Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/ADT/StringMap.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include <utility>
     19 using namespace llvm;
     20 
     21 
     22 /// getRegisterValueType - Look up and return the ValueType of the specified
     23 /// register. If the register is a member of multiple register classes which
     24 /// have different associated types, return MVT::Other.
     25 static MVT::SimpleValueType getRegisterValueType(Record *R,
     26                                                  const CodeGenTarget &T) {
     27   bool FoundRC = false;
     28   MVT::SimpleValueType VT = MVT::Other;
     29   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     30   ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
     31 
     32   for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
     33     const CodeGenRegisterClass &RC = *RCs[rc];
     34     if (!RC.contains(Reg))
     35       continue;
     36 
     37     if (!FoundRC) {
     38       FoundRC = true;
     39       VT = RC.getValueTypeNum(0);
     40       continue;
     41     }
     42 
     43     // If this occurs in multiple register classes, they all have to agree.
     44     assert(VT == RC.getValueTypeNum(0));
     45   }
     46   return VT;
     47 }
     48 
     49 
     50 namespace {
     51   class MatcherGen {
     52     const PatternToMatch &Pattern;
     53     const CodeGenDAGPatterns &CGP;
     54 
     55     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     56     /// out with all of the types removed.  This allows us to insert type checks
     57     /// as we scan the tree.
     58     TreePatternNode *PatWithNoTypes;
     59 
     60     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     61     /// number that they were captured as.  These are biased by 1 to make
     62     /// insertion easier.
     63     StringMap<unsigned> VariableMap;
     64 
     65     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     66     /// the RecordedNodes array, this keeps track of which slot will be next to
     67     /// record into.
     68     unsigned NextRecordedOperandNo;
     69 
     70     /// MatchedChainNodes - This maintains the position in the recorded nodes
     71     /// array of all of the recorded input nodes that have chains.
     72     SmallVector<unsigned, 2> MatchedChainNodes;
     73 
     74     /// MatchedGlueResultNodes - This maintains the position in the recorded
     75     /// nodes array of all of the recorded input nodes that have glue results.
     76     SmallVector<unsigned, 2> MatchedGlueResultNodes;
     77 
     78     /// MatchedComplexPatterns - This maintains a list of all of the
     79     /// ComplexPatterns that we need to check.  The patterns are known to have
     80     /// names which were recorded.  The second element of each pair is the first
     81     /// slot number that the OPC_CheckComplexPat opcode drops the matched
     82     /// results into.
     83     SmallVector<std::pair<const TreePatternNode*,
     84                           unsigned>, 2> MatchedComplexPatterns;
     85 
     86     /// PhysRegInputs - List list has an entry for each explicitly specified
     87     /// physreg input to the pattern.  The first elt is the Register node, the
     88     /// second is the recorded slot number the input pattern match saved it in.
     89     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     90 
     91     /// Matcher - This is the top level of the generated matcher, the result.
     92     Matcher *TheMatcher;
     93 
     94     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     95     /// which should have future checks stuck into its Next position.
     96     Matcher *CurPredicate;
     97   public:
     98     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
     99 
    100     ~MatcherGen() {
    101       delete PatWithNoTypes;
    102     }
    103 
    104     bool EmitMatcherCode(unsigned Variant);
    105     void EmitResultCode();
    106 
    107     Matcher *GetMatcher() const { return TheMatcher; }
    108   private:
    109     void AddMatcher(Matcher *NewNode);
    110     void InferPossibleTypes();
    111 
    112     // Matcher Generation.
    113     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    114     void EmitLeafMatchCode(const TreePatternNode *N);
    115     void EmitOperatorMatchCode(const TreePatternNode *N,
    116                                TreePatternNode *NodeNoTypes);
    117 
    118     // Result Code Generation.
    119     unsigned getNamedArgumentSlot(StringRef Name) {
    120       unsigned VarMapEntry = VariableMap[Name];
    121       assert(VarMapEntry != 0 &&
    122              "Variable referenced but not defined and not caught earlier!");
    123       return VarMapEntry-1;
    124     }
    125 
    126     /// GetInstPatternNode - Get the pattern for an instruction.
