Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "dex/compiler_ir.h"
     18 #include "dex_file-inl.h"
     19 #include "entrypoints/quick/quick_entrypoints.h"
     20 #include "invoke_type.h"
     21 #include "mirror/array.h"
     22 #include "mirror/string.h"
     23 #include "mir_to_lir-inl.h"
     24 #include "x86/codegen_x86.h"
     25 
     26 namespace art {
     27 
     28 /*
     29  * This source files contains "gen" codegen routines that should
     30  * be applicable to most targets.  Only mid-level support utilities
     31  * and "op" calls may be used here.
     32  */
     33 
     34 /*
     35  * To save scheduling time, helper calls are broken into two parts: generation of
     36  * the helper target address, and the actual call to the helper.  Because x86
     37  * has a memory call operation, part 1 is a NOP for x86.  For other targets,
     38  * load arguments between the two parts.
     39  */
     40 int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) {
     41   return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
     42 }
     43 
     44 /* NOTE: if r_tgt is a temp, it will be freed following use */
     45 LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc, bool use_link) {
     46   LIR* call_inst;
     47   OpKind op = use_link ? kOpBlx : kOpBx;
     48   if (cu_->instruction_set == kX86) {
     49     call_inst = OpThreadMem(op, helper_offset);
     50   } else {
     51     call_inst = OpReg(op, r_tgt);
     52     FreeTemp(r_tgt);
     53   }
     54   if (safepoint_pc) {
     55     MarkSafepointPC(call_inst);
     56   }
     57   return call_inst;
     58 }
     59 
     60 void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
     61   int r_tgt = CallHelperSetup(helper_offset);
     62   LoadConstant(TargetReg(kArg0), arg0);
     63   ClobberCalleeSave();
     64   CallHelper(r_tgt, helper_offset, safepoint_pc);
     65 }
     66 
     67 void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
     68   int r_tgt = CallHelperSetup(helper_offset);
     69   OpRegCopy(TargetReg(kArg0), arg0);
     70   ClobberCalleeSave();
     71   CallHelper(r_tgt, helper_offset, safepoint_pc);
     72 }
     73 
     74 void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
     75                                            bool safepoint_pc) {
     76   int r_tgt = CallHelperSetup(helper_offset);
     77   if (arg0.wide == 0) {
     78     LoadValueDirectFixed(arg0, TargetReg(kArg0));
     79   } else {
     80     LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
     81   }
     82   ClobberCalleeSave();
     83   CallHelper(r_tgt, helper_offset, safepoint_pc);
     84 }
     85 
     86 void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
     87                                       bool safepoint_pc) {
     88   int r_tgt = CallHelperSetup(helper_offset);
     89   LoadConstant(TargetReg(kArg0), arg0);
     90   LoadConstant(TargetReg(kArg1), arg1);
     91   ClobberCalleeSave();
     92   CallHelper(r_tgt, helper_offset, safepoint_pc);
     93 }
     94 
     95 void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
     96                                               RegLocation arg1, bool safepoint_pc) {
     97   int r_tgt = CallHelperSetup(helper_offset);
     98   if (arg1.wide == 0) {
     99     LoadValueDirectFixed(arg1, TargetReg(kArg1));
    100   } else {
    101     LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
    102   }
    103   LoadConstant(TargetReg(kArg0), arg0);
    104   ClobberCalleeSave();
    105   CallHelper(r_tgt, helper_offset, safepoint_pc);
    106 }
    107 
    108 void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1,
    109                                               bool safepoint_pc) {
    110   int r_tgt = CallHelperSetup(helper_offset);
    111   LoadValueDirectFixed(arg0, TargetReg(kArg0));
    112   LoadConstant(TargetReg(kArg1), arg1);
    113   ClobberCalleeSave();
    114   CallHelper(r_tgt, helper_offset, safepoint_pc);
    115 }
    116 
    117 void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
    118                                       bool safepoint_pc) {
    119   int r_tgt = CallHelperSetup(helper_offset);
    120   OpRegCopy(TargetReg(kArg1), arg1);
    121   LoadConstant(TargetReg(kArg0), arg0);
    122   ClobberCalleeSave();
    123   CallHelper(r_tgt, helper_offset, safepoint_pc);
    124 }
    125 
    126 void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
    127                                       bool safepoint_pc) {
    128   int r_tgt = CallHelperSetup(helper_offset);
    129   OpRegCopy(TargetReg(kArg0), arg0);
    130   LoadConstant(TargetReg(kArg1), arg1);
    131   ClobberCalleeSave();
    132   CallHelper(r_tgt, helper_offset, safepoint_pc);
    133 }
    134 
    135 void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
    136   int r_tgt = CallHelperSetup(helper_offset);
    137   LoadCurrMethodDirect(TargetReg(kArg1));
    138   LoadConstant(TargetReg(kArg0), arg0);
    139   ClobberCalleeSave();
    140   CallHelper(r_tgt, helper_offset, safepoint_pc);
    141 }
    142 
    143 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0,
    144                                                       RegLocation arg1, bool safepoint_pc) {
    145   int r_tgt = CallHelperSetup(helper_offset);
    146   if (arg0.wide == 0) {
    147     LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
    148     if (arg1.wide == 0) {
    149       if (cu_->instruction_set == kMips) {
    150         LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
    151       } else {
    152         LoadValueDirectFixed(arg1, TargetReg(kArg1));
    153       }
    154     } else {
    155       if (cu_->instruction_set == kMips) {
    156         LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
    157       } else {
    158         LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
    159       }
    160     }
    161   } else {
    162     LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
    163     if (arg1.wide == 0) {
    164       LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
    165     } else {
    166       LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
    167     }
    168   }
    169   ClobberCalleeSave();
    170   CallHelper(r_tgt, helper_offset, safepoint_pc);
    171 }
    172 
    173 void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
    174                                       bool safepoint_pc) {
    175   int r_tgt = CallHelperSetup(helper_offset);
    176   DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
    177   OpRegCopy(TargetReg(kArg0), arg0);
    178   OpRegCopy(TargetReg(kArg1), arg1);
    179   ClobberCalleeSave();
    180   CallHelper(r_tgt, helper_offset, safepoint_pc);
    181 }
    182 
    183 void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
    184                                          int arg2, bool safepoint_pc) {
