1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "DAGISelMatcher.h" 11 #include "CodeGenDAGPatterns.h" 12 #include "CodeGenRegisters.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringMap.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/Record.h" 18 #include <utility> 19 using namespace llvm; 20 21 22 /// getRegisterValueType - Look up and return the ValueType of the specified 23 /// register. If the register is a member of multiple register classes which 24 /// have different associated types, return MVT::Other. 25 static MVT::SimpleValueType getRegisterValueType(Record *R, 26 const CodeGenTarget &T) { 27 bool FoundRC = false; 28 MVT::SimpleValueType VT = MVT::Other; 29 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 30 ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses(); 31 32 for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { 33 const CodeGenRegisterClass &RC = *RCs[rc]; 34 if (!RC.contains(Reg)) 35 continue; 36 37 if (!FoundRC) { 38 FoundRC = true; 39 VT = RC.getValueTypeNum(0); 40 continue; 41 } 42 43 // If this occurs in multiple register classes, they all have to agree. 44 assert(VT == RC.getValueTypeNum(0)); 45 } 46 return VT; 47 } 48 49 50 namespace { 51 class MatcherGen { 52 const PatternToMatch &Pattern; 53 const CodeGenDAGPatterns &CGP; 54 55 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 56 /// out with all of the types removed. This allows us to insert type checks 57 /// as we scan the tree. 58 TreePatternNode *PatWithNoTypes; 59 60 /// VariableMap - A map from variable names ('$dst') to the recorded operand 61 /// number that they were captured as. These are biased by 1 to make 62 /// insertion easier. 63 StringMap<unsigned> VariableMap; 64 65 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 66 /// the RecordedNodes array, this keeps track of which slot will be next to 67 /// record into. 68 unsigned NextRecordedOperandNo; 69 70 /// MatchedChainNodes - This maintains the position in the recorded nodes 71 /// array of all of the recorded input nodes that have chains. 72 SmallVector<unsigned, 2> MatchedChainNodes; 73 74 /// MatchedGlueResultNodes - This maintains the position in the recorded 75 /// nodes array of all of the recorded input nodes that have glue results. 76 SmallVector<unsigned, 2> MatchedGlueResultNodes; 77 78 /// MatchedComplexPatterns - This maintains a list of all of the 79 /// ComplexPatterns that we need to check. The patterns are known to have 80 /// names which were recorded. The second element of each pair is the first 81 /// slot number that the OPC_CheckComplexPat opcode drops the matched 82 /// results into. 83 SmallVector<std::pair<const TreePatternNode*, 84 unsigned>, 2> MatchedComplexPatterns; 85 86 /// PhysRegInputs - List list has an entry for each explicitly specified 87 /// physreg input to the pattern. The first elt is the Register node, the 88 /// second is the recorded slot number the input pattern match saved it in. 89 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 90 91 /// Matcher - This is the top level of the generated matcher, the result. 92 Matcher *TheMatcher; 93 94 /// CurPredicate - As we emit matcher nodes, this points to the latest check 95 /// which should have future checks stuck into its Next position. 96 Matcher *CurPredicate; 97 public: 98 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 99 100 ~MatcherGen() { 101 delete PatWithNoTypes; 102 } 103 104 bool EmitMatcherCode(unsigned Variant); 105 void EmitResultCode(); 106 107 Matcher *GetMatcher() const { return TheMatcher; } 108 private: 109 void AddMatcher(Matcher *NewNode); 110 void InferPossibleTypes(); 111 112 // Matcher Generation. 113 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); 114 void EmitLeafMatchCode(const TreePatternNode *N); 115 void EmitOperatorMatchCode(const TreePatternNode *N, 116 TreePatternNode *NodeNoTypes); 117 118 // Result Code Generation. 119 unsigned getNamedArgumentSlot(StringRef Name) { 120 unsigned VarMapEntry = VariableMap[Name]; 121 assert(VarMapEntry != 0 && 122 "Variable referenced but not defined and not caught earlier!"); 123 return VarMapEntry-1; 124 } 125 126 /// GetInstPatternNode - Get the pattern for an instruction. 127 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, 128 const TreePatternNode *N); 129 130 void EmitResultOperand(const TreePatternNode *N, 131 SmallVectorImpl<unsigned> &ResultOps); 132 void EmitResultOfNamedOperand(const TreePatternNode *N, 133 SmallVectorImpl<unsigned> &ResultOps); 134 void EmitResultLeafAsOperand(const TreePatternNode *N, 135 SmallVectorImpl<unsigned> &ResultOps); 136 void EmitResultInstructionAsOperand(const TreePatternNode *N, 137 SmallVectorImpl<unsigned> &ResultOps); 138 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 139 SmallVectorImpl<unsigned> &ResultOps); 140 }; 141 142 } // end anon namespace. 