    127     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    128                                               const TreePatternNode *N);
    129 
    130     void EmitResultOperand(const TreePatternNode *N,
    131                            SmallVectorImpl<unsigned> &ResultOps);
    132     void EmitResultOfNamedOperand(const TreePatternNode *N,
    133                                   SmallVectorImpl<unsigned> &ResultOps);
    134     void EmitResultLeafAsOperand(const TreePatternNode *N,
    135                                  SmallVectorImpl<unsigned> &ResultOps);
    136     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    137                                         SmallVectorImpl<unsigned> &ResultOps);
    138     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    139                                         SmallVectorImpl<unsigned> &ResultOps);
    140     };
    141 
    142 } // end anon namespace.
    143 
    144 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    145                        const CodeGenDAGPatterns &cgp)
    146 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    147   TheMatcher(0), CurPredicate(0) {
    148   // We need to produce the matcher tree for the patterns source pattern.  To do
    149   // this we need to match the structure as well as the types.  To do the type
    150   // matching, we want to figure out the fewest number of type checks we need to
    151   // emit.  For example, if there is only one integer type supported by a
    152   // target, there should be no type comparisons at all for integer patterns!
    153   //
    154   // To figure out the fewest number of type checks needed, clone the pattern,
    155   // remove the types, then perform type inference on the pattern as a whole.
    156   // If there are unresolved types, emit an explicit check for those types,
    157   // apply the type to the tree, then rerun type inference.  Iterate until all
    158   // types are resolved.
    159   //
    160   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    161   PatWithNoTypes->RemoveAllTypes();
    162 
    163   // If there are types that are manifestly known, infer them.
    164   InferPossibleTypes();
    165 }
    166 
    167 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    168 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    169 /// want to propagate implied types as far throughout the tree as possible so
    170 /// that we avoid doing redundant type checks.  This does the type propagation.
    171 void MatcherGen::InferPossibleTypes() {
    172   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    173   // diagnostics, which we know are impossible at this point.
    174   TreePattern &TP = *CGP.pf_begin()->second;
    175 
    176   bool MadeChange = true;
    177   while (MadeChange)
    178     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    179                                               true/*Ignore reg constraints*/);
    180 }
    181 
    182 
    183 /// AddMatcher - Add a matcher node to the current graph we're building.
    184 void MatcherGen::AddMatcher(Matcher *NewNode) {
    185   if (CurPredicate != 0)
    186     CurPredicate->setNext(NewNode);
    187   else
    188     TheMatcher = NewNode;
    189   CurPredicate = NewNode;
    190 }
    191 
    192 
    193 //===----------------------------------------------------------------------===//
    194 // Pattern Match Generation
    195 //===----------------------------------------------------------------------===//
    196 
    197 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    198 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    199   assert(N->isLeaf() && "Not a leaf?");
    200 
    201   // Direct match against an integer constant.
    202   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    203     // If this is the root of the dag we're matching, we emit a redundant opcode
    204     // check to ensure that this gets folded into the normal top-level
    205     // OpcodeSwitch.
    206     if (N == Pattern.getSrcPattern()) {
    207       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    208       AddMatcher(new CheckOpcodeMatcher(NI));
    209     }
    210 
    211     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    212   }
    213 
    214   // An UnsetInit represents a named node without any constraints.
    215   if (N->getLeafValue() == UnsetInit::get()) {
    216     assert(N->hasName() && "Unnamed ? leaf");
    217     return;
    218   }
    219 
    220   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    221   if (DI == 0) {
    222     errs() << "Unknown leaf kind: " << *N << "\n";
    223     abort();
    224   }
    225 
    226   Record *LeafRec = DI->getDef();
    227 
    228   // A ValueType leaf node can represent a register when named, or itself when
    229   // unnamed.
    230   if (LeafRec->isSubClassOf("ValueType")) {
    231     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    232     if (N->hasName())
    233       return;
    234     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    235     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    236   }
    237 
    238   if (// Handle register references.  Nothing to do here, they always match.
    239       LeafRec->isSubClassOf("RegisterClass") ||
    240       LeafRec->isSubClassOf("RegisterOperand") ||
    241       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    242       LeafRec->isSubClassOf("SubRegIndex") ||
    243       // Place holder for SRCVALUE nodes. Nothing to do here.
