi; // BUG... 661 LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); 662 } 663 } 664 665 void ArmToMipsAssembler::SMULL(int cc, int s, 666 int RdLo, int RdHi, int Rm, int Rs) { 667 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, 668 "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); 669 // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) | 670 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; 671 mArmPC[mInum++] = pc(); 672 mMips->NOP2(); 673 NOT_IMPLEMENTED(); 674 if (s) { 675 cond.type = SBIT_COND; 676 cond.r1 = RdHi; // BUG... 677 LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n"); 678 } 679 } 680 void ArmToMipsAssembler::SMUAL(int cc, int s, 681 int RdLo, int RdHi, int Rm, int Rs) { 682 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, 683 "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); 684 // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) | 685 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; 686 mArmPC[mInum++] = pc(); 687 mMips->NOP2(); 688 NOT_IMPLEMENTED(); 689 if (s) { 690 cond.type = SBIT_COND; 691 cond.r1 = RdHi; // BUG... 692 LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n"); 693 } 694 } 695 696 697 698 #if 0 699 #pragma mark - 700 #pragma mark Branches... 701 #endif 702 703 // branches... 704 705 void ArmToMipsAssembler::B(int cc, const char* label) 706 { 707 mArmPC[mInum++] = pc(); 708 if (cond.type == SBIT_COND) { cond.r2 = R_zero; } 709 710 switch(cc) { 711 case EQ: mMips->BEQ(cond.r1, cond.r2, label); break; 712 case NE: mMips->BNE(cond.r1, cond.r2, label); break; 713 case HS: mMips->BGEU(cond.r1, cond.r2, label); break; 714 case LO: mMips->BLTU(cond.r1, cond.r2, label); break; 715 case MI: mMips->BLT(cond.r1, cond.r2, label); break; 716 case PL: mMips->BGE(cond.r1, cond.r2, label); break; 717 718 case HI: mMips->BGTU(cond.r1, cond.r2, label); break; 719 case LS: mMips->BLEU(cond.r1, cond.r2, label); break; 720 case GE: mMips->BGE(cond.r1, cond.r2, label); break; 721 case LT: mMips->BLT(cond.r1, cond.r2, label); break; 722 case GT: mMips->BGT(cond.r1, cond.r2, label); break; 723 case LE: mMips->BLE(cond.r1, cond.r2, label); break; 724 case AL: mMips->B(label); break; 725 case NV: /* B Never - no instruction */ break; 726 727 case VS: 728 case VC: 729 default: 730 LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc); 731 break; 732 } 733 } 734 735 void ArmToMipsAssembler::BL(int cc, const char* label) 736 { 737 LOG_ALWAYS_FATAL("branch-and-link not supported yet\n"); 738 mArmPC[mInum++] = pc(); 739 } 740 741 // no use for Branches with integer PC, but they're in the Interface class .... 742 void ArmToMipsAssembler::B(int cc, uint32_t* to_pc) 743 { 744 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); 745 mArmPC[mInum++] = pc(); 746 } 747 748 void ArmToMipsAssembler::BL(int cc, uint32_t* to_pc) 749 { 750 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); 751 mArmPC[mInum++] = pc(); 752 } 753 754 void ArmToMipsAssembler::BX(int cc, int Rn) 755 { 756 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); 757 mArmPC[mInum++] = pc(); 758 } 759 760 761 762 #if 0 763 #pragma mark - 764 #pragma mark Data Transfer... 765 #endif 766 767 // data transfer... 768 void ArmToMipsAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset) 769 { 770 mArmPC[mInum++] = pc(); 771 // work-around for ARM default address mode of immed12_pre(0) 772 if (offset > AMODE_UNSUPPORTED) offset = 0; 773 switch (offset) { 774 case 0: 775 amode.value = 0; 776 amode.writeback = 0; 777 // fall thru to next case .... 778 case AMODE_IMM_12_PRE: 779 if (Rn == ARMAssemblerInterface::SP) { 780 Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP 781 } 782 mMips->LW(Rd, Rn, amode.value); 783 if (amode.writeback) { // OPTIONAL writeback on pre-index mode 784 mMips->ADDIU(Rn, Rn, amode.value); 785 } 786 break; 787 case AMODE_IMM_12_POST: 788 if (Rn == ARMAssemblerInterface::SP) { 789 Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP 790 } 791 mMips->LW(Rd, Rn, 0); 792 mMips->ADDIU(Rn, Rn, amode.value); 793 break; 794 case AMODE_REG_SCALE_PRE: 795 // we only support simple base + index, no advanced modes for this one yet 796 mMips->ADDU(R_at, Rn, amode.reg); 797 mMips->LW(Rd, R_at, 0); 798 break; 799 } 800 } 801 802 void ArmToMipsAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset) 803 { 804 mArmPC[mInum++] = pc(); 805 // work-around for ARM default address mode of immed12_pre(0) 806 if (offset > AMODE_UNSUPPORTED) offset = 0; 807 switch (offset) { 808 case 0: 809 amode.value = 0; 810 amode.writeback = 0; 811 // fall thru to next case .... 