143 144 MatcherGen::MatcherGen(const PatternToMatch &pattern, 145 const CodeGenDAGPatterns &cgp) 146 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 147 TheMatcher(0), CurPredicate(0) { 148 // We need to produce the matcher tree for the patterns source pattern. To do 149 // this we need to match the structure as well as the types. To do the type 150 // matching, we want to figure out the fewest number of type checks we need to 151 // emit. For example, if there is only one integer type supported by a 152 // target, there should be no type comparisons at all for integer patterns! 153 // 154 // To figure out the fewest number of type checks needed, clone the pattern, 155 // remove the types, then perform type inference on the pattern as a whole. 156 // If there are unresolved types, emit an explicit check for those types, 157 // apply the type to the tree, then rerun type inference. Iterate until all 158 // types are resolved. 159 // 160 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 161 PatWithNoTypes->RemoveAllTypes(); 162 163 // If there are types that are manifestly known, infer them. 164 InferPossibleTypes(); 165 } 166 167 /// InferPossibleTypes - As we emit the pattern, we end up generating type 168 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 169 /// want to propagate implied types as far throughout the tree as possible so 170 /// that we avoid doing redundant type checks. This does the type propagation. 171 void MatcherGen::InferPossibleTypes() { 172 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 173 // diagnostics, which we know are impossible at this point. 174 TreePattern &TP = *CGP.pf_begin()->second; 175 176 bool MadeChange = true; 177 while (MadeChange) 178 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 179 true/*Ignore reg constraints*/); 180 } 181 182 183 /// AddMatcher - Add a matcher node to the current graph we're building. 184 void MatcherGen::AddMatcher(Matcher *NewNode) { 185 if (CurPredicate != 0) 186 CurPredicate->setNext(NewNode); 187 else 188 TheMatcher = NewNode; 189 CurPredicate = NewNode; 190 } 191 192 193 //===----------------------------------------------------------------------===// 194 // Pattern Match Generation 195 //===----------------------------------------------------------------------===// 196 197 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 198 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 199 assert(N->isLeaf() && "Not a leaf?"); 200 201 // Direct match against an integer constant. 202 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 203 // If this is the root of the dag we're matching, we emit a redundant opcode 204 // check to ensure that this gets folded into the normal top-level 205 // OpcodeSwitch. 206 if (N == Pattern.getSrcPattern()) { 207 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 208 AddMatcher(new CheckOpcodeMatcher(NI)); 209 } 210 211 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 212 } 213 214 // An UnsetInit represents a named node without any constraints. 215 if (N->getLeafValue() == UnsetInit::get()) { 216 assert(N->hasName() && "Unnamed ? leaf"); 217 return; 218 } 219 220 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 221 if (DI == 0) { 222 errs() << "Unknown leaf kind: " << *N << "\n"; 223 abort(); 224 } 225 226 Record *LeafRec = DI->getDef(); 227 228 // A ValueType leaf node can represent a register when named, or itself when 229 // unnamed. 230 if (LeafRec->isSubClassOf("ValueType")) { 231 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 232 if (N->hasName()) 233 return; 234 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 235 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 236 } 237 238 if (// Handle register references. Nothing to do here, they always match. 239 LeafRec->isSubClassOf("RegisterClass") || 240 LeafRec->isSubClassOf("RegisterOperand") || 241 LeafRec->isSubClassOf("PointerLikeRegClass") || 242 LeafRec->isSubClassOf("SubRegIndex") || 243 // Place holder for SRCVALUE nodes. Nothing to do here. 244 LeafRec->getName() == "srcvalue") 245 return; 246 247 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 248 // record the register 249 if (LeafRec->isSubClassOf("Register")) { 250 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), 251 NextRecordedOperandNo)); 252 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 253 return; 254 } 255 256 if (LeafRec->isSubClassOf("CondCode")) 257 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 258 259 if (LeafRec->isSubClassOf("ComplexPattern")) { 260 // We can't model ComplexPattern uses that don't have their name taken yet. 261 // The OPC_CheckComplexPattern operation implicitly records the results. 