    244       LeafRec->getName() == "srcvalue")
    245     return;
    246 
    247   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    248   // record the register
    249   if (LeafRec->isSubClassOf("Register")) {
    250     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    251                                  NextRecordedOperandNo));
    252     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    253     return;
    254   }
    255 
    256   if (LeafRec->isSubClassOf("CondCode"))
    257     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    258 
    259   if (LeafRec->isSubClassOf("ComplexPattern")) {
    260     // We can't model ComplexPattern uses that don't have their name taken yet.
    261     // The OPC_CheckComplexPattern operation implicitly records the results.
    262     if (N->getName().empty()) {
    263       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
    264       exit(1);
    265     }
    266 
    267     // Remember this ComplexPattern so that we can emit it after all the other
    268     // structural matches are done.
    269     MatchedComplexPatterns.push_back(std::make_pair(N, 0));
    270     return;
    271   }
    272 
    273   errs() << "Unknown leaf kind: " << *N << "\n";
    274   abort();
    275 }
    276 
    277 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    278                                        TreePatternNode *NodeNoTypes) {
    279   assert(!N->isLeaf() && "Not an operator?");
    280   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    281 
    282   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    283   // a constant without a predicate fn that has more that one bit set, handle
    284   // this as a special case.  This is usually for targets that have special
    285   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    286   // handling stuff).  Using these instructions is often far more efficient
    287   // than materializing the constant.  Unfortunately, both the instcombiner
    288   // and the dag combiner can often infer that bits are dead, and thus drop
    289   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    290   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    291   // to handle this.
    292   if ((N->getOperator()->getName() == "and" ||
    293        N->getOperator()->getName() == "or") &&
    294       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    295       N->getPredicateFns().empty()) {
    296     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    297       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    298         // If this is at the root of the pattern, we emit a redundant
    299         // CheckOpcode so that the following checks get factored properly under
    300         // a single opcode check.
    301         if (N == Pattern.getSrcPattern())
    302           AddMatcher(new CheckOpcodeMatcher(CInfo));
    303 
    304         // Emit the CheckAndImm/CheckOrImm node.
    305         if (N->getOperator()->getName() == "and")
    306           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    307         else
    308           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    309 
    310         // Match the LHS of the AND as appropriate.
    311         AddMatcher(new MoveChildMatcher(0));
    312         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    313         AddMatcher(new MoveParentMatcher());
    314         return;
    315       }
    316     }
    317   }
    318 
    319   // Check that the current opcode lines up.
    320   AddMatcher(new CheckOpcodeMatcher(CInfo));
    321 
    322   // If this node has memory references (i.e. is a load or store), tell the
    323   // interpreter to capture them in the memref array.
    324   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    325     AddMatcher(new RecordMemRefMatcher());
    326 
    327   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    328   // the child numbers of the node are all offset by one.
    329   unsigned OpNo = 0;
    330   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    331     // Record the node and remember it in our chained nodes list.
    332     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    333                                          "' chained node",
    334                                  NextRecordedOperandNo));
    335     // Remember all of the input chains our pattern will match.
    336     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    337 
    338     // Don't look at the input chain when matching the tree pattern to the
    339     // SDNode.
    340     OpNo = 1;
    341 
    342     // If this node is not the root and the subtree underneath it produces a
    343     // chain, then the result of matching the node is also produce a chain.
    344     // Beyond that, this means that we're also folding (at least) the root node
    345     // into the node that produce the chain (for example, matching
    346     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    347     // problematic, if the 'reg' node also uses the load (say, its chain).
    348     // Graphically:
    349     //
    350     //         [LD]
    351     //         ^  ^
    352     //         |  \                              DAG's like cheese.
    353     //        /    |
    354     //       /    [YY]
    355     //       |     ^
    356     //      [XX]--/
    357     //
    358     // It would be invalid to fold XX and LD.  In this case, folding the two
    359     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    360     // To prevent this, we emit a dynamic check for legality before allowing
    361     // this to be folded.
    362     //
    363     const TreePatternNode *Root = Pattern.getSrcPattern();
    364     if (N != Root) {                             // Not the root of the pattern.
    365       // If there is a node between the root and this node, then we definitely
    366       // need to emit the check.
    367       bool NeedCheck = !Root->hasChild(N);
    368 
    369       // If it *is* an immediate child of the root, we can still need a check if
    370       // the root SDNode has multiple inputs.  For us, this means that it is an
    371       // intrinsic, has multiple operands, or has other inputs like chain or
    372       // glue).