812 case AMODE_IMM_12_PRE: 813 mMips->LBU(Rd, Rn, amode.value); 814 if (amode.writeback) { // OPTIONAL writeback on pre-index mode 815 mMips->ADDIU(Rn, Rn, amode.value); 816 } 817 break; 818 case AMODE_IMM_12_POST: 819 mMips->LBU(Rd, Rn, 0); 820 mMips->ADDIU(Rn, Rn, amode.value); 821 break; 822 case AMODE_REG_SCALE_PRE: 823 // we only support simple base + index, no advanced modes for this one yet 824 mMips->ADDU(R_at, Rn, amode.reg); 825 mMips->LBU(Rd, R_at, 0); 826 break; 827 } 828 829 } 830 831 void ArmToMipsAssembler::STR(int cc, int Rd, int Rn, uint32_t offset) 832 { 833 mArmPC[mInum++] = pc(); 834 // work-around for ARM default address mode of immed12_pre(0) 835 if (offset > AMODE_UNSUPPORTED) offset = 0; 836 switch (offset) { 837 case 0: 838 amode.value = 0; 839 amode.writeback = 0; 840 // fall thru to next case .... 841 case AMODE_IMM_12_PRE: 842 if (Rn == ARMAssemblerInterface::SP) { 843 Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP 844 } 845 if (amode.writeback) { // OPTIONAL writeback on pre-index mode 846 // If we will writeback, then update the index reg, then store. 847 // This correctly handles stack-push case. 848 mMips->ADDIU(Rn, Rn, amode.value); 849 mMips->SW(Rd, Rn, 0); 850 } else { 851 // No writeback so store offset by value 852 mMips->SW(Rd, Rn, amode.value); 853 } 854 break; 855 case AMODE_IMM_12_POST: 856 mMips->SW(Rd, Rn, 0); 857 mMips->ADDIU(Rn, Rn, amode.value); // post index always writes back 858 break; 859 case AMODE_REG_SCALE_PRE: 860 // we only support simple base + index, no advanced modes for this one yet 861 mMips->ADDU(R_at, Rn, amode.reg); 862 mMips->SW(Rd, R_at, 0); 863 break; 864 } 865 } 866 867 void ArmToMipsAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset) 868 { 869 mArmPC[mInum++] = pc(); 870 // work-around for ARM default address mode of immed12_pre(0) 871 if (offset > AMODE_UNSUPPORTED) offset = 0; 872 switch (offset) { 873 case 0: 874 amode.value = 0; 875 amode.writeback = 0; 876 // fall thru to next case .... 877 case AMODE_IMM_12_PRE: 878 mMips->SB(Rd, Rn, amode.value); 879 if (amode.writeback) { // OPTIONAL writeback on pre-index mode 880 mMips->ADDIU(Rn, Rn, amode.value); 881 } 882 break; 883 case AMODE_IMM_12_POST: 884 mMips->SB(Rd, Rn, 0); 885 mMips->ADDIU(Rn, Rn, amode.value); 886 break; 887 case AMODE_REG_SCALE_PRE: 888 // we only support simple base + index, no advanced modes for this one yet 889 mMips->ADDU(R_at, Rn, amode.reg); 890 mMips->SB(Rd, R_at, 0); 891 break; 892 } 893 } 894 895 void ArmToMipsAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset) 896 { 897 mArmPC[mInum++] = pc(); 898 // work-around for ARM default address mode of immed8_pre(0) 899 if (offset > AMODE_UNSUPPORTED) offset = 0; 900 switch (offset) { 901 case 0: 902 amode.value = 0; 903 // fall thru to next case .... 904 case AMODE_IMM_8_PRE: // no support yet for writeback 905 mMips->LHU(Rd, Rn, amode.value); 906 break; 907 case AMODE_IMM_8_POST: 908 mMips->LHU(Rd, Rn, 0); 909 mMips->ADDIU(Rn, Rn, amode.value); 910 break; 911 case AMODE_REG_PRE: 912 // we only support simple base +/- index 913 if (amode.reg >= 0) { 914 mMips->ADDU(R_at, Rn, amode.reg); 915 } else { 916 mMips->SUBU(R_at, Rn, abs(amode.reg)); 917 } 918 mMips->LHU(Rd, R_at, 0); 919 break; 920 } 921 } 922 923 void ArmToMipsAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset) 924 { 925 mArmPC[mInum++] = pc(); 926 mMips->NOP2(); 927 NOT_IMPLEMENTED(); 928 } 929 930 void ArmToMipsAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset) 931 { 932 mArmPC[mInum++] = pc(); 933 mMips->NOP2(); 934 NOT_IMPLEMENTED(); 935 } 936 937 void ArmToMipsAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset) 938 { 939 mArmPC[mInum++] = pc(); 940 // work-around for ARM default address mode of immed8_pre(0) 941 if (offset > AMODE_UNSUPPORTED) offset = 0; 942 switch (offset) { 943 case 0: 944 amode.value = 0; 945 // fall thru to next case .... 946 case AMODE_IMM_8_PRE: // no support yet for writeback 947 mMips->SH(Rd, Rn, amode.value); 948 break; 949 case AMODE_IMM_8_POST: 950 mMips->SH(Rd, Rn, 0); 951 mMips->ADDIU(Rn, Rn, amode.value); 952 break; 953 case AMODE_REG_PRE: 954 // we only support simple base +/- index 955 if (amode.reg >= 0) { 956 mMips->ADDU(R_at, Rn, amode.reg); 957 } else { 958 mMips->SUBU(R_at, Rn, abs(amode.reg)); 959 } 960 mMips->SH(Rd, R_at, 0); 961 break; 962 } 963 } 964 965 966 967 #if 0 968 #pragma mark - 969 #pragma mark Block Data Transfer... 970 #endif 971 972 // block data transfer... 