262 if (N->getName().empty()) { 263 errs() << "We expect complex pattern uses to have names: " << *N << "\n"; 264 exit(1); 265 } 266 267 // Remember this ComplexPattern so that we can emit it after all the other 268 // structural matches are done. 269 MatchedComplexPatterns.push_back(std::make_pair(N, 0)); 270 return; 271 } 272 273 errs() << "Unknown leaf kind: " << *N << "\n"; 274 abort(); 275 } 276 277 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 278 TreePatternNode *NodeNoTypes) { 279 assert(!N->isLeaf() && "Not an operator?"); 280 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 281 282 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 283 // a constant without a predicate fn that has more that one bit set, handle 284 // this as a special case. This is usually for targets that have special 285 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 286 // handling stuff). Using these instructions is often far more efficient 287 // than materializing the constant. Unfortunately, both the instcombiner 288 // and the dag combiner can often infer that bits are dead, and thus drop 289 // them from the mask in the dag. For example, it might turn 'AND X, 255' 290 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 291 // to handle this. 292 if ((N->getOperator()->getName() == "and" || 293 N->getOperator()->getName() == "or") && 294 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && 295 N->getPredicateFns().empty()) { 296 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 297 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 298 // If this is at the root of the pattern, we emit a redundant 299 // CheckOpcode so that the following checks get factored properly under 300 // a single opcode check. 301 if (N == Pattern.getSrcPattern()) 302 AddMatcher(new CheckOpcodeMatcher(CInfo)); 303 304 // Emit the CheckAndImm/CheckOrImm node. 305 if (N->getOperator()->getName() == "and") 306 AddMatcher(new CheckAndImmMatcher(II->getValue())); 307 else 308 AddMatcher(new CheckOrImmMatcher(II->getValue())); 309 310 // Match the LHS of the AND as appropriate. 311 AddMatcher(new MoveChildMatcher(0)); 312 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); 313 AddMatcher(new MoveParentMatcher()); 314 return; 315 } 316 } 317 } 318 319 // Check that the current opcode lines up. 320 AddMatcher(new CheckOpcodeMatcher(CInfo)); 321 322 // If this node has memory references (i.e. is a load or store), tell the 323 // interpreter to capture them in the memref array. 324 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 325 AddMatcher(new RecordMemRefMatcher()); 326 327 // If this node has a chain, then the chain is operand #0 is the SDNode, and 328 // the child numbers of the node are all offset by one. 329 unsigned OpNo = 0; 330 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 331 // Record the node and remember it in our chained nodes list. 332 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 333 "' chained node", 334 NextRecordedOperandNo)); 335 // Remember all of the input chains our pattern will match. 336 MatchedChainNodes.push_back(NextRecordedOperandNo++); 337 338 // Don't look at the input chain when matching the tree pattern to the 339 // SDNode. 340 OpNo = 1; 341 342 // If this node is not the root and the subtree underneath it produces a 343 // chain, then the result of matching the node is also produce a chain. 344 // Beyond that, this means that we're also folding (at least) the root node 345 // into the node that produce the chain (for example, matching 346 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 347 // problematic, if the 'reg' node also uses the load (say, its chain). 348 // Graphically: 349 // 350 // [LD] 351 // ^ ^ 352 // | \ DAG's like cheese. 353 // / | 354 // / [YY] 355 // | ^ 356 // [XX]--/ 357 // 358 // It would be invalid to fold XX and LD. In this case, folding the two 359 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 360 // To prevent this, we emit a dynamic check for legality before allowing 361 // this to be folded. 362 // 363 const TreePatternNode *Root = Pattern.getSrcPattern(); 364 if (N != Root) { // Not the root of the pattern. 365 // If there is a node between the root and this node, then we definitely 366 // need to emit the check. 367 bool NeedCheck = !Root->hasChild(N); 368 369 // If it *is* an immediate child of the root, we can still need a check if 370 // the root SDNode has multiple inputs. For us, this means that it is an 371 // intrinsic, has multiple operands, or has other inputs like chain or 372 // glue). 