    185   int r_tgt = CallHelperSetup(helper_offset);
    186   DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
    187   OpRegCopy(TargetReg(kArg0), arg0);
    188   OpRegCopy(TargetReg(kArg1), arg1);
    189   LoadConstant(TargetReg(kArg2), arg2);
    190   ClobberCalleeSave();
    191   CallHelper(r_tgt, helper_offset, safepoint_pc);
    192 }
    193 
    194 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,
    195                                                     int arg0, RegLocation arg2, bool safepoint_pc) {
    196   int r_tgt = CallHelperSetup(helper_offset);
    197   LoadValueDirectFixed(arg2, TargetReg(kArg2));
    198   LoadCurrMethodDirect(TargetReg(kArg1));
    199   LoadConstant(TargetReg(kArg0), arg0);
    200   ClobberCalleeSave();
    201   CallHelper(r_tgt, helper_offset, safepoint_pc);
    202 }
    203 
    204 void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0,
    205                                             int arg2, bool safepoint_pc) {
    206   int r_tgt = CallHelperSetup(helper_offset);
    207   LoadCurrMethodDirect(TargetReg(kArg1));
    208   LoadConstant(TargetReg(kArg2), arg2);
    209   LoadConstant(TargetReg(kArg0), arg0);
    210   ClobberCalleeSave();
    211   CallHelper(r_tgt, helper_offset, safepoint_pc);
    212 }
    213 
    214 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
    215                                                          int arg0, RegLocation arg1,
    216                                                          RegLocation arg2, bool safepoint_pc) {
    217   int r_tgt = CallHelperSetup(helper_offset);
    218   LoadValueDirectFixed(arg1, TargetReg(kArg1));
    219   if (arg2.wide == 0) {
    220     LoadValueDirectFixed(arg2, TargetReg(kArg2));
    221   } else {
    222     LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
    223   }
    224   LoadConstant(TargetReg(kArg0), arg0);
    225   ClobberCalleeSave();
    226   CallHelper(r_tgt, helper_offset, safepoint_pc);
    227 }
    228 
    229 /*
    230  * If there are any ins passed in registers that have not been promoted
    231  * to a callee-save register, flush them to the frame.  Perform intial
    232  * assignment of promoted arguments.
    233  *
    234  * ArgLocs is an array of location records describing the incoming arguments
    235  * with one location record per word of argument.
    236  */
    237 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
    238   /*
    239    * Dummy up a RegLocation for the incoming Method*
    240    * It will attempt to keep kArg0 live (or copy it to home location
    241    * if promoted).
    242    */
    243   RegLocation rl_src = rl_method;
    244   rl_src.location = kLocPhysReg;
    245   rl_src.low_reg = TargetReg(kArg0);
    246   rl_src.home = false;
    247   MarkLive(rl_src.low_reg, rl_src.s_reg_low);
    248   StoreValue(rl_method, rl_src);
    249   // If Method* has been promoted, explicitly flush
    250   if (rl_method.location == kLocPhysReg) {
    251     StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
    252   }
    253 
    254   if (cu_->num_ins == 0)
    255     return;
    256   const int num_arg_regs = 3;
    257   static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3};
    258   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
    259   /*
    260    * Copy incoming arguments to their proper home locations.
    261    * NOTE: an older version of dx had an issue in which
    262    * it would reuse static method argument registers.
    263    * This could result in the same Dalvik virtual register
    264    * being promoted to both core and fp regs. To account for this,
    265    * we only copy to the corresponding promoted physical register
    266    * if it matches the type of the SSA name for the incoming
    267    * argument.  It is also possible that long and double arguments
    268    * end up half-promoted.  In those cases, we must flush the promoted
    269    * half to memory as well.
    270    */
    271   for (int i = 0; i < cu_->num_ins; i++) {
    272     PromotionMap* v_map = &promotion_map_[start_vreg + i];
    273     if (i < num_arg_regs) {
    274       // If arriving in register
    275       bool need_flush = true;
    276       RegLocation* t_loc = &ArgLocs[i];
    277       if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
    278         OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i]));
    279         need_flush = false;
    280       } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
    281         OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i]));
    282         need_flush = false;
    283       } else {
    284         need_flush = true;
    285       }
    286 
    287       // For wide args, force flush if not fully promoted
    288       if (t_loc->wide) {
    289         PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
    290         // Is only half promoted?
    291         need_flush |= (p_map->core_location != v_map->core_location) ||
    292             (p_map->fp_location != v_map->fp_location);
    293         if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
    294           /*
    295            * In Arm, a double is represented as a pair of consecutive single float
    296            * registers starting at an even number.  It's possible that both Dalvik vRegs
    297            * representing the incoming double were independently promoted as singles - but
    298            * not in a form usable as a double.  If so, we need to flush - even though the
    299            * incoming arg appears fully in register.  At this point in the code, both
    300            * halves of the double are promoted.  Make sure they are in a usable form.
    301            */
    302           int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
    303           int low_reg = promotion_map_[lowreg_index].FpReg;
    304           int high_reg = promotion_map_[lowreg_index + 1].FpReg;
    305           if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
    306             need_flush = true;
    307           }
    308         }
    309       }
    310       if (need_flush) {
    311         StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
    312                       TargetReg(arg_regs[i]), kWord);
    313       }
    314     } else {
    315       // If arriving in frame & promoted
    316       if (v_map->core_location == kLocPhysReg) {
    317         LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
    318                      v_map->core_reg);
    319       }
    320       if (v_map->fp_location == kLocPhysReg) {
    321         LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
    322                      v_map->FpReg);
    323       }
    324     }
    325   }
    326 }
    327 
    328 /*
    329  * Bit of a hack here - in the absence of a real scheduling pass,
    330  * emit the next instruction in static & direct invoke sequences.