973 void ArmToMipsAssembler::LDM(int cc, int dir, 974 int Rn, int W, uint32_t reg_list) 975 { // ED FD EA FA IB IA DB DA 976 // const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; 977 // const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 }; 978 // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | 979 // (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list; 980 mArmPC[mInum++] = pc(); 981 mMips->NOP2(); 982 NOT_IMPLEMENTED(); 983 } 984 985 void ArmToMipsAssembler::STM(int cc, int dir, 986 int Rn, int W, uint32_t reg_list) 987 { // FA EA FD ED IB IA DB DA 988 // const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 }; 989 // const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 }; 990 // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | 991 // (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list; 992 mArmPC[mInum++] = pc(); 993 mMips->NOP2(); 994 NOT_IMPLEMENTED(); 995 } 996 997 998 999 #if 0 1000 #pragma mark - 1001 #pragma mark Special... 1002 #endif 1003 1004 // special... 1005 void ArmToMipsAssembler::SWP(int cc, int Rn, int Rd, int Rm) { 1006 // *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; 1007 mArmPC[mInum++] = pc(); 1008 mMips->NOP2(); 1009 NOT_IMPLEMENTED(); 1010 } 1011 1012 void ArmToMipsAssembler::SWPB(int cc, int Rn, int Rd, int Rm) { 1013 // *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; 1014 mArmPC[mInum++] = pc(); 1015 mMips->NOP2(); 1016 NOT_IMPLEMENTED(); 1017 } 1018 1019 void ArmToMipsAssembler::SWI(int cc, uint32_t comment) { 1020 // *mPC++ = (cc<<28) | (0xF<<24) | comment; 1021 mArmPC[mInum++] = pc(); 1022 mMips->NOP2(); 1023 NOT_IMPLEMENTED(); 1024 } 1025 1026 1027 #if 0 1028 #pragma mark - 1029 #pragma mark DSP instructions... 1030 #endif 1031 1032 // DSP instructions... 1033 void ArmToMipsAssembler::PLD(int Rn, uint32_t offset) { 1034 LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))), 1035 "PLD only P=1, W=0"); 1036 // *mPC++ = 0xF550F000 | (Rn<<16) | offset; 1037 mArmPC[mInum++] = pc(); 1038 mMips->NOP2(); 1039 NOT_IMPLEMENTED(); 1040 } 1041 1042 void ArmToMipsAssembler::CLZ(int cc, int Rd, int Rm) 1043 { 1044 mArmPC[mInum++] = pc(); 1045 mMips->CLZ(Rd, Rm); 1046 } 1047 1048 void ArmToMipsAssembler::QADD(int cc, int Rd, int Rm, int Rn) 1049 { 1050 // *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm; 1051 mArmPC[mInum++] = pc(); 1052 mMips->NOP2(); 1053 NOT_IMPLEMENTED(); 1054 } 1055 1056 void ArmToMipsAssembler::QDADD(int cc, int Rd, int Rm, int Rn) 1057 { 1058 // *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm; 1059 mArmPC[mInum++] = pc(); 1060 mMips->NOP2(); 1061 NOT_IMPLEMENTED(); 1062 } 1063 1064 void ArmToMipsAssembler::QSUB(int cc, int Rd, int Rm, int Rn) 1065 { 1066 // *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm; 1067 mArmPC[mInum++] = pc(); 1068 mMips->NOP2(); 1069 NOT_IMPLEMENTED(); 1070 } 1071 1072 void ArmToMipsAssembler::QDSUB(int cc, int Rd, int Rm, int Rn) 1073 { 1074 // *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm; 1075 mArmPC[mInum++] = pc(); 1076 mMips->NOP2(); 1077 NOT_IMPLEMENTED(); 1078 } 1079 1080 // 16 x 16 signed multiply (like SMLAxx without the accumulate) 1081 void ArmToMipsAssembler::SMUL(int cc, int xy, 1082 int Rd, int Rm, int Rs) 1083 { 1084 mArmPC[mInum++] = pc(); 1085 1086 // the 16 bits may be in the top or bottom half of 32-bit source reg, 1087 // as defined by the codes BB, BT, TB, TT (compressed param xy) 1088 // where x corresponds to Rm and y to Rs 1089 1090 // select half-reg for Rm 1091 if (xy & xyTB) { 1092 // use top 16-bits 1093 mMips->SRA(R_at, Rm, 16); 1094 } else { 1095 // use bottom 16, but sign-extend to 32 1096 if (mips32r2) { 1097 mMips->SEH(R_at, Rm); 1098 } else { 1099 mMips->SLL(R_at, Rm, 16); 1100 mMips->SRA(R_at, R_at, 16); 1101 } 1102 } 1103 // select half-reg for Rs 1104 if (xy & xyBT) { 1105 // use top 16-bits 1106 mMips->SRA(R_at2, Rs, 16); 1107 } else { 1108 // use bottom 16, but sign-extend to 32 1109 if (mips32r2) { 1110 mMips->SEH(R_at2, Rs); 1111 } else { 1112 mMips->SLL(R_at2, Rs, 16); 1113 mMips->SRA(R_at2, R_at2, 16); 1114 } 1115 } 1116 mMips->MUL(Rd, R_at, R_at2); 1117 } 1118 1119 // signed 32b x 16b multiple, save top 32-bits of 48-bit result 1120 void ArmToMipsAssembler::SMULW(int cc, int y, 1121 int Rd, int Rm, int Rs) 1122 { 1123 mArmPC[mInum++] = pc(); 1124 1125 // the selector yT or yB refers to reg Rs 1126 if (y & yT) { 1127 // zero the bottom 16-bits, with 2 shifts, it can affect result 1128 mMips->SRL(R_at, Rs, 16); 1129 mMips->SLL(R_at, R_at, 16); 1130 1131 } else { 1132 // move low 16-bit half, to high half 1133 mMips->SLL(R_at, Rs, 16); 1134 } 1135 mMips->MULT(Rm, R_at); 1136 mMips->MFHI(Rd); 1137 } 1138 1139 // 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn 1140 void