373 if (!NeedCheck) { 374 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 375 NeedCheck = 376 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 377 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 378 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 379 PInfo.getNumOperands() > 1 || 380 PInfo.hasProperty(SDNPHasChain) || 381 PInfo.hasProperty(SDNPInGlue) || 382 PInfo.hasProperty(SDNPOptInGlue); 383 } 384 385 if (NeedCheck) 386 AddMatcher(new CheckFoldableChainNodeMatcher()); 387 } 388 } 389 390 // If this node has an output glue and isn't the root, remember it. 391 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 392 N != Pattern.getSrcPattern()) { 393 // TODO: This redundantly records nodes with both glues and chains. 394 395 // Record the node and remember it in our chained nodes list. 396 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 397 "' glue output node", 398 NextRecordedOperandNo)); 399 // Remember all of the nodes with output glue our pattern will match. 400 MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); 401 } 402 403 // If this node is known to have an input glue or if it *might* have an input 404 // glue, capture it as the glue input of the pattern. 405 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 406 N->NodeHasProperty(SDNPInGlue, CGP)) 407 AddMatcher(new CaptureGlueInputMatcher()); 408 409 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 410 // Get the code suitable for matching this child. Move to the child, check 411 // it then move back to the parent. 412 AddMatcher(new MoveChildMatcher(OpNo)); 413 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); 414 AddMatcher(new MoveParentMatcher()); 415 } 416 } 417 418 419 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 420 TreePatternNode *NodeNoTypes) { 421 // If N and NodeNoTypes don't agree on a type, then this is a case where we 422 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and 423 // reinfer any correlated types. 424 SmallVector<unsigned, 2> ResultsToTypeCheck; 425 426 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 427 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 428 NodeNoTypes->setType(i, N->getExtType(i)); 429 InferPossibleTypes(); 430 ResultsToTypeCheck.push_back(i); 431 } 432 433 // If this node has a name associated with it, capture it in VariableMap. If 434 // we already saw this in the pattern, emit code to verify dagness. 435 if (!N->getName().empty()) { 436 unsigned &VarMapEntry = VariableMap[N->getName()]; 437 if (VarMapEntry == 0) { 438 // If it is a named node, we must emit a 'Record' opcode. 439 AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo)); 440 VarMapEntry = ++NextRecordedOperandNo; 441 } else { 442 // If we get here, this is a second reference to a specific name. Since 443 // we already have checked that the first reference is valid, we don't 444 // have to recursively match it, just check that it's the same as the 445 // previously named thing. 446 AddMatcher(new CheckSameMatcher(VarMapEntry-1)); 447 return; 448 } 449 } 450 451 if (N->isLeaf()) 452 EmitLeafMatchCode(N); 453 else 454 EmitOperatorMatchCode(N, NodeNoTypes); 455 456 // If there are node predicates for this node, generate their checks. 457 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) 458 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); 459 460 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 461 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), 462 ResultsToTypeCheck[i])); 463 } 464 465 /// EmitMatcherCode - Generate the code that matches the predicate of this 466 /// pattern for the specified Variant. If the variant is invalid this returns 467 /// true and does not generate code, if it is valid, it returns false. 468 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 469 // If the root of the pattern is a ComplexPattern and if it is specified to 470 // match some number of root opcodes, these are considered to be our variants. 471 // Depending on which variant we're generating code for, emit the root opcode 472 // check. 473 if (const ComplexPattern *CP = 474 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 475 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 476 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 477 if (Variant >= OpNodes.size()) return true; 478 479 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 480 } else { 481 if (Variant != 0) return true; 482 } 483 484 // Emit the matcher for the pattern structure and types. 485 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); 486 487 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 488 // feature is around, do the check). 