    331  */
    332 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
    333                           int state, const MethodReference& target_method,
    334                           uint32_t unused,
    335                           uintptr_t direct_code, uintptr_t direct_method,
    336                           InvokeType type) {
    337   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    338   if (cu->instruction_set != kThumb2) {
    339     // Disable sharpening
    340     direct_code = 0;
    341     direct_method = 0;
    342   }
    343   if (direct_code != 0 && direct_method != 0) {
    344     switch (state) {
    345     case 0:  // Get the current Method* [sets kArg0]
    346       if (direct_code != static_cast<unsigned int>(-1)) {
    347         cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
    348       } else {
    349         CHECK_EQ(cu->dex_file, target_method.dex_file);
    350         LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
    351                                                target_method.dex_method_index, 0);
    352         if (data_target == NULL) {
    353           data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
    354           data_target->operands[1] = type;
    355         }
    356         LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
    357         cg->AppendLIR(load_pc_rel);
    358         DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
    359       }
    360       if (direct_method != static_cast<unsigned int>(-1)) {
    361         cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
    362       } else {
    363         CHECK_EQ(cu->dex_file, target_method.dex_file);
    364         LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
    365                                                target_method.dex_method_index, 0);
    366         if (data_target == NULL) {
    367           data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index);
    368           data_target->operands[1] = type;
    369         }
    370         LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
    371         cg->AppendLIR(load_pc_rel);
    372         DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
    373       }
    374       break;
    375     default:
    376       return -1;
    377     }
    378   } else {
    379     switch (state) {
    380     case 0:  // Get the current Method* [sets kArg0]
    381       // TUNING: we can save a reg copy if Method* has been promoted.
    382       cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
    383       break;
    384     case 1:  // Get method->dex_cache_resolved_methods_
    385       cg->LoadWordDisp(cg->TargetReg(kArg0),
    386         mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
    387       // Set up direct code if known.
    388       if (direct_code != 0) {
    389         if (direct_code != static_cast<unsigned int>(-1)) {
    390           cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
    391         } else {
    392           CHECK_EQ(cu->dex_file, target_method.dex_file);
    393           LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
    394                                                  target_method.dex_method_index, 0);
    395           if (data_target == NULL) {
    396             data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
    397             data_target->operands[1] = type;
    398           }
    399           LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
    400           cg->AppendLIR(load_pc_rel);
    401           DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
    402         }
    403       }
    404       break;
    405     case 2:  // Grab target method*
    406       CHECK_EQ(cu->dex_file, target_method.dex_file);
    407       cg->LoadWordDisp(cg->TargetReg(kArg0),
    408                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
    409                            (target_method.dex_method_index * 4),
    410                        cg-> TargetReg(kArg0));
    411       break;
    412     case 3:  // Grab the code from the method*
    413       if (cu->instruction_set != kX86) {
    414         if (direct_code == 0) {
    415           cg->LoadWordDisp(cg->TargetReg(kArg0),
    416                            mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
    417                            cg->TargetReg(kInvokeTgt));
    418         }
    419         break;
    420       }
    421       // Intentional fallthrough for x86
    422     default:
    423       return -1;
    424     }
    425   }
    426   return state + 1;
    427 }
    428 
    429 /*
    430  * Bit of a hack here - in the absence of a real scheduling pass,
    431  * emit the next instruction in a virtual invoke sequence.
    432  * We can use kLr as a temp prior to target address loading
    433  * Note also that we'll load the first argument ("this") into
    434  * kArg1 here rather than the standard LoadArgRegs.
    435  */
    436 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
    437                          int state, const MethodReference& target_method,
    438                          uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
    439                          InvokeType unused3) {
    440   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    441   /*
    442    * This is the fast path in which the target virtual method is
    443    * fully resolved at compile time.
    444    */
    445   switch (state) {
    446     case 0: {  // Get "this" [set kArg1]
    447       RegLocation  rl_arg = info->args[0];
    448       cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
    449       break;
    450     }
    451     case 1:  // Is "this" null? [use kArg1]
    452       cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
    453       // get this->klass_ [use kArg1, set kInvokeTgt]
    454       cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
    455                        cg->TargetReg(kInvokeTgt));
    456       break;
    457     case 2:  // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
    458       cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
    459                        cg->TargetReg(kInvokeTgt));
    460       break;
    461     case 3:  // Get target method [use kInvokeTgt, set kArg0]
    462       cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
    463                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
    464                        cg->TargetReg(kArg0));
    465       break;
    466     case 4:  // Get the compiled code address [uses kArg0, sets kInvokeTgt]
    467       if (cu->instruction_set != kX86) {
    468         cg->LoadWordDisp(cg->TargetReg(kArg0),
    469                          mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
    470                          cg->TargetReg(kInvokeTgt));
    471         break;
    472       }
    473       // Intentional fallthrough for X86
    474     default:
    475       return -1;
    476   }
    477   return state + 1;
    478 }
    479 
    480 /*
    481  * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline,
    482  * which will locate the target and continue on via a tail call.
    483  */
    484 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
    485                                  const MethodReference& target_method,
    486                                  uint32_t unused, uintptr_t unused2,
    487                                  uintptr_t direct_method, InvokeType unused4) {
    488   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    489   if (cu->instruction_set != kThumb2) {
    490     // Disable sharpening
    491     direct_method = 0;
    492   }
    493   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
    494 
    495   if (direct_method != 0) {
    496     switch (state) {
    497       case 0:  // Load the trampoline target [sets kInvokeTgt].
    498         if (cu->instruction_set != kX86) {
    499           cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(),
    500                            cg->TargetReg(kInvokeTgt));
    501         }
    502         // Get the interface Method* [sets kArg0]
    503         if (direct_method != static_cast<unsigned int>(-1)) {
    504           cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
    505         } else {
    506           CHECK_EQ(cu->dex_file, target_method.dex_file);
    507           LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
    508                                                  target_method.dex_method_index, 0);
    509           if (data_target == NULL) {
    510             data_target = cg->AddWordData(&cg->method_literal_list_,
    511                                           target_method.dex_method_index);
    512             data_target->operands[1] = kInterface;
    513           }
    514           LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
    515           cg->AppendLIR(load_pc_rel);
    516           DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
    517         }
    518         break;
    519       default:
    520         return -1;
    521     }
    522   } else {
    523     switch (state) {
    524       case 0:
    525         // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
    526         cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
    527         // Load the trampoline target [sets kInvokeTgt].
    528         if (cu->instruction_set != kX86) {
    529           cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(),
    530                            cg->TargetReg(kInvokeTgt));
    531         }
    532         break;
    533     case 1:  // Get method->dex_cache_resolved_methods_ [set/use kArg0]
    534       cg->LoadWordDisp(cg->TargetReg(kArg0),
    535                        mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
    536                        cg->TargetReg(kArg0));
    537       break;
    538     case 2:  // Grab target method* [set/use kArg0]
    539       CHECK_EQ(cu->dex_file, target_method.dex_file);
    540       cg->LoadWordDisp(cg->TargetReg(kArg0),
    541                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
    542                            (target_method.dex_method_index * 4),
    543                        cg->TargetReg(kArg0));
    544       break;
    545     default:
    546       return -1;
    547     }
    548   }
    549   return state + 1;
    550 }
    551 
    552 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline,
    553                             int state, const MethodReference& target_method,
    554                             uint32_t method_idx) {
    555   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    556   /*
    557    * This handles the case in which the base method is not fully
    558    * resolved at compile time, we bail to a runtime helper.