    373       if (!NeedCheck) {
    374         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    375         NeedCheck =
    376           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    377           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    378           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    379           PInfo.getNumOperands() > 1 ||
    380           PInfo.hasProperty(SDNPHasChain) ||
    381           PInfo.hasProperty(SDNPInGlue) ||
    382           PInfo.hasProperty(SDNPOptInGlue);
    383       }
    384 
    385       if (NeedCheck)
    386         AddMatcher(new CheckFoldableChainNodeMatcher());
    387     }
    388   }
    389 
    390   // If this node has an output glue and isn't the root, remember it.
    391   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    392       N != Pattern.getSrcPattern()) {
    393     // TODO: This redundantly records nodes with both glues and chains.
    394 
    395     // Record the node and remember it in our chained nodes list.
    396     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    397                                          "' glue output node",
    398                                  NextRecordedOperandNo));
    399     // Remember all of the nodes with output glue our pattern will match.
    400     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
    401   }
    402 
    403   // If this node is known to have an input glue or if it *might* have an input
    404   // glue, capture it as the glue input of the pattern.
    405   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    406       N->NodeHasProperty(SDNPInGlue, CGP))
    407     AddMatcher(new CaptureGlueInputMatcher());
    408 
    409   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    410     // Get the code suitable for matching this child.  Move to the child, check
    411     // it then move back to the parent.
    412     AddMatcher(new MoveChildMatcher(OpNo));
    413     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    414     AddMatcher(new MoveParentMatcher());
    415   }
    416 }
    417 
    418 
    419 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    420                                TreePatternNode *NodeNoTypes) {
    421   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    422   // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
    423   // reinfer any correlated types.
    424   SmallVector<unsigned, 2> ResultsToTypeCheck;
    425 
    426   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    427     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    428     NodeNoTypes->setType(i, N->getExtType(i));
    429     InferPossibleTypes();
    430     ResultsToTypeCheck.push_back(i);
    431   }
    432 
    433   // If this node has a name associated with it, capture it in VariableMap. If
    434   // we already saw this in the pattern, emit code to verify dagness.
    435   if (!N->getName().empty()) {
    436     unsigned &VarMapEntry = VariableMap[N->getName()];
    437     if (VarMapEntry == 0) {
    438       // If it is a named node, we must emit a 'Record' opcode.
    439       AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
    440       VarMapEntry = ++NextRecordedOperandNo;
    441     } else {
    442       // If we get here, this is a second reference to a specific name.  Since
    443       // we already have checked that the first reference is valid, we don't
    444       // have to recursively match it, just check that it's the same as the
    445       // previously named thing.
    446       AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    447       return;
    448     }
    449   }
    450 
    451   if (N->isLeaf())
    452     EmitLeafMatchCode(N);
    453   else
    454     EmitOperatorMatchCode(N, NodeNoTypes);
    455 
    456   // If there are node predicates for this node, generate their checks.
    457   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    458     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    459 
    460   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    461     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    462                                     ResultsToTypeCheck[i]));
    463 }
    464 
    465 /// EmitMatcherCode - Generate the code that matches the predicate of this
    466 /// pattern for the specified Variant.  If the variant is invalid this returns
    467 /// true and does not generate code, if it is valid, it returns false.
    468 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    469   // If the root of the pattern is a ComplexPattern and if it is specified to
    470   // match some number of root opcodes, these are considered to be our variants.
    471   // Depending on which variant we're generating code for, emit the root opcode
    472   // check.
    473   if (const ComplexPattern *CP =
    474                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    475     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    476     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    477     if (Variant >= OpNodes.size()) return true;
    478 
    479     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    480   } else {
    481     if (Variant != 0) return true;
    482   }
    483 
    484   // Emit the matcher for the pattern structure and types.
    485   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    486 
    487   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    488   // feature is around, do the check).
    489   if (!Pattern.getPredicateCheck().empty())
    490     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    491 
    492   // Now that we've completed the structural type match, emit any ComplexPattern
    493   // checks (e.g. addrmode matches).  We emit this after the structural match
    494   // because they are generally more expensive to evaluate and more difficult to
    495   // factor.
    496   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    497     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    498 
    499     // Remember where the results of this match get stuck.