ArmToMipsAssembler::SMLA(int cc, int xy, 1141 int Rd, int Rm, int Rs, int Rn) 1142 { 1143 mArmPC[mInum++] = pc(); 1144 1145 // the 16 bits may be in the top or bottom half of 32-bit source reg, 1146 // as defined by the codes BB, BT, TB, TT (compressed param xy) 1147 // where x corresponds to Rm and y to Rs 1148 1149 // select half-reg for Rm 1150 if (xy & xyTB) { 1151 // use top 16-bits 1152 mMips->SRA(R_at, Rm, 16); 1153 } else { 1154 // use bottom 16, but sign-extend to 32 1155 if (mips32r2) { 1156 mMips->SEH(R_at, Rm); 1157 } else { 1158 mMips->SLL(R_at, Rm, 16); 1159 mMips->SRA(R_at, R_at, 16); 1160 } 1161 } 1162 // select half-reg for Rs 1163 if (xy & xyBT) { 1164 // use top 16-bits 1165 mMips->SRA(R_at2, Rs, 16); 1166 } else { 1167 // use bottom 16, but sign-extend to 32 1168 if (mips32r2) { 1169 mMips->SEH(R_at2, Rs); 1170 } else { 1171 mMips->SLL(R_at2, Rs, 16); 1172 mMips->SRA(R_at2, R_at2, 16); 1173 } 1174 } 1175 1176 mMips->MUL(R_at, R_at, R_at2); 1177 mMips->ADDU(Rd, R_at, Rn); 1178 } 1179 1180 void ArmToMipsAssembler::SMLAL(int cc, int xy, 1181 int RdHi, int RdLo, int Rs, int Rm) 1182 { 1183 // *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm; 1184 mArmPC[mInum++] = pc(); 1185 mMips->NOP2(); 1186 NOT_IMPLEMENTED(); 1187 } 1188 1189 void ArmToMipsAssembler::SMLAW(int cc, int y, 1190 int Rd, int Rm, int Rs, int Rn) 1191 { 1192 // *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm; 1193 mArmPC[mInum++] = pc(); 1194 mMips->NOP2(); 1195 NOT_IMPLEMENTED(); 1196 } 1197 1198 // used by ARMv6 version of GGLAssembler::filter32 1199 void ArmToMipsAssembler::UXTB16(int cc, int Rd, int Rm, int rotate) 1200 { 1201 mArmPC[mInum++] = pc(); 1202 1203 //Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), 1204 //Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. 1205 1206 mMips->ROTR(Rm, Rm, rotate * 8); 1207 mMips->AND(Rd, Rm, 0x00FF00FF); 1208 } 1209 1210 void ArmToMipsAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width) 1211 { 1212 /* Placeholder for UBFX */ 1213 mArmPC[mInum++] = pc(); 1214 1215 mMips->NOP2(); 1216 NOT_IMPLEMENTED(); 1217 } 1218 1219 1220 1221 1222 1223 #if 0 1224 #pragma mark - 1225 #pragma mark MIPS Assembler... 1226 #endif 1227 1228 1229 //************************************************************************** 1230 //************************************************************************** 1231 //************************************************************************** 1232 1233 1234 /* mips assembler 1235 ** this is a subset of mips32r2, targeted specifically at ARM instruction 1236 ** replacement in the pixelflinger/codeflinger code. 1237 ** 1238 ** To that end, there is no need for floating point, or priviledged 1239 ** instructions. This all runs in user space, no float. 1240 ** 1241 ** The syntax makes no attempt to be as complete as the assember, with 1242 ** synthetic instructions, and automatic recognition of immedate operands 1243 ** (use the immediate form of the instruction), etc. 1244 ** 1245 ** We start with mips32r1, and may add r2 and dsp extensions if cpu 1246 ** supports. Decision will be made at compile time, based on gcc 1247 ** options. (makes sense since android will be built for a a specific 1248 ** device) 1249 */ 1250 1251 MIPSAssembler::MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent) 1252 : mParent(parent), 1253 mAssembly(assembly) 1254 { 1255 mBase = mPC = (uint32_t *)assembly->base(); 1256 mDuration = ggl_system_time(); 1257 } 1258 1259 MIPSAssembler::~MIPSAssembler() 1260 { 1261 } 1262 1263 1264 uint32_t* MIPSAssembler::pc() const 1265 { 1266 return mPC; 1267 } 1268 1269 uint32_t* MIPSAssembler::base() const 1270 { 1271 return mBase; 1272 } 1273 1274 void MIPSAssembler::reset() 1275 { 1276 mBase = mPC = (uint32_t *)mAssembly->base(); 1277 mBranchTargets.clear(); 1278 mLabels.clear(); 1279 mLabelsInverseMapping.clear(); 1280 mComments.clear(); 1281 } 1282 1283 1284 // convert tabs to spaces, and remove any newline 1285 // works with strings of limited size (makes a temp copy) 1286 #define TABSTOP 8 1287 void MIPSAssembler::string_detab(char *s) 1288 { 1289 char *os = s; 1290 char temp[100]; 1291 char *t = temp; 1292 int len = 99; 1293 int i = TABSTOP; 1294 1295 while (*s && len-- > 0) { 1296 if (*s == '\n') { s++; continue; } 1297 if (*s == '\t') { 1298 s++; 1299 for ( ; i>0; i--) {*t++ = ' '; len--; } 1300 } else { 1301 *t++ = *s++; 1302 } 1303 if (i <= 0) i = TABSTOP; 1304 i--; 1305 } 1306 *t = '\0'; 1307 strcpy(os, temp); 1308 } 1309 1310 void MIPSAssembler::string_pad(char *s, int padded_len) 1311 { 1312 int len = strlen(s); 1313 s += len; 1314 for (int i = padded_len - len; i > 0; --i) { 1315 *s++ = ' '; 1316 } 1317 *s = '\0'; 1318 } 1319 1320 // ---------------------------------------------------------------------------- 1321 1322 void MIPSAssembler::disassemble(const char* name) 1323 { 1324 char di_buf[140]; 1325 1326 if (name) { 1327 ALOGW("%s:\n", name); 1328 } 1329 1330 bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true; 1331 1332 typedef char dstr[40]; 1333 dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer; 1334 1335 if (mParent->mArmDisassemblyBuffer != NULL) { 1336 for (int i=0; i<mParent->mArmInstrCount; ++i) { 1337 string_detab(lines[i]); 1338 } 1339 } 1340 1341 // iArm is an index to Arm instructions 1...n for this assembly sequence 1342 // mArmPC[iArm] holds the value of the Mips-PC for the first MIPS 1343 // instruction corresponding to that Arm instruction number 1344 1345 int iArm = 0; 1346 size_t count = pc()-base(); 1347 uint32_t* mipsPC = base(); 1348 while (count--) { 1349 ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC); 1350 if (label >= 0) { 1351 ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label)); 1352 } 1353 ssize_t comment = mComments.indexOfKey(mipsPC); 1354 if (comment >= 0) { 1355 ALOGW("; %s\n", mComments.valueAt(comment)); 1356 } 1357 // ALOGW("%08x: %08x ", int(i), int(i[0])); 1358 ::mips_disassem(mipsPC, di_buf, arm_disasm_fmt); 1359 string_detab(di_buf); 1360 string_pad(di_buf, 30); 1361 ALOGW("%08x: %08x %s", uint32_t(mipsPC), uint32_t(*mipsPC), di_buf); 1362 mipsPC++; 1363 } 1364 } 1365 1366 void MIPSAssembler::comment(const char* string) 1367 { 1368 mComments.add(pc(), string); 1369 } 1370 1371 void MIPSAssembler::label(const char* theLabel) 1372 { 1373 mLabels.add(theLabel, pc()); 1374 mLabelsInverseMapping.add(pc(), theLabel); 1375 } 1376 1377 1378 void MIPSAssembler::prolog() 1379 { 1380 // empty - done in ArmToMipsAssembler 1381 } 1382 1383 void MIPSAssembler::epilog(uint32_t touched) 1384 { 1385 // empty - done in ArmToMipsAssembler 1386 } 1387 1388 int MIPSAssembler::generate(const char* name) 1389 { 1390 // fixup all the branches 1391 size_t count = mBranchTargets.size(); 1392 while (count--) { 1393 const branch_target_t& bt = mBranchTargets[count]; 1394 uint32_t* target_pc = mLabels.valueFor(bt.label); 1395 LOG_ALWAYS_FATAL_IF(!target_pc, 1396 "error resolving branch targets, target_pc is null"); 1397 int32_t offset = int32_t(target_pc - (bt.pc+1)); 1398 *bt.pc |= offset & 0x00FFFF; 1399 } 1400 1401 mAssembly->resize( int(pc()-base())*4 ); 1402 1403 // the instruction & data caches are flushed by CodeCache 1404 const int64_t duration = ggl_system_time() - mDuration; 1405 const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n"; 1406 ALOGI(format, name, int(pc()-base()), base(), pc(), duration); 1407 1408 #if defined(WITH_LIB_HARDWARE) 1409 if (__builtin_expect(mQemuTracing, 0)) { 1410 int err = qemu_add_mapping(int(base()), name); 1411 mQemuTracing = (err >= 0); 1412 } 1413 #endif 1414 1415 char value[PROPERTY_VALUE_MAX]; 1416 value[0] = '\0'; 1417 1418 property_get("debug.pf.disasm", value, "0"); 1419 1420 if (atoi(value) != 0) { 1421 disassemble(name); 1422 } 1423 1424 return NO_ERROR; 1425 } 1426 1427 uint32_t* MIPSAssembler::pcForLabel(const char* label) 1428 { 1429 return mLabels.valueFor(label); 1430 } 1431 1432 1433 1434 #if 0 1435 #pragma mark - 1436 #pragma mark Arithmetic... 1437 #endif 1438 1439 void MIPSAssembler::ADDU(int Rd, int Rs, int Rt) 1440 { 1441 *mPC++ = (spec_op<<OP_SHF) | (addu_fn<<FUNC_SHF) 1442 | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); 1443 } 1444 1445 // MD00086 pdf says this is: ADDIU rt, rs, imm -- they do not use Rd 1446 void MIPSAssembler::ADDIU(int Rt, int Rs, int16_t imm) 1447 { 1448 *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1449 } 1450 1451 1452 void MIPSAssembler::SUBU(int Rd, int Rs, int Rt) 1453 { 1454 *mPC++ = (spec_op<<OP_SHF) | (subu_fn<<FUNC_SHF) | 1455 (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; 1456 } 1457 1458 1459 void MIPSAssembler::SUBIU(int Rt, int Rs, int16_t imm) // really addiu(d, s, -j) 1460 { 1461 *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16); 1462 } 1463 1464 1465 void MIPSAssembler::NEGU(int Rd, int Rs) // really subu(d, zero, s) 1466 { 1467 MIPSAssembler::SUBU(Rd, 0, Rs); 1468 } 1469 1470 void MIPSAssembler::MUL(int Rd, int Rs, int Rt) 1471 { 1472 *mPC++ = (spec2_op<<OP_SHF) | (mul_fn<<FUNC_SHF) | 1473 (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; 1474 } 1475 1476 void MIPSAssembler::MULT(int Rs, int Rt) // dest is hi,lo 1477 { 1478 *mPC++ = (spec_op<<OP_SHF) | (mult_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1479 } 1480 1481 void MIPSAssembler::MULTU(int Rs, int Rt) // dest is hi,lo 1482 { 1483 *mPC++ = (spec_op<<OP_SHF) | (multu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1484 } 1485 1486 void MIPSAssembler::MADD(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt 1487 { 1488 *mPC++ = (spec2_op<<OP_SHF) | (madd_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1489 } 1490 1491 void MIPSAssembler::MADDU(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt 1492 { 1493 *mPC++ = (spec2_op<<OP_SHF) | (maddu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1494 } 1495 1496 1497 void MIPSAssembler::MSUB(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt 1498 { 1499 *mPC++ = (spec2_op<<OP_SHF) | (msub_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1500 } 1501 1502 void MIPSAssembler::MSUBU(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt 1503 { 1504 *mPC++ = (spec2_op<<OP_SHF) | (msubu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); 1505 } 1506 1507 1508 void MIPSAssembler::SEB(int Rd, int Rt) // sign-extend byte (mips32r2) 1509 { 1510 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seb_fn << SA_SHF) | 1511 (Rt<<RT_SHF) | (Rd<<RD_SHF); 1512 } 1513 1514 void MIPSAssembler::SEH(int Rd, int Rt) // sign-extend half-word (mips32r2) 1515 { 1516 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seh_fn << SA_SHF) | 1517 (Rt<<RT_SHF) | (Rd<<RD_SHF); 1518 } 1519 1520 1521 1522 #if 0 1523 #pragma mark - 1524 #pragma mark Comparisons... 1525 #endif 1526 1527 void MIPSAssembler::SLT(int Rd, int Rs, int Rt) 1528 { 1529 *mPC++ = (spec_op<<OP_SHF) | (slt_fn<<FUNC_SHF) | 1530 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1531 } 1532 1533 void MIPSAssembler::SLTI(int Rt, int Rs, int16_t imm) 1534 { 1535 *mPC++ = (slti_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1536 } 1537 1538 1539 void MIPSAssembler::SLTU(int Rd, int Rs, int Rt) 1540 { 1541 *mPC++ = (spec_op<<OP_SHF) | (sltu_fn<<FUNC_SHF) | 1542 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1543 } 1544 1545 void MIPSAssembler::SLTIU(int Rt, int Rs, int16_t imm) 1546 { 1547 *mPC++ = (sltiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1548 } 1549 1550 1551 1552 #if 0 1553 #pragma mark - 1554 #pragma mark Logical... 1555 #endif 1556 1557 void MIPSAssembler::AND(int Rd, int Rs, int Rt) 1558 { 1559 *mPC++ = (spec_op<<OP_SHF) | (and_fn<<FUNC_SHF) | 1560 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1561 } 1562 1563 void MIPSAssembler::ANDI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate 1564 { 1565 *mPC++ = (andi_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1566 } 1567 1568 1569 void MIPSAssembler::OR(int Rd, int Rs, int Rt) 1570 { 1571 *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) | 1572 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1573 } 1574 1575 void MIPSAssembler::ORI(int Rt, int Rs, uint16_t imm) 1576 { 1577 *mPC++ = (ori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1578 } 1579 1580 void MIPSAssembler::NOR(int Rd, int Rs, int Rt) 1581 { 1582 *mPC++ = (spec_op<<OP_SHF) | (nor_fn<<FUNC_SHF) | 1583 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1584 } 1585 1586 void MIPSAssembler::NOT(int Rd, int Rs) 1587 { 1588 MIPSAssembler::NOR(Rd, Rs, 0); // NOT(d,s) = NOR(d,s,zero) 1589 } 1590 1591 void MIPSAssembler::XOR(int Rd, int Rs, int Rt) 1592 { 1593 *mPC++ = (spec_op<<OP_SHF) | (xor_fn<<FUNC_SHF) | 1594 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1595 } 1596 1597 void MIPSAssembler::XORI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate 1598 { 1599 *mPC++ = (xori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); 1600 } 1601 1602 void MIPSAssembler::SLL(int Rd, int Rt, int shft) 1603 { 1604 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | 1605 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); 1606 } 1607 1608 void MIPSAssembler::SLLV(int Rd, int Rt, int Rs) 1609 { 1610 *mPC++ = (spec_op<<OP_SHF) | (sllv_fn<<FUNC_SHF) | 1611 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1612 } 1613 1614 void MIPSAssembler::SRL(int Rd, int Rt, int shft) 1615 { 1616 *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) | 1617 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); 1618 } 1619 1620 void MIPSAssembler::SRLV(int Rd, int Rt, int Rs) 1621 { 1622 *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) | 1623 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1624 } 1625 1626 void MIPSAssembler::SRA(int Rd, int Rt, int shft) 1627 { 1628 *mPC++ = (spec_op<<OP_SHF) | (sra_fn<<FUNC_SHF) | 1629 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); 