    559    */
    560   if (state == 0) {
    561     if (cu->instruction_set != kX86) {
    562       // Load trampoline target
    563       cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt));
    564     }
    565     // Load kArg0 with method index
    566     CHECK_EQ(cu->dex_file, target_method.dex_file);
    567     cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
    568     return 1;
    569   }
    570   return -1;
    571 }
    572 
    573 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
    574                                 int state,
    575                                 const MethodReference& target_method,
    576                                 uint32_t method_idx,
    577                                 uintptr_t unused, uintptr_t unused2,
    578                                 InvokeType unused3) {
    579   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
    580   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
    581 }
    582 
    583 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    584                                 const MethodReference& target_method,
    585                                 uint32_t method_idx, uintptr_t unused,
    586                                 uintptr_t unused2, InvokeType unused3) {
    587   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
    588   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
    589 }
    590 
    591 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    592                                const MethodReference& target_method,
    593                                uint32_t method_idx, uintptr_t unused,
    594                                uintptr_t unused2, InvokeType unused3) {
    595   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
    596   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
    597 }
    598 
    599 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    600                            const MethodReference& target_method,
    601                            uint32_t method_idx, uintptr_t unused,
    602                            uintptr_t unused2, InvokeType unused3) {
    603   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
    604   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
    605 }
    606 
    607 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
    608                                                 CallInfo* info, int state,
    609                                                 const MethodReference& target_method,
    610                                                 uint32_t unused,
    611                                                 uintptr_t unused2, uintptr_t unused3,
    612                                                 InvokeType unused4) {
    613   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
    614   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
    615 }
    616 
    617 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
    618                          NextCallInsn next_call_insn,
    619                          const MethodReference& target_method,
    620                          uint32_t vtable_idx, uintptr_t direct_code,
    621                          uintptr_t direct_method, InvokeType type, bool skip_this) {
    622   int last_arg_reg = TargetReg(kArg3);
    623   int next_reg = TargetReg(kArg1);
    624   int next_arg = 0;
    625   if (skip_this) {
    626     next_reg++;
    627     next_arg++;
    628   }
    629   for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
    630     RegLocation rl_arg = info->args[next_arg++];
    631     rl_arg = UpdateRawLoc(rl_arg);
    632     if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
    633       LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
    634       next_reg++;
    635       next_arg++;
    636     } else {
    637       if (rl_arg.wide) {
    638         rl_arg.wide = false;
    639         rl_arg.is_const = false;
    640       }
    641       LoadValueDirectFixed(rl_arg, next_reg);
    642     }
    643     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    644                                 direct_code, direct_method, type);
    645   }
    646   return call_state;
    647 }
    648 
    649 /*
    650  * Load up to 5 arguments, the first three of which will be in
    651  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
    652  * and as part of the load sequence, it must be replaced with
    653  * the target method pointer.  Note, this may also be called
    654  * for "range" variants if the number of arguments is 5 or fewer.
    655  */
    656 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
    657                                   int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
    658                                   const MethodReference& target_method,
    659                                   uint32_t vtable_idx, uintptr_t direct_code,
    660                                   uintptr_t direct_method, InvokeType type, bool skip_this) {
    661   RegLocation rl_arg;
    662 
    663   /* If no arguments, just return */
    664   if (info->num_arg_words == 0)
    665     return call_state;
    666 
    667   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    668                               direct_code, direct_method, type);
    669 
    670   DCHECK_LE(info->num_arg_words, 5);
    671   if (info->num_arg_words > 3) {
    672     int32_t next_use = 3;
    673     // Detect special case of wide arg spanning arg3/arg4
    674     RegLocation rl_use0 = info->args[0];
    675     RegLocation rl_use1 = info->args[1];
    676     RegLocation rl_use2 = info->args[2];
    677     if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
    678       rl_use2.wide) {
    679       int reg = -1;
    680       // Wide spans, we need the 2nd half of uses[2].
    681       rl_arg = UpdateLocWide(rl_use2);
    682       if (rl_arg.location == kLocPhysReg) {
    683         reg = rl_arg.high_reg;
    684       } else {
    685         // kArg2 & rArg3 can safely be used here
    686         reg = TargetReg(kArg3);
    687         LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
    688         call_state = next_call_insn(cu_, info, call_state, target_method,
    689                                     vtable_idx, direct_code, direct_method, type);
    690       }
    691       StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
    692       StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
    693       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    694                                   direct_code, direct_method, type);
    695       next_use++;
    696     }
    697     // Loop through the rest
    698     while (next_use < info->num_arg_words) {
    699       int low_reg;
    700       int high_reg = -1;
    701       rl_arg = info->args[next_use];
    702       rl_arg = UpdateRawLoc(rl_arg);
    703       if (rl_arg.location == kLocPhysReg) {
    704         low_reg = rl_arg.low_reg;
    705         high_reg = rl_arg.high_reg;
    706       } else {
    707         low_reg = TargetReg(kArg2);
    708         if (rl_arg.wide) {
    709           high_reg = TargetReg(kArg3);
    710           LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
    711         } else {
    712           LoadValueDirectFixed(rl_arg, low_reg);
    713         }
    714         call_state = next_call_insn(cu_, info, call_state, target_method,
    715                                     vtable_idx, direct_code, direct_method, type);
    716       }
    717       int outs_offset = (next_use + 1) * 4;
    718       if (rl_arg.wide) {
    719         StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
    720         next_use += 2;
    721       } else {
    722         StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
    723         next_use++;
    724       }
    725       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    726                                direct_code, direct_method, type);
    727     }
    728   }
    729 
    730   call_state = LoadArgRegs(info, call_state, next_call_insn,
    731                            target_method, vtable_idx, direct_code, direct_method,
    732                            type, skip_this);
    733 
    734   if (pcrLabel) {
    735     *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
    736   }
    737   return call_state;
    738 }
    739 
    740 /*
    741  * May have 0+ arguments (also used for jumbo).  Note that
    742  * source virtual registers may be in physical registers, so may
    743  * need to be flushed to home location before copying.  This
    744  * applies to arg3 and above (see below).