    500     MatchedComplexPatterns[i].second = NextRecordedOperandNo;
    501 
    502     // Get the slot we recorded the value in from the name on the node.
    503     unsigned RecNodeEntry = VariableMap[N->getName()];
    504     assert(!N->getName().empty() && RecNodeEntry &&
    505            "Complex pattern should have a name and slot");
    506     --RecNodeEntry;  // Entries in VariableMap are biased.
    507 
    508     const ComplexPattern &CP =
    509       CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
    510 
    511     // Emit a CheckComplexPat operation, which does the match (aborting if it
    512     // fails) and pushes the matched operands onto the recorded nodes list.
    513     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    514                                           N->getName(), NextRecordedOperandNo));
    515 
    516     // Record the right number of operands.
    517     NextRecordedOperandNo += CP.getNumOperands();
    518     if (CP.hasProperty(SDNPHasChain)) {
    519       // If the complex pattern has a chain, then we need to keep track of the
    520       // fact that we just recorded a chain input.  The chain input will be
    521       // matched as the last operand of the predicate if it was successful.
    522       ++NextRecordedOperandNo; // Chained node operand.
    523 
    524       // It is the last operand recorded.
    525       assert(NextRecordedOperandNo > 1 &&
    526              "Should have recorded input/result chains at least!");
    527       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    528     }
    529 
    530     // TODO: Complex patterns can't have output glues, if they did, we'd want
    531     // to record them.
    532   }
    533 
    534   return false;
    535 }
    536 
    537 
    538 //===----------------------------------------------------------------------===//
    539 // Node Result Generation
    540 //===----------------------------------------------------------------------===//
    541 
    542 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    543                                           SmallVectorImpl<unsigned> &ResultOps){
    544   assert(!N->getName().empty() && "Operand not named!");
    545 
    546   // A reference to a complex pattern gets all of the results of the complex
    547   // pattern's match.
    548   if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
    549     unsigned SlotNo = 0;
    550     for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
    551       if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
    552         SlotNo = MatchedComplexPatterns[i].second;
    553         break;
    554       }
    555     assert(SlotNo != 0 && "Didn't get a slot number assigned?");
    556 
    557     // The first slot entry is the node itself, the subsequent entries are the
    558     // matched values.
    559     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    560       ResultOps.push_back(SlotNo+i);
    561     return;
    562   }
    563 
    564   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    565 
    566   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    567   // version of the immediate so that it doesn't get selected due to some other
    568   // node use.
    569   if (!N->isLeaf()) {
    570     StringRef OperatorName = N->getOperator()->getName();
    571     if (OperatorName == "imm" || OperatorName == "fpimm") {
    572       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    573       ResultOps.push_back(NextRecordedOperandNo++);
    574       return;
    575     }
    576   }
    577 
    578   ResultOps.push_back(SlotNo);
    579 }
    580 
    581 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    582                                          SmallVectorImpl<unsigned> &ResultOps) {
    583   assert(N->isLeaf() && "Must be a leaf");
    584 
    585   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    586     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    587     ResultOps.push_back(NextRecordedOperandNo++);
    588     return;
    589   }
    590 
    591   // If this is an explicit register reference, handle it.
    592   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    593     Record *Def = DI->getDef();
    594     if (Def->isSubClassOf("Register")) {
    595       const CodeGenRegister *Reg =
    596         CGP.getTargetInfo().getRegBank().getReg(Def);
    597       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    598       ResultOps.push_back(NextRecordedOperandNo++);
    599       return;
    600     }
    601 
    602     if (Def->getName() == "zero_reg") {
    603       AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
    604       ResultOps.push_back(NextRecordedOperandNo++);
    605       return;
    606     }
    607 
    608     // Handle a reference to a register class. This is used
    609     // in COPY_TO_SUBREG instructions.
    610     if (Def->isSubClassOf("RegisterOperand"))
    611       Def = Def->getValueAsDef("RegClass");
    612     if (Def->isSubClassOf("RegisterClass")) {
    613       std::string Value = getQualifiedName(Def) + "RegClassID";
    614       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    615       ResultOps.push_back(NextRecordedOperandNo++);
    616       return;
    617     }
    618 
    619     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    620     if (Def->isSubClassOf("SubRegIndex")) {
    621       std::string Value = getQualifiedName(Def);
    622       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    623       ResultOps.push_back(NextRecordedOperandNo++);
    624       return;
    625     }
    626   }
    627 
    628   errs() << "unhandled leaf node: \n";
    629   N->dump();
    630 }
    631 
    632 /// GetInstPatternNode - Get the pattern for an instruction.