1630 } 1631 1632 void MIPSAssembler::SRAV(int Rd, int Rt, int Rs) 1633 { 1634 *mPC++ = (spec_op<<OP_SHF) | (srav_fn<<FUNC_SHF) | 1635 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1636 } 1637 1638 void MIPSAssembler::ROTR(int Rd, int Rt, int shft) // mips32r2 1639 { 1640 // note weird encoding (SRL + 1) 1641 *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) | 1642 (1<<RS_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); 1643 } 1644 1645 void MIPSAssembler::ROTRV(int Rd, int Rt, int Rs) // mips32r2 1646 { 1647 // note weird encoding (SRLV + 1) 1648 *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) | 1649 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (1<<RE_SHF); 1650 } 1651 1652 // uses at2 register (mapped to some appropriate mips reg) 1653 void MIPSAssembler::RORsyn(int Rd, int Rt, int Rs) 1654 { 1655 // synthetic: d = t rotated by s 1656 MIPSAssembler::NEGU(R_at2, Rs); 1657 MIPSAssembler::SLLV(R_at2, Rt, R_at2); 1658 MIPSAssembler::SRLV(Rd, Rt, Rs); 1659 MIPSAssembler::OR(Rd, Rd, R_at2); 1660 } 1661 1662 // immediate version - uses at2 register (mapped to some appropriate mips reg) 1663 void MIPSAssembler::RORIsyn(int Rd, int Rt, int rot) 1664 { 1665 // synthetic: d = t rotated by immed rot 1666 // d = s >> rot | s << (32-rot) 1667 MIPSAssembler::SLL(R_at2, Rt, 32-rot); 1668 MIPSAssembler::SRL(Rd, Rt, rot); 1669 MIPSAssembler::OR(Rd, Rd, R_at2); 1670 } 1671 1672 void MIPSAssembler::CLO(int Rd, int Rs) 1673 { 1674 // Rt field must have same gpr # as Rd 1675 *mPC++ = (spec2_op<<OP_SHF) | (clo_fn<<FUNC_SHF) | 1676 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF); 1677 } 1678 1679 void MIPSAssembler::CLZ(int Rd, int Rs) 1680 { 1681 // Rt field must have same gpr # as Rd 1682 *mPC++ = (spec2_op<<OP_SHF) | (clz_fn<<FUNC_SHF) | 1683 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF); 1684 } 1685 1686 void MIPSAssembler::WSBH(int Rd, int Rt) // mips32r2 1687 { 1688 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (wsbh_fn << SA_SHF) | 1689 (Rt<<RT_SHF) | (Rd<<RD_SHF); 1690 } 1691 1692 1693 1694 #if 0 1695 #pragma mark - 1696 #pragma mark Load/store... 1697 #endif 1698 1699 void MIPSAssembler::LW(int Rt, int Rbase, int16_t offset) 1700 { 1701 *mPC++ = (lw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1702 } 1703 1704 void MIPSAssembler::SW(int Rt, int Rbase, int16_t offset) 1705 { 1706 *mPC++ = (sw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1707 } 1708 1709 // lb is sign-extended 1710 void MIPSAssembler::LB(int Rt, int Rbase, int16_t offset) 1711 { 1712 *mPC++ = (lb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1713 } 1714 1715 void MIPSAssembler::LBU(int Rt, int Rbase, int16_t offset) 1716 { 1717 *mPC++ = (lbu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1718 } 1719 1720 void MIPSAssembler::SB(int Rt, int Rbase, int16_t offset) 1721 { 1722 *mPC++ = (sb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1723 } 1724 1725 // lh is sign-extended 1726 void MIPSAssembler::LH(int Rt, int Rbase, int16_t offset) 1727 { 1728 *mPC++ = (lh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1729 } 1730 1731 void MIPSAssembler::LHU(int Rt, int Rbase, int16_t offset) 1732 { 1733 *mPC++ = (lhu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1734 } 1735 1736 void MIPSAssembler::SH(int Rt, int Rbase, int16_t offset) 1737 { 1738 *mPC++ = (sh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1739 } 1740 1741 void MIPSAssembler::LUI(int Rt, int16_t offset) 1742 { 1743 *mPC++ = (lui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); 1744 } 1745 1746 1747 1748 #if 0 1749 #pragma mark - 1750 #pragma mark Register move... 1751 #endif 1752 1753 void MIPSAssembler::MOVE(int Rd, int Rs) 1754 { 1755 // encoded as "or rd, rs, zero" 1756 *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) | 1757 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (0<<RT_SHF); 1758 } 1759 1760 void MIPSAssembler::MOVN(int Rd, int Rs, int Rt) 1761 { 1762 *mPC++ = (spec_op<<OP_SHF) | (movn_fn<<FUNC_SHF) | 1763 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1764 } 1765 1766 void MIPSAssembler::MOVZ(int Rd, int Rs, int Rt) 1767 { 1768 *mPC++ = (spec_op<<OP_SHF) | (movz_fn<<FUNC_SHF) | 1769 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); 1770 } 1771 1772 void MIPSAssembler::MFHI(int Rd) 1773 { 1774 *mPC++ = (spec_op<<OP_SHF) | (mfhi_fn<<FUNC_SHF) | (Rd<<RD_SHF); 1775 } 1776 1777 void MIPSAssembler::MFLO(int Rd) 1778 { 1779 *mPC++ = (spec_op<<OP_SHF) | (mflo_fn<<FUNC_SHF) | (Rd<<RD_SHF); 1780 } 1781 1782 void MIPSAssembler::MTHI(int Rs) 1783 { 1784 *mPC++ = (spec_op<<OP_SHF) | (mthi_fn<<FUNC_SHF) | (Rs<<RS_SHF); 1785 } 1786 1787 void MIPSAssembler::MTLO(int Rs) 1788 { 1789 *mPC++ = (spec_op<<OP_SHF) | (mtlo_fn<<FUNC_SHF) | (Rs<<RS_SHF); 1790 } 1791 1792 1793 1794 #if 0 1795 #pragma mark - 1796 #pragma mark Branch... 