489 if (!Pattern.getPredicateCheck().empty()) 490 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 491 492 // Now that we've completed the structural type match, emit any ComplexPattern 493 // checks (e.g. addrmode matches). We emit this after the structural match 494 // because they are generally more expensive to evaluate and more difficult to 495 // factor. 496 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 497 const TreePatternNode *N = MatchedComplexPatterns[i].first; 498 499 // Remember where the results of this match get stuck. 500 MatchedComplexPatterns[i].second = NextRecordedOperandNo; 501 502 // Get the slot we recorded the value in from the name on the node. 503 unsigned RecNodeEntry = VariableMap[N->getName()]; 504 assert(!N->getName().empty() && RecNodeEntry && 505 "Complex pattern should have a name and slot"); 506 --RecNodeEntry; // Entries in VariableMap are biased. 507 508 const ComplexPattern &CP = 509 CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef()); 510 511 // Emit a CheckComplexPat operation, which does the match (aborting if it 512 // fails) and pushes the matched operands onto the recorded nodes list. 513 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 514 N->getName(), NextRecordedOperandNo)); 515 516 // Record the right number of operands. 517 NextRecordedOperandNo += CP.getNumOperands(); 518 if (CP.hasProperty(SDNPHasChain)) { 519 // If the complex pattern has a chain, then we need to keep track of the 520 // fact that we just recorded a chain input. The chain input will be 521 // matched as the last operand of the predicate if it was successful. 522 ++NextRecordedOperandNo; // Chained node operand. 523 524 // It is the last operand recorded. 525 assert(NextRecordedOperandNo > 1 && 526 "Should have recorded input/result chains at least!"); 527 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 528 } 529 530 // TODO: Complex patterns can't have output glues, if they did, we'd want 531 // to record them. 532 } 533 534 return false; 535 } 536 537 538 //===----------------------------------------------------------------------===// 539 // Node Result Generation 540 //===----------------------------------------------------------------------===// 541 542 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 543 SmallVectorImpl<unsigned> &ResultOps){ 544 assert(!N->getName().empty() && "Operand not named!"); 545 546 // A reference to a complex pattern gets all of the results of the complex 547 // pattern's match. 548 if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { 549 unsigned SlotNo = 0; 550 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) 551 if (MatchedComplexPatterns[i].first->getName() == N->getName()) { 552 SlotNo = MatchedComplexPatterns[i].second; 553 break; 554 } 555 assert(SlotNo != 0 && "Didn't get a slot number assigned?"); 556 557 // The first slot entry is the node itself, the subsequent entries are the 558 // matched values. 559 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 560 ResultOps.push_back(SlotNo+i); 561 return; 562 } 563 564 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 565 566 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 567 // version of the immediate so that it doesn't get selected due to some other 568 // node use. 569 if (!N->isLeaf()) { 570 StringRef OperatorName = N->getOperator()->getName(); 571 if (OperatorName == "imm" || OperatorName == "fpimm") { 572 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 573 ResultOps.push_back(NextRecordedOperandNo++); 574 return; 575 } 576 } 577 578 ResultOps.push_back(SlotNo); 579 } 580 581 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 582 SmallVectorImpl<unsigned> &ResultOps) { 583 assert(N->isLeaf() && "Must be a leaf"); 584 585 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 586 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); 587 ResultOps.push_back(NextRecordedOperandNo++); 588 return; 589 } 590 591 // If this is an explicit register reference, handle it. 592 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 593 Record *Def = DI->getDef(); 594 if (Def->isSubClassOf("Register")) { 595 const CodeGenRegister *Reg = 596 CGP.getTargetInfo().getRegBank().getReg(Def); 597 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); 598 ResultOps.push_back(NextRecordedOperandNo++); 599 return; 600 } 601 602 if (Def->getName() == "zero_reg") { 603 AddMatcher(new EmitRegisterMatcher(0, N->getType(0))); 604 ResultOps.push_back(NextRecordedOperandNo++); 605 return; 606 } 607 608 // Handle a reference to a register class. This is used 609 // in COPY_TO_SUBREG instructions. 