    633 ///
    634 const TreePatternNode *MatcherGen::
    635 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    636   const TreePattern *InstPat = Inst.getPattern();
    637 
    638   // FIXME2?: Assume actual pattern comes before "implicit".
    639   TreePatternNode *InstPatNode;
    640   if (InstPat)
    641     InstPatNode = InstPat->getTree(0);
    642   else if (/*isRoot*/ N == Pattern.getDstPattern())
    643     InstPatNode = Pattern.getSrcPattern();
    644   else
    645     return 0;
    646 
    647   if (InstPatNode && !InstPatNode->isLeaf() &&
    648       InstPatNode->getOperator()->getName() == "set")
    649     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    650 
    651   return InstPatNode;
    652 }
    653 
    654 static bool
    655 mayInstNodeLoadOrStore(const TreePatternNode *N,
    656                        const CodeGenDAGPatterns &CGP) {
    657   Record *Op = N->getOperator();
    658   const CodeGenTarget &CGT = CGP.getTargetInfo();
    659   CodeGenInstruction &II = CGT.getInstruction(Op);
    660   return II.mayLoad || II.mayStore;
    661 }
    662 
    663 static unsigned
    664 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    665                            const CodeGenDAGPatterns &CGP) {
    666   if (N->isLeaf())
    667     return 0;
    668 
    669   Record *OpRec = N->getOperator();
    670   if (!OpRec->isSubClassOf("Instruction"))
    671     return 0;
    672 
    673   unsigned Count = 0;
    674   if (mayInstNodeLoadOrStore(N, CGP))
    675     ++Count;
    676 
    677   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    678     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    679 
    680   return Count;
    681 }
    682 
    683 void MatcherGen::
    684 EmitResultInstructionAsOperand(const TreePatternNode *N,
    685                                SmallVectorImpl<unsigned> &OutputOps) {
    686   Record *Op = N->getOperator();
    687   const CodeGenTarget &CGT = CGP.getTargetInfo();
    688   CodeGenInstruction &II = CGT.getInstruction(Op);
    689   const DAGInstruction &Inst = CGP.getInstruction(Op);
    690 
    691   // If we can, get the pattern for the instruction we're generating.  We derive
    692   // a variety of information from this pattern, such as whether it has a chain.
    693   //
    694   // FIXME2: This is extremely dubious for several reasons, not the least of
    695   // which it gives special status to instructions with patterns that Pat<>
    696   // nodes can't duplicate.
    697   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    698 
    699   // NodeHasChain - Whether the instruction node we're creating takes chains.
    700   bool NodeHasChain = InstPatNode &&
    701                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    702 
    703   // Instructions which load and store from memory should have a chain,
    704   // regardless of whether they happen to have an internal pattern saying so.
    705   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
    706       && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    707           II.hasSideEffects))
    708       NodeHasChain = true;
    709 
    710   bool isRoot = N == Pattern.getDstPattern();
    711 
    712   // TreeHasOutGlue - True if this tree has glue.
    713   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    714   if (isRoot) {
    715     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    716     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    717                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    718 
    719     // FIXME2: this is checking the entire pattern, not just the node in
    720     // question, doing this just for the root seems like a total hack.
    721     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    722   }
    723 
    724   // NumResults - This is the number of results produced by the instruction in
    725   // the "outs" list.
    726   unsigned NumResults = Inst.getNumResults();
    727 
    728   // Loop over all of the operands of the instruction pattern, emitting code
    729   // to fill them all in.  The node 'N' usually has number children equal to
    730   // the number of input operands of the instruction.  However, in cases
    731   // where there are predicate operands for an instruction, we need to fill
    732   // in the 'execute always' values.  Match up the node operands to the
    733   // instruction operands to do this.
    734   SmallVector<unsigned, 8> InstOps;
    735   for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
    736        InstOpNo != e; ++InstOpNo) {
    737 
    738     // Determine what to emit for this operand.
    739     Record *OperandNode = II.Operands[InstOpNo].Rec;
    740     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    741         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    742       // This is a predicate or optional def operand; emit the
    743       // 'default ops' operands.