    745  *
    746  * Two general strategies:
    747  *    If < 20 arguments
    748  *       Pass args 3-18 using vldm/vstm block copy
    749  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
    750  *    If 20+ arguments
    751  *       Pass args arg19+ using memcpy block copy
    752  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
    753  *
    754  */
    755 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
    756                                 LIR** pcrLabel, NextCallInsn next_call_insn,
    757                                 const MethodReference& target_method,
    758                                 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
    759                                 InvokeType type, bool skip_this) {
    760   // If we can treat it as non-range (Jumbo ops will use range form)
    761   if (info->num_arg_words <= 5)
    762     return GenDalvikArgsNoRange(info, call_state, pcrLabel,
    763                                 next_call_insn, target_method, vtable_idx,
    764                                 direct_code, direct_method, type, skip_this);
    765   /*
    766    * First load the non-register arguments.  Both forms expect all
    767    * of the source arguments to be in their home frame location, so
    768    * scan the s_reg names and flush any that have been promoted to
    769    * frame backing storage.
    770    */
    771   // Scan the rest of the args - if in phys_reg flush to memory
    772   for (int next_arg = 0; next_arg < info->num_arg_words;) {
    773     RegLocation loc = info->args[next_arg];
    774     if (loc.wide) {
    775       loc = UpdateLocWide(loc);
    776       if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
    777         StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
    778                           loc.low_reg, loc.high_reg);
    779       }
    780       next_arg += 2;
    781     } else {
    782       loc = UpdateLoc(loc);
    783       if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
    784         StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
    785                       loc.low_reg, kWord);
    786       }
    787       next_arg++;
    788     }
    789   }
    790 
    791   int start_offset = SRegOffset(info->args[3].s_reg_low);
    792   int outs_offset = 4 /* Method* */ + (3 * 4);
    793   if (cu_->instruction_set != kThumb2) {
    794     // Generate memcpy
    795     OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
    796     OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
    797     CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
    798                                TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
    799   } else {
    800     if (info->num_arg_words >= 20) {
    801       // Generate memcpy
    802       OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
    803       OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
    804       CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
    805                                  TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
    806     } else {
    807       // Use vldm/vstm pair using kArg3 as a temp
    808       int regs_left = std::min(info->num_arg_words - 3, 16);
    809       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    810                                direct_code, direct_method, type);
    811       OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
    812       LIR* ld = OpVldm(TargetReg(kArg3), regs_left);
    813       // TUNING: loosen barrier
    814       ld->def_mask = ENCODE_ALL;
    815       SetMemRefType(ld, true /* is_load */, kDalvikReg);
    816       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    817                                direct_code, direct_method, type);
    818       OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
    819       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    820                                direct_code, direct_method, type);
    821       LIR* st = OpVstm(TargetReg(kArg3), regs_left);
    822       SetMemRefType(st, false /* is_load */, kDalvikReg);
    823       st->def_mask = ENCODE_ALL;
    824       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    825                                direct_code, direct_method, type);
    826     }
    827   }
    828 
    829   call_state = LoadArgRegs(info, call_state, next_call_insn,
    830                            target_method, vtable_idx, direct_code, direct_method,
    831                            type, skip_this);
    832 
    833   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    834                            direct_code, direct_method, type);
    835   if (pcrLabel) {
    836     *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
    837   }
    838   return call_state;
    839 }
    840 
    841 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
    842   RegLocation res;
    843   if (info->result.location == kLocInvalid) {
    844     res = GetReturn(false);
    845   } else {
    846     res = info->result;
    847   }
    848   return res;
    849 }
    850 
    851 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
    852   RegLocation res;
    853   if (info->result.location == kLocInvalid) {
    854     res = GetReturnWide(false);
    855   } else {
    856     res = info->result;
    857   }
    858   return res;
    859 }
    860 
    861 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
    862   if (cu_->instruction_set == kMips) {
    863     // TODO - add Mips implementation
    864     return false;
    865   }
    866   // Location of reference to data array
    867   int value_offset = mirror::String::ValueOffset().Int32Value();
    868   // Location of count
    869   int count_offset = mirror::String::CountOffset().Int32Value();
    870   // Starting offset within data array
    871   int offset_offset = mirror::String::OffsetOffset().Int32Value();
    872   // Start of char data with array_
    873   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
    874 
    875   RegLocation rl_obj = info->args[0];
    876   RegLocation rl_idx = info->args[1];
    877   rl_obj = LoadValue(rl_obj, kCoreReg);
    878   rl_idx = LoadValue(rl_idx, kCoreReg);
    879   int reg_max;
    880   GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
    881   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
    882   LIR* launch_pad = NULL;
    883   int reg_off = INVALID_REG;
    884   int reg_ptr = INVALID_REG;
    885   if (cu_->instruction_set != kX86) {
    886     reg_off = AllocTemp();
    887     reg_ptr = AllocTemp();
    888     if (range_check) {
    889       reg_max = AllocTemp();
    890       LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
    891     }
    892     LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
    893     LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
    894     if (range_check) {
    895       // Set up a launch pad to allow retry in case of bounds violation */
    896       launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
    897       intrinsic_launchpads_.Insert(launch_pad);
    898       OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
    899       FreeTemp(reg_max);
    900       OpCondBranch(kCondCs, launch_pad);
    901     }
    902   } else {
    903     if (range_check) {
    904       reg_max = AllocTemp();
    905       LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
    906       // Set up a launch pad to allow retry in case of bounds violation */
    907       launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
    908       intrinsic_launchpads_.Insert(launch_pad);
    909       OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
    910       FreeTemp(reg_max);
    911       OpCondBranch(kCondCc, launch_pad);
    912     }
    913     reg_off = AllocTemp();
    914     reg_ptr = AllocTemp();
    915     LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
    916     LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
    917   }
    918   OpRegImm(kOpAdd, reg_ptr, data_offset);
    919   OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
    920   FreeTemp(rl_obj.low_reg);
    921   FreeTemp(rl_idx.low_reg);
    922   RegLocation rl_dest = InlineTarget(info);
    923   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    924   LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
    925   FreeTemp(reg_off);
    926   FreeTemp(reg_ptr);
    927   StoreValue(rl_dest, rl_result);
    928   if (range_check) {
    929     launch_pad->operands[2] = 0;  // no resumption
    930   }
    931   // Record that we've already inlined & null checked
    932   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
    933   return true;
    934 }
    935 
    936 // Generates an inlined String.is_empty or String.length.