1797 #endif 1798 1799 // temporarily forcing a NOP into branch-delay slot, just to be safe 1800 // todo: remove NOP, optimze use of delay slots 1801 void MIPSAssembler::B(const char* label) 1802 { 1803 mBranchTargets.add(branch_target_t(label, mPC)); 1804 1805 // encoded as BEQ zero, zero, offset 1806 *mPC++ = (beq_op<<OP_SHF) | (0<<RT_SHF) 1807 | (0<<RS_SHF) | 0; // offset filled in later 1808 1809 MIPSAssembler::NOP(); 1810 } 1811 1812 void MIPSAssembler::BEQ(int Rs, int Rt, const char* label) 1813 { 1814 mBranchTargets.add(branch_target_t(label, mPC)); 1815 *mPC++ = (beq_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0; 1816 MIPSAssembler::NOP(); 1817 } 1818 1819 void MIPSAssembler::BNE(int Rs, int Rt, const char* label) 1820 { 1821 mBranchTargets.add(branch_target_t(label, mPC)); 1822 *mPC++ = (bne_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0; 1823 MIPSAssembler::NOP(); 1824 } 1825 1826 void MIPSAssembler::BLEZ(int Rs, const char* label) 1827 { 1828 mBranchTargets.add(branch_target_t(label, mPC)); 1829 *mPC++ = (blez_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0; 1830 MIPSAssembler::NOP(); 1831 } 1832 1833 void MIPSAssembler::BLTZ(int Rs, const char* label) 1834 { 1835 mBranchTargets.add(branch_target_t(label, mPC)); 1836 *mPC++ = (regimm_op<<OP_SHF) | (bltz_fn<<RT_SHF) | (Rs<<RS_SHF) | 0; 1837 MIPSAssembler::NOP(); 1838 } 1839 1840 void MIPSAssembler::BGTZ(int Rs, const char* label) 1841 { 1842 mBranchTargets.add(branch_target_t(label, mPC)); 1843 *mPC++ = (bgtz_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0; 1844 MIPSAssembler::NOP(); 1845 } 1846 1847 1848 void MIPSAssembler::BGEZ(int Rs, const char* label) 1849 { 1850 mBranchTargets.add(branch_target_t(label, mPC)); 1851 *mPC++ = (regimm_op<<OP_SHF) | (bgez_fn<<RT_SHF) | (Rs<<RS_SHF) | 0; 1852 MIPSAssembler::NOP(); 1853 } 1854 1855 void MIPSAssembler::JR(int Rs) 1856 { 1857 *mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jr_fn << FUNC_SHF); 1858 MIPSAssembler::NOP(); 1859 } 1860 1861 1862 #if 0 1863 #pragma mark - 1864 #pragma mark Synthesized Branch... 1865 #endif 1866 1867 // synthetic variants of branches (using slt & friends) 1868 void MIPSAssembler::BEQZ(int Rs, const char* label) 1869 { 1870 BEQ(Rs, R_zero, label); 1871 } 1872 1873 void MIPSAssembler::BNEZ(int Rs, const char* label) 1874 { 1875 BNE(R_at, R_zero, label); 1876 } 1877 1878 void MIPSAssembler::BGE(int Rs, int Rt, const char* label) 1879 { 1880 SLT(R_at, Rs, Rt); 1881 BEQ(R_at, R_zero, label); 1882 } 1883 1884 void MIPSAssembler::BGEU(int Rs, int Rt, const char* label) 1885 { 1886 SLTU(R_at, Rs, Rt); 1887 BEQ(R_at, R_zero, label); 1888 } 1889 1890 void MIPSAssembler::BGT(int Rs, int Rt, const char* label) 1891 { 1892 SLT(R_at, Rt, Rs); // rev 1893 BNE(R_at, R_zero, label); 1894 } 1895 1896 void MIPSAssembler::BGTU(int Rs, int Rt, const char* label) 1897 { 1898 SLTU(R_at, Rt, Rs); // rev 1899 BNE(R_at, R_zero, label); 1900 } 1901 1902 void MIPSAssembler::BLE(int Rs, int Rt, const char* label) 1903 { 1904 SLT(R_at, Rt, Rs); // rev 1905 BEQ(R_at, R_zero, label); 1906 } 1907 1908 void MIPSAssembler::BLEU(int Rs, int Rt, const char* label) 1909 { 1910 SLTU(R_at, Rt, Rs); // rev 1911 BEQ(R_at, R_zero, label); 1912 } 1913 1914 void MIPSAssembler::BLT(int Rs, int Rt, const char* label) 1915 { 1916 SLT(R_at, Rs, Rt); 1917 BNE(R_at, R_zero, label); 1918 } 1919 1920 void MIPSAssembler::BLTU(int Rs, int Rt, const char* label) 1921 { 1922 SLTU(R_at, Rs, Rt); 1923 BNE(R_at, R_zero, label); 1924 } 1925 1926 1927 1928 1929 #if 0 1930 #pragma mark - 1931 #pragma mark Misc... 1932 #endif 1933 1934 void MIPSAssembler::NOP(void) 1935 { 1936 // encoded as "sll zero, zero, 0", which is all zero 1937 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF); 1938 } 1939 1940 // using this as special opcode for not-yet-implemented ARM instruction 1941 void MIPSAssembler::NOP2(void) 1942 { 1943 // encoded as "sll zero, zero, 2", still a nop, but a unique code 1944 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (2 << RE_SHF); 1945 } 1946 1947 // using this as special opcode for purposefully NOT implemented ARM instruction 1948 void MIPSAssembler::UNIMPL(void) 1949 { 1950 // encoded as "sll zero, zero, 3", still a nop, but a unique code 1951 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (3 << RE_SHF); 1952 } 1953 1954 1955 }; // namespace android: 1956 1957 1958