    744       const DAGDefaultOperand &DefaultOp
    745         = CGP.getDefaultOperand(OperandNode);
    746       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    747         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    748       continue;
    749     }
    750 
    751     // Otherwise this is a normal operand or a predicate operand without
    752     // 'execute always'; emit it.
    753 
    754     // For operands with multiple sub-operands we may need to emit
    755     // multiple child patterns to cover them all.  However, ComplexPattern
    756     // children may themselves emit multiple MI operands.
    757     unsigned NumSubOps = 1;
    758     if (OperandNode->isSubClassOf("Operand")) {
    759       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
    760       if (unsigned NumArgs = MIOpInfo->getNumArgs())
    761         NumSubOps = NumArgs;
    762     }
    763 
    764     unsigned FinalNumOps = InstOps.size() + NumSubOps;
    765     while (InstOps.size() < FinalNumOps) {
    766       const TreePatternNode *Child = N->getChild(ChildNo);
    767       unsigned BeforeAddingNumOps = InstOps.size();
    768       EmitResultOperand(Child, InstOps);
    769       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    770 
    771       // If the operand is an instruction and it produced multiple results, just
    772       // take the first one.
    773       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    774         InstOps.resize(BeforeAddingNumOps+1);
    775 
    776       ++ChildNo;
    777     }
    778   }
    779 
    780   // If this node has input glue or explicitly specified input physregs, we
    781   // need to add chained and glued copyfromreg nodes and materialize the glue
    782   // input.
    783   if (isRoot && !PhysRegInputs.empty()) {
    784     // Emit all of the CopyToReg nodes for the input physical registers.  These
    785     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    786     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    787       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    788                                           PhysRegInputs[i].first));
    789     // Even if the node has no other glue inputs, the resultant node must be
    790     // glued to the CopyFromReg nodes we just generated.
    791     TreeHasInGlue = true;
    792   }
    793 
    794   // Result order: node results, chain, glue
    795 
    796   // Determine the result types.
    797   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    798   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    799     ResultVTs.push_back(N->getType(i));
    800 
    801   // If this is the root instruction of a pattern that has physical registers in
    802   // its result pattern, add output VTs for them.  For example, X86 has:
    803   //   (set AL, (mul ...))
    804   // This also handles implicit results like:
    805   //   (implicit EFLAGS)
    806   if (isRoot && !Pattern.getDstRegs().empty()) {
    807     // If the root came from an implicit def in the instruction handling stuff,
    808     // don't re-add it.
    809     Record *HandledReg = 0;
    810     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    811       HandledReg = II.ImplicitDefs[0];
    812 
    813     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    814       Record *Reg = Pattern.getDstRegs()[i];
    815       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    816       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    817     }
    818   }
    819 
    820   // If this is the root of the pattern and the pattern we're matching includes
    821   // a node that is variadic, mark the generated node as variadic so that it
    822   // gets the excess operands from the input DAG.
    823   int NumFixedArityOperands = -1;
    824   if (isRoot &&
    825       (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
    826     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    827 
    828   // If this is the root node and multiple matched nodes in the input pattern
    829   // have MemRefs in them, have the interpreter collect them and plop them onto
    830   // this node. If there is just one node with MemRefs, leave them on that node
    831   // even if it is not the root.
    832   //
    833   // FIXME3: This is actively incorrect for result patterns with multiple
    834   // memory-referencing instructions.
    835   bool PatternHasMemOperands =
    836     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    837 
    838   bool NodeHasMemRefs = false;
    839   if (PatternHasMemOperands) {
    840     unsigned NumNodesThatLoadOrStore =
    841       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    842     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    843                                    NumNodesThatLoadOrStore == 1;
    844     NodeHasMemRefs =
    845       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    846                                              NumNodesThatLoadOrStore != 1));
    847   }
    848 
    849   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    850          "Node has no result");
    851 
    852   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    853                                  ResultVTs.data(), ResultVTs.size(),
    854                                  InstOps.data(), InstOps.size(),
    855                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    856                                  NodeHasMemRefs, NumFixedArityOperands,
    857                                  NextRecordedOperandNo));
    858 
    859   // The non-chain and non-glue results of the newly emitted node get recorded.