    937 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
    938   if (cu_->instruction_set == kMips) {
    939     // TODO - add Mips implementation
    940     return false;
    941   }
    942   // dst = src.length();
    943   RegLocation rl_obj = info->args[0];
    944   rl_obj = LoadValue(rl_obj, kCoreReg);
    945   RegLocation rl_dest = InlineTarget(info);
    946   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    947   GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
    948   LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
    949   if (is_empty) {
    950     // dst = (dst == 0);
    951     if (cu_->instruction_set == kThumb2) {
    952       int t_reg = AllocTemp();
    953       OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
    954       OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
    955     } else {
    956       DCHECK_EQ(cu_->instruction_set, kX86);
    957       OpRegImm(kOpSub, rl_result.low_reg, 1);
    958       OpRegImm(kOpLsr, rl_result.low_reg, 31);
    959     }
    960   }
    961   StoreValue(rl_dest, rl_result);
    962   return true;
    963 }
    964 
    965 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
    966   if (cu_->instruction_set == kMips) {
    967     // TODO - add Mips implementation
    968     return false;
    969   }
    970   RegLocation rl_src = info->args[0];
    971   rl_src = LoadValue(rl_src, kCoreReg);
    972   RegLocation rl_dest = InlineTarget(info);
    973   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    974   int sign_reg = AllocTemp();
    975   // abs(x) = y<=x>>31, (x+y)^y.
    976   OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
    977   OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
    978   OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
    979   StoreValue(rl_dest, rl_result);
    980   return true;
    981 }
    982 
    983 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
    984   if (cu_->instruction_set == kMips) {
    985     // TODO - add Mips implementation
    986     return false;
    987   }
    988   if (cu_->instruction_set == kThumb2) {
    989     RegLocation rl_src = info->args[0];
    990     rl_src = LoadValueWide(rl_src, kCoreReg);
    991     RegLocation rl_dest = InlineTargetWide(info);
    992     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    993     int sign_reg = AllocTemp();
    994     // abs(x) = y<=x>>31, (x+y)^y.
    995     OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
    996     OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
    997     OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
    998     OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
    999     OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
   1000     StoreValueWide(rl_dest, rl_result);
   1001     return true;
   1002   } else {
   1003     DCHECK_EQ(cu_->instruction_set, kX86);
   1004     // Reuse source registers to avoid running out of temps
   1005     RegLocation rl_src = info->args[0];
   1006     rl_src = LoadValueWide(rl_src, kCoreReg);
   1007     RegLocation rl_dest = InlineTargetWide(info);
   1008     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1009     OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
   1010     FreeTemp(rl_src.low_reg);
   1011     FreeTemp(rl_src.high_reg);
   1012     int sign_reg = AllocTemp();
   1013     // abs(x) = y<=x>>31, (x+y)^y.
   1014     OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
   1015     OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
   1016     OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
   1017     OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
   1018     OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
   1019     StoreValueWide(rl_dest, rl_result);
   1020     return true;
   1021   }
   1022 }
   1023 
   1024 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
   1025   if (cu_->instruction_set == kMips) {
   1026     // TODO - add Mips implementation
   1027     return false;
   1028   }
   1029   RegLocation rl_src = info->args[0];
   1030   RegLocation rl_dest = InlineTarget(info);
   1031   StoreValue(rl_dest, rl_src);
   1032   return true;
   1033 }
   1034 
   1035 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
   1036   if (cu_->instruction_set == kMips) {
   1037     // TODO - add Mips implementation
   1038     return false;
   1039   }
   1040   RegLocation rl_src = info->args[0];
   1041   RegLocation rl_dest = InlineTargetWide(info);
   1042   StoreValueWide(rl_dest, rl_src);
   1043   return true;
   1044 }
   1045 
   1046 /*
   1047  * Fast string.index_of(I) & (II).  Tests for simple case of char <= 0xffff,
   1048  * otherwise bails to standard library code.
   1049  */
   1050 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
   1051   if (cu_->instruction_set == kMips) {
   1052     // TODO - add Mips implementation
   1053     return false;
   1054   }
   1055   ClobberCalleeSave();
   1056   LockCallTemps();  // Using fixed registers
   1057   int reg_ptr = TargetReg(kArg0);
   1058   int reg_char = TargetReg(kArg1);
   1059   int reg_start = TargetReg(kArg2);
   1060 
   1061   RegLocation rl_obj = info->args[0];
   1062   RegLocation rl_char = info->args[1];
   1063   RegLocation rl_start = info->args[2];
   1064   LoadValueDirectFixed(rl_obj, reg_ptr);
   1065   LoadValueDirectFixed(rl_char, reg_char);
   1066   if (zero_based) {
   1067     LoadConstant(reg_start, 0);
   1068   } else {
   1069     LoadValueDirectFixed(rl_start, reg_start);
   1070   }
   1071   int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)) : 0;
   1072   GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
   1073   LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
   1074   intrinsic_launchpads_.Insert(launch_pad);
   1075   OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
   1076   // NOTE: not a safepoint
   1077   if (cu_->instruction_set != kX86) {
   1078     OpReg(kOpBlx, r_tgt);
   1079   } else {
   1080     OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pIndexOf));
   1081   }
   1082   LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
   1083   launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt);
   1084   // Record that we've already inlined & null checked
   1085   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
   1086   RegLocation rl_return = GetReturn(false);
   1087   RegLocation rl_dest = InlineTarget(info);
   1088   StoreValue(rl_dest, rl_return);
   1089   return true;
   1090 }
   1091 
   1092 /* Fast string.compareTo(Ljava/lang/string;)I. */
   1093 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
   1094   if (cu_->instruction_set == kMips) {
   1095     // TODO - add Mips implementation
   1096     return false;
   1097   }
   1098   ClobberCalleeSave();
   1099   LockCallTemps();  // Using fixed registers
   1100   int reg_this = TargetReg(kArg0);
   1101   int reg_cmp = TargetReg(kArg1);
   1102 
   1103   RegLocation rl_this = info->args[0];
   1104   RegLocation rl_cmp = info->args[1];
   1105   LoadValueDirectFixed(rl_this, reg_this);
   1106   LoadValueDirectFixed(rl_cmp, reg_cmp);
   1107   int r_tgt = (cu_->instruction_set != kX86) ?