610 if (Def->isSubClassOf("RegisterOperand")) 611 Def = Def->getValueAsDef("RegClass"); 612 if (Def->isSubClassOf("RegisterClass")) { 613 std::string Value = getQualifiedName(Def) + "RegClassID"; 614 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 615 ResultOps.push_back(NextRecordedOperandNo++); 616 return; 617 } 618 619 // Handle a subregister index. This is used for INSERT_SUBREG etc. 620 if (Def->isSubClassOf("SubRegIndex")) { 621 std::string Value = getQualifiedName(Def); 622 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 623 ResultOps.push_back(NextRecordedOperandNo++); 624 return; 625 } 626 } 627 628 errs() << "unhandled leaf node: \n"; 629 N->dump(); 630 } 631 632 /// GetInstPatternNode - Get the pattern for an instruction. 633 /// 634 const TreePatternNode *MatcherGen:: 635 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { 636 const TreePattern *InstPat = Inst.getPattern(); 637 638 // FIXME2?: Assume actual pattern comes before "implicit". 639 TreePatternNode *InstPatNode; 640 if (InstPat) 641 InstPatNode = InstPat->getTree(0); 642 else if (/*isRoot*/ N == Pattern.getDstPattern()) 643 InstPatNode = Pattern.getSrcPattern(); 644 else 645 return 0; 646 647 if (InstPatNode && !InstPatNode->isLeaf() && 648 InstPatNode->getOperator()->getName() == "set") 649 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); 650 651 return InstPatNode; 652 } 653 654 static bool 655 mayInstNodeLoadOrStore(const TreePatternNode *N, 656 const CodeGenDAGPatterns &CGP) { 657 Record *Op = N->getOperator(); 658 const CodeGenTarget &CGT = CGP.getTargetInfo(); 659 CodeGenInstruction &II = CGT.getInstruction(Op); 660 return II.mayLoad || II.mayStore; 661 } 662 663 static unsigned 664 numNodesThatMayLoadOrStore(const TreePatternNode *N, 665 const CodeGenDAGPatterns &CGP) { 666 if (N->isLeaf()) 667 return 0; 668 669 Record *OpRec = N->getOperator(); 670 if (!OpRec->isSubClassOf("Instruction")) 671 return 0; 672 673 unsigned Count = 0; 674 if (mayInstNodeLoadOrStore(N, CGP)) 675 ++Count; 676 677 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 678 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 679 680 return Count; 681 } 682 683 void MatcherGen:: 684 EmitResultInstructionAsOperand(const TreePatternNode *N, 685 SmallVectorImpl<unsigned> &OutputOps) { 686 Record *Op = N->getOperator(); 687 const CodeGenTarget &CGT = CGP.getTargetInfo(); 688 CodeGenInstruction &II = CGT.getInstruction(Op); 689 const DAGInstruction &Inst = CGP.getInstruction(Op); 690 691 // If we can, get the pattern for the instruction we're generating. We derive 692 // a variety of information from this pattern, such as whether it has a chain. 693 // 694 // FIXME2: This is extremely dubious for several reasons, not the least of 695 // which it gives special status to instructions with patterns that Pat<> 696 // nodes can't duplicate. 697 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); 698 699 // NodeHasChain - Whether the instruction node we're creating takes chains. 700 bool NodeHasChain = InstPatNode && 701 InstPatNode->TreeHasProperty(SDNPHasChain, CGP); 702 703 // Instructions which load and store from memory should have a chain, 704 // regardless of whether they happen to have an internal pattern saying so. 705 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) 706 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 707 II.hasSideEffects)) 708 NodeHasChain = true; 709 710 bool isRoot = N == Pattern.getDstPattern(); 711 712 // TreeHasOutGlue - True if this tree has glue. 713 bool TreeHasInGlue = false, TreeHasOutGlue = false; 714 if (isRoot) { 715 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 716 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 717 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 718 719 // FIXME2: this is checking the entire pattern, not just the node in 720 // question, doing this just for the root seems like a total hack. 721 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 722 } 723 724 // NumResults - This is the number of results produced by the instruction in 725 // the "outs" list. 726 unsigned NumResults = Inst.getNumResults(); 727 728 // Loop over all of the operands of the instruction pattern, emitting code 729 // to fill them all in. The node 'N' usually has number children equal to 730 // the number of input operands of the instruction. However, in cases 731 // where there are predicate operands for an instruction, we need to fill 732 // in the 'execute always' values. Match up the node operands to the 733 // instruction operands to do this. 734 SmallVector<unsigned, 8> InstOps; 735 for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size(); 736 InstOpNo != e; ++InstOpNo) { 737 738 // Determine what to emit for this operand. 739 Record *OperandNode = II.Operands[InstOpNo].Rec; 740 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 741 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { 742 // This is a predicate or optional def operand; emit the 743 // 'default ops' operands. 