    860   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    861     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    862     OutputOps.push_back(NextRecordedOperandNo++);
    863   }
    864 }
    865 
    866 void MatcherGen::
    867 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    868                                SmallVectorImpl<unsigned> &ResultOps) {
    869   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    870 
    871   // Emit the operand.
    872   SmallVector<unsigned, 8> InputOps;
    873 
    874   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    875   // to the SDNodeXForm.  For now we just support one input and one output like
    876   // the old instruction selector.
    877   assert(N->getNumChildren() == 1);
    878   EmitResultOperand(N->getChild(0), InputOps);
    879 
    880   // The input currently must have produced exactly one result.
    881   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    882 
    883   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    884   ResultOps.push_back(NextRecordedOperandNo++);
    885 }
    886 
    887 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    888                                    SmallVectorImpl<unsigned> &ResultOps) {
    889   // This is something selected from the pattern we matched.
    890   if (!N->getName().empty())
    891     return EmitResultOfNamedOperand(N, ResultOps);
    892 
    893   if (N->isLeaf())
    894     return EmitResultLeafAsOperand(N, ResultOps);
    895 
    896   Record *OpRec = N->getOperator();
    897   if (OpRec->isSubClassOf("Instruction"))
    898     return EmitResultInstructionAsOperand(N, ResultOps);
    899   if (OpRec->isSubClassOf("SDNodeXForm"))
    900     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    901   errs() << "Unknown result node to emit code for: " << *N << '\n';
    902   PrintFatalError("Unknown node in result pattern!");
    903 }
    904 
    905 void MatcherGen::EmitResultCode() {
    906   // Patterns that match nodes with (potentially multiple) chain inputs have to
    907   // merge them together into a token factor.  This informs the generated code
    908   // what all the chained nodes are.
    909   if (!MatchedChainNodes.empty())
    910     AddMatcher(new EmitMergeInputChainsMatcher
    911                (MatchedChainNodes.data(), MatchedChainNodes.size()));
    912 
    913   // Codegen the root of the result pattern, capturing the resulting values.
    914   SmallVector<unsigned, 8> Ops;
    915   EmitResultOperand(Pattern.getDstPattern(), Ops);
    916 
    917   // At this point, we have however many values the result pattern produces.
    918   // However, the input pattern might not need all of these.  If there are
    919   // excess values at the end (such as implicit defs of condition codes etc)
    920   // just lop them off.  This doesn't need to worry about glue or chains, just
    921   // explicit results.
    922   //
    923   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    924 
    925   // If the pattern also has (implicit) results, count them as well.
    926   if (!Pattern.getDstRegs().empty()) {
    927     // If the root came from an implicit def in the instruction handling stuff,
    928     // don't re-add it.
    929     Record *HandledReg = 0;
    930     const TreePatternNode *DstPat = Pattern.getDstPattern();
    931     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    932       const CodeGenTarget &CGT = CGP.getTargetInfo();
    933       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    934 
    935       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    936         HandledReg = II.ImplicitDefs[0];
    937     }
    938 
    939     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    940       Record *Reg = Pattern.getDstRegs()[i];
    941       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    942       ++NumSrcResults;
    943     }
    944   }
    945 
    946   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    947   Ops.resize(NumSrcResults);
    948 
    949   // If the matched pattern covers nodes which define a glue result, emit a node
    950   // that tells the matcher about them so that it can update their results.
    951   if (!MatchedGlueResultNodes.empty())
    952     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
    953                                           MatchedGlueResultNodes.size()));
    954 
    955   AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
    956 }
    957 
    958 
    959 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    960 /// the specified variant.  If the variant number is invalid, this returns null.
    961 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    962                                        unsigned Variant,
    963                                        const CodeGenDAGPatterns &CGP) {
    964   MatcherGen Gen(Pattern, CGP);
    965 
    966   // Generate the code for the matcher.
    967   if (Gen.EmitMatcherCode(Variant))
    968     return 0;
    969 
    970   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
    971   // FIXME2: Split result code out to another table, and make the matcher end
    972   // with an "Emit <index>" command.  This allows result generation stuff to be
    973   // shared and factored?
    974 
    975   // If the match succeeds, then we generate Pattern.
    976   Gen.EmitResultCode();
    977 
    978   // Unconditional match.
    979   return Gen.GetMatcher();
    980 }
    981