   1108       LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
   1109   GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
   1110   // TUNING: check if rl_cmp.s_reg_low is already null checked
   1111   LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
   1112   intrinsic_launchpads_.Insert(launch_pad);
   1113   OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
   1114   // NOTE: not a safepoint
   1115   if (cu_->instruction_set != kX86) {
   1116     OpReg(kOpBlx, r_tgt);
   1117   } else {
   1118     OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
   1119   }
   1120   launch_pad->operands[2] = 0;  // No return possible
   1121   // Record that we've already inlined & null checked
   1122   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
   1123   RegLocation rl_return = GetReturn(false);
   1124   RegLocation rl_dest = InlineTarget(info);
   1125   StoreValue(rl_dest, rl_return);
   1126   return true;
   1127 }
   1128 
   1129 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
   1130   RegLocation rl_dest = InlineTarget(info);
   1131   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1132   ThreadOffset offset = Thread::PeerOffset();
   1133   if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
   1134     LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg);
   1135   } else {
   1136     CHECK(cu_->instruction_set == kX86);
   1137     reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
   1138   }
   1139   StoreValue(rl_dest, rl_result);
   1140   return true;
   1141 }
   1142 
   1143 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
   1144                                   bool is_long, bool is_volatile) {
   1145   if (cu_->instruction_set == kMips) {
   1146     // TODO - add Mips implementation
   1147     return false;
   1148   }
   1149   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1150   RegLocation rl_src_obj = info->args[1];  // Object
   1151   RegLocation rl_src_offset = info->args[2];  // long low
   1152   rl_src_offset.wide = 0;  // ignore high half in info->args[3]
   1153   RegLocation rl_dest = InlineTarget(info);  // result reg
   1154   if (is_volatile) {
   1155     GenMemBarrier(kLoadLoad);
   1156   }
   1157   RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
   1158   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1159   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1160   if (is_long) {
   1161     OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
   1162     LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
   1163     StoreValueWide(rl_dest, rl_result);
   1164   } else {
   1165     LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
   1166     StoreValue(rl_dest, rl_result);
   1167   }
   1168   return true;
   1169 }
   1170 
   1171 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
   1172                                   bool is_object, bool is_volatile, bool is_ordered) {
   1173   if (cu_->instruction_set == kMips) {
   1174     // TODO - add Mips implementation
   1175     return false;
   1176   }
   1177   if (cu_->instruction_set == kX86 && is_object) {
   1178     // TODO: fix X86, it exhausts registers for card marking.
   1179     return false;
   1180   }
   1181   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1182   RegLocation rl_src_obj = info->args[1];  // Object
   1183   RegLocation rl_src_offset = info->args[2];  // long low
   1184   rl_src_offset.wide = 0;  // ignore high half in info->args[3]
   1185   RegLocation rl_src_value = info->args[4];  // value to store
   1186   if (is_volatile || is_ordered) {
   1187     GenMemBarrier(kStoreStore);
   1188   }
   1189   RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
   1190   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1191   RegLocation rl_value;
   1192   if (is_long) {
   1193     rl_value = LoadValueWide(rl_src_value, kCoreReg);
   1194     OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
   1195     StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
   1196   } else {
   1197     rl_value = LoadValue(rl_src_value, kCoreReg);
   1198     StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
   1199   }
   1200   if (is_volatile) {
   1201     GenMemBarrier(kStoreLoad);
   1202   }
   1203   if (is_object) {
   1204     MarkGCCard(rl_value.low_reg, rl_object.low_reg);
   1205   }
   1206   return true;
   1207 }
   1208 
   1209 bool Mir2Lir::GenIntrinsic(CallInfo* info) {
   1210   if (info->opt_flags & MIR_INLINED) {
   1211     return false;
   1212   }
   1213   /*
   1214    * TODO: move these to a target-specific structured constant array
   1215    * and use a generic match function.  The list of intrinsics may be
   1216    * slightly different depending on target.
   1217    * TODO: Fold this into a matching function that runs during
   1218    * basic block building.  This should be part of the action for
   1219    * small method inlining and recognition of the special object init
   1220    * method.  By doing this during basic block construction, we can also
   1221    * take advantage of/generate new useful dataflow info.
   1222    */
   1223   StringPiece tgt_methods_declaring_class(
   1224       cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index)));
   1225   if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) {
   1226     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1227     if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") {
   1228       return GenInlinedDoubleCvt(info);
   1229     }
   1230     if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") {
   1231       return GenInlinedDoubleCvt(info);
   1232     }
   1233   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) {
   1234     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1235     if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") {
   1236       return GenInlinedFloatCvt(info);
   1237     }
   1238     if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") {
   1239       return GenInlinedFloatCvt(info);
   1240     }
   1241   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") ||
   1242              tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) {
   1243     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1244     if (tgt_method == "int java.lang.Math.abs(int)" ||
   1245         tgt_method == "int java.lang.StrictMath.abs(int)") {
   1246       return GenInlinedAbsInt(info);
   1247     }
   1248     if (tgt_method == "long java.lang.Math.abs(long)" ||
   1249         tgt_method == "long java.lang.StrictMath.abs(long)") {
   1250       return GenInlinedAbsLong(info);
   1251     }
   1252     if (tgt_method == "int java.lang.Math.max(int, int)" ||
   1253         tgt_method == "int java.lang.StrictMath.max(int, int)") {
   1254       return GenInlinedMinMaxInt(info, false /* is_min */);
   1255     }
   1256     if (tgt_method == "int java.lang.Math.min(int, int)" ||
   1257         tgt_method == "int java.lang.StrictMath.min(int, int)") {
   1258       return GenInlinedMinMaxInt(info, true /* is_min */);
   1259     }
   1260     if (tgt_method == "double java.lang.Math.sqrt(double)" ||
   1261         tgt_method == "double java.lang.StrictMath.sqrt(double)") {
   1262       return GenInlinedSqrt(info);
   1263     }
   1264   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) {
   1265     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1266     if (tgt_method == "char java.lang.String.charAt(int)") {
   1267       return GenInlinedCharAt(info);
   1268     }
   1269     if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") {
   1270       return GenInlinedStringCompareTo(info);
   1271     }
   1272     if (tgt_method == "boolean java.lang.String.is_empty()") {
   1273       return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */);
   1274     }
   1275     if (tgt_method == "int java.lang.String.index_of(int, int)") {
   1276       return GenInlinedIndexOf(info, false /* base 0 */);
   1277     }
   1278     if (tgt_method == "int java.lang.String.index_of(int)") {
   1279       return GenInlinedIndexOf(info, true /* base 0 */);
   1280     }
   1281     if (tgt_method == "int java.lang.String.length()") {
   1282       return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */);
   1283     }
   1284   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) {
   1285     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1286     if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") {
   1287       return GenInlinedCurrentThread(info);
   1288     }
   1289   } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) {