744 const DAGDefaultOperand &DefaultOp 745 = CGP.getDefaultOperand(OperandNode); 746 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 747 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); 748 continue; 749 } 750 751 // Otherwise this is a normal operand or a predicate operand without 752 // 'execute always'; emit it. 753 754 // For operands with multiple sub-operands we may need to emit 755 // multiple child patterns to cover them all. However, ComplexPattern 756 // children may themselves emit multiple MI operands. 757 unsigned NumSubOps = 1; 758 if (OperandNode->isSubClassOf("Operand")) { 759 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 760 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 761 NumSubOps = NumArgs; 762 } 763 764 unsigned FinalNumOps = InstOps.size() + NumSubOps; 765 while (InstOps.size() < FinalNumOps) { 766 const TreePatternNode *Child = N->getChild(ChildNo); 767 unsigned BeforeAddingNumOps = InstOps.size(); 768 EmitResultOperand(Child, InstOps); 769 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 770 771 // If the operand is an instruction and it produced multiple results, just 772 // take the first one. 773 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 774 InstOps.resize(BeforeAddingNumOps+1); 775 776 ++ChildNo; 777 } 778 } 779 780 // If this node has input glue or explicitly specified input physregs, we 781 // need to add chained and glued copyfromreg nodes and materialize the glue 782 // input. 783 if (isRoot && !PhysRegInputs.empty()) { 784 // Emit all of the CopyToReg nodes for the input physical registers. These 785 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 786 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) 787 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 788 PhysRegInputs[i].first)); 789 // Even if the node has no other glue inputs, the resultant node must be 790 // glued to the CopyFromReg nodes we just generated. 791 TreeHasInGlue = true; 792 } 793 794 // Result order: node results, chain, glue 795 796 // Determine the result types. 797 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 798 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 799 ResultVTs.push_back(N->getType(i)); 800 801 // If this is the root instruction of a pattern that has physical registers in 802 // its result pattern, add output VTs for them. For example, X86 has: 803 // (set AL, (mul ...)) 804 // This also handles implicit results like: 805 // (implicit EFLAGS) 806 if (isRoot && !Pattern.getDstRegs().empty()) { 807 // If the root came from an implicit def in the instruction handling stuff, 808 // don't re-add it. 809 Record *HandledReg = 0; 810 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 811 HandledReg = II.ImplicitDefs[0]; 812 813 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 814 Record *Reg = Pattern.getDstRegs()[i]; 815 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 816 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 817 } 818 } 819 820 // If this is the root of the pattern and the pattern we're matching includes 821 // a node that is variadic, mark the generated node as variadic so that it 822 // gets the excess operands from the input DAG. 823 int NumFixedArityOperands = -1; 824 if (isRoot && 825 (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))) 826 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 827 828 // If this is the root node and multiple matched nodes in the input pattern 829 // have MemRefs in them, have the interpreter collect them and plop them onto 830 // this node. If there is just one node with MemRefs, leave them on that node 831 // even if it is not the root. 832 // 833 // FIXME3: This is actively incorrect for result patterns with multiple 834 // memory-referencing instructions. 835 bool PatternHasMemOperands = 836 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 837 838 bool NodeHasMemRefs = false; 839 if (PatternHasMemOperands) { 840 unsigned NumNodesThatLoadOrStore = 841 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 842 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 843 NumNodesThatLoadOrStore == 1; 844 NodeHasMemRefs = 845 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 846 NumNodesThatLoadOrStore != 1)); 847 } 848 849 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 850 "Node has no result"); 851 852 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), 853 ResultVTs.data(), ResultVTs.size(), 854 InstOps.data(), InstOps.size(), 855 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 856 NodeHasMemRefs, NumFixedArityOperands, 857 NextRecordedOperandNo)); 858 859 // The non-chain and non-glue results of the newly emitted node get recorded. 860 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 861 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 862 OutputOps.push_back(NextRecordedOperandNo++); 863 } 864 } 865 866 void MatcherGen:: 867 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 868 SmallVectorImpl<unsigned> &ResultOps) { 869 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 870 871 // Emit the operand. 872 SmallVector<unsigned, 8> InputOps; 873 874 // FIXME2: Could easily generalize this to support multiple inputs and outputs 875 // to the SDNodeXForm. For now we just support one input and one output like 876 // the old instruction selector. 877 assert(N->getNumChildren() == 1); 878 EmitResultOperand(N->getChild(0), InputOps); 879 880 // The input currently must have produced exactly one result. 881 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 882 883 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 884 ResultOps.push_back(NextRecordedOperandNo++); 885 } 886 887 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 888 SmallVectorImpl<unsigned> &ResultOps) { 889 // This is something selected from the pattern we matched. 890 if (!N->getName().empty()) 891 return EmitResultOfNamedOperand(N, ResultOps); 892 893 if (N->isLeaf()) 894 return EmitResultLeafAsOperand(N, ResultOps); 895 896 Record *OpRec = N->getOperator(); 897 if (OpRec->isSubClassOf("Instruction")) 898 return EmitResultInstructionAsOperand(N, ResultOps); 899 if (OpRec->isSubClassOf("SDNodeXForm")) 900 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 901 errs() << "Unknown result node to emit code for: " << *N << '\n'; 902 PrintFatalError("Unknown node in result pattern!"); 903 } 904 905 void MatcherGen::EmitResultCode() { 906 // Patterns that match nodes with (potentially multiple) chain inputs have to 907 // merge them together into a token factor. This informs the generated code 908 // what all the chained nodes are. 909 if (!MatchedChainNodes.empty()) 910 AddMatcher(new EmitMergeInputChainsMatcher 911 (MatchedChainNodes.data(), MatchedChainNodes.size())); 912 913 // Codegen the root of the result pattern, capturing the resulting values. 914 SmallVector<unsigned, 8> Ops; 915 EmitResultOperand(Pattern.getDstPattern(), Ops); 916 917 // At this point, we have however many values the result pattern produces. 918 // However, the input pattern might not need all of these. If there are 919 // excess values at the end (such as implicit defs of condition codes etc) 920 // just lop them off. This doesn't need to worry about glue or chains, just 921 // explicit results. 922 // 923 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 924 925 // If the pattern also has (implicit) results, count them as well. 926 if (!Pattern.getDstRegs().empty()) { 927 // If the root came from an implicit def in the instruction handling stuff, 928 // don't re-add it. 929 Record *HandledReg = 0; 930 const TreePatternNode *DstPat = Pattern.getDstPattern(); 931 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 932 const CodeGenTarget &CGT = CGP.getTargetInfo(); 933 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 934 935 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 936 HandledReg = II.ImplicitDefs[0]; 937 } 938 939 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 940 Record *Reg = Pattern.getDstRegs()[i]; 941 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 942 ++NumSrcResults; 943 } 944 } 945 946 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); 947 Ops.resize(NumSrcResults); 948 949 // If the matched pattern covers nodes which define a glue result, emit a node 950 // that tells the matcher about them so that it can update their results. 951 if (!MatchedGlueResultNodes.empty()) 952 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(), 953 MatchedGlueResultNodes.size())); 954 955 AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern)); 956 } 957 958 959 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 960 /// the specified variant. If the variant number is invalid, this returns null. 961 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 962 unsigned Variant, 963 const CodeGenDAGPatterns &CGP) { 964 MatcherGen Gen(Pattern, CGP); 965 966 // Generate the code for the matcher. 967 if (Gen.EmitMatcherCode(Variant)) 968 return 0; 969 970 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 971 // FIXME2: Split result code out to another table, and make the matcher end 972 // with an "Emit <index>" command. This allows result generation stuff to be 973 // shared and factored? 974 975 // If the match succeeds, then we generate Pattern. 976 Gen.EmitResultCode(); 977 978 // Unconditional match. 979 return Gen.GetMatcher(); 980 } 981