   1290     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
   1291     if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
   1292       return GenInlinedCas32(info, false);
   1293     }
   1294     if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
   1295       return GenInlinedCas32(info, true);
   1296     }
   1297     if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") {
   1298       return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
   1299     }
   1300     if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") {
   1301       return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
   1302     }
   1303     if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") {
   1304       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
   1305                                  false /* is_volatile */, false /* is_ordered */);
   1306     }
   1307     if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") {
   1308       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
   1309                                  true /* is_volatile */, false /* is_ordered */);
   1310     }
   1311     if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") {
   1312       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
   1313                                  false /* is_volatile */, true /* is_ordered */);
   1314     }
   1315     if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") {
   1316       return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */);
   1317     }
   1318     if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") {
   1319       return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */);
   1320     }
   1321     if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") {
   1322       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
   1323                                  false /* is_volatile */, false /* is_ordered */);
   1324     }
   1325     if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") {
   1326       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
   1327                                  true /* is_volatile */, false /* is_ordered */);
   1328     }
   1329     if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") {
   1330       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
   1331                                  false /* is_volatile */, true /* is_ordered */);
   1332     }
   1333     if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") {
   1334       return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
   1335     }
   1336     if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") {
   1337       return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
   1338     }
   1339     if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
   1340       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
   1341                                  false /* is_volatile */, false /* is_ordered */);
   1342     }
   1343     if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") {
   1344       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
   1345                                  true /* is_volatile */, false /* is_ordered */);
   1346     }
   1347     if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") {
   1348       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
   1349                                  false /* is_volatile */, true /* is_ordered */);
   1350     }
   1351   }
   1352   return false;
   1353 }
   1354 
   1355 void Mir2Lir::GenInvoke(CallInfo* info) {
   1356   if (GenIntrinsic(info)) {
   1357     return;
   1358   }
   1359   InvokeType original_type = info->type;  // avoiding mutation by ComputeInvokeInfo
   1360   int call_state = 0;
   1361   LIR* null_ck;
   1362   LIR** p_null_ck = NULL;
   1363   NextCallInsn next_call_insn;
   1364   FlushAllRegs();  /* Everything to home location */
   1365   // Explicit register usage
   1366   LockCallTemps();
   1367 
   1368   DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
   1369   MethodReference target_method(cUnit->GetDexFile(), info->index);
   1370   int vtable_idx;
   1371   uintptr_t direct_code;
   1372   uintptr_t direct_method;
   1373   bool skip_this;
   1374   bool fast_path =
   1375       cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
   1376                                               current_dalvik_offset_,
   1377                                               info->type, target_method,
   1378                                               vtable_idx,
   1379                                               direct_code, direct_method,
   1380                                               true) && !SLOW_INVOKE_PATH;
   1381   if (info->type == kInterface) {
   1382     if (fast_path) {
   1383       p_null_ck = &null_ck;
   1384     }
   1385     next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
   1386     skip_this = false;
   1387   } else if (info->type == kDirect) {
   1388     if (fast_path) {
   1389       p_null_ck = &null_ck;
   1390     }
   1391     next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
   1392     skip_this = false;
   1393   } else if (info->type == kStatic) {
   1394     next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
   1395     skip_this = false;
   1396   } else if (info->type == kSuper) {
   1397     DCHECK(!fast_path);  // Fast path is a direct call.
   1398     next_call_insn = NextSuperCallInsnSP;
   1399     skip_this = false;
   1400   } else {
   1401     DCHECK_EQ(info->type, kVirtual);
   1402     next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
   1403     skip_this = fast_path;
   1404   }
   1405   if (!info->is_range) {
   1406     call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
   1407                                       next_call_insn, target_method,
   1408                                       vtable_idx, direct_code, direct_method,
   1409                                       original_type, skip_this);
   1410   } else {
   1411     call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
   1412                                     next_call_insn, target_method, vtable_idx,
   1413                                     direct_code, direct_method, original_type,
   1414                                     skip_this);
   1415   }
   1416   // Finish up any of the call sequence not interleaved in arg loading
   1417   while (call_state >= 0) {
   1418     call_state = next_call_insn(cu_, info, call_state, target_method,
   1419                                 vtable_idx, direct_code, direct_method,
   1420                                 original_type);
   1421   }
   1422   LIR* call_inst;
   1423   if (cu_->instruction_set != kX86) {
   1424     call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
   1425   } else {
   1426     if (fast_path && info->type != kInterface) {
   1427       call_inst = OpMem(kOpBlx, TargetReg(kArg0),
   1428                         mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value());
   1429     } else {
   1430       ThreadOffset trampoline(-1);
   1431       switch (info->type) {
   1432       case kInterface:
   1433         trampoline = fast_path ? QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
   1434             : QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
   1435         break;
   1436       case kDirect:
   1437         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
   1438         break;
   1439       case kStatic:
   1440         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
   1441         break;
   1442       case kSuper:
   1443         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
   1444         break;
   1445       case kVirtual:
   1446         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
   1447         break;
   1448       default:
   1449         LOG(FATAL) << "Unexpected invoke type";
   1450       }
   1451       call_inst = OpThreadMem(kOpBlx, trampoline);
   1452     }
   1453   }
   1454   MarkSafepointPC(call_inst);
   1455 
   1456   ClobberCalleeSave();
   1457   if (info->result.location != kLocInvalid) {
   1458     // We have a following MOVE_RESULT - do it now.
   1459     if (info->result.wide) {
   1460       RegLocation ret_loc = GetReturnWide(info->result.fp);
   1461       StoreValueWide(info->result, ret_loc);
   1462     } else {
   1463       RegLocation ret_loc = GetReturn(info->result.fp);
   1464       StoreValue(info->result, ret_loc);
   1465     }
   1466   }
   1467 }
   1468 
   1469 }  // namespace art
   1470