1 // Copyright 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/resources/picture_layer_tiling.h" 6 7 #include <algorithm> 8 #include <cmath> 9 #include <limits> 10 11 #include "base/debug/trace_event.h" 12 #include "cc/base/math_util.h" 13 #include "ui/gfx/point_conversions.h" 14 #include "ui/gfx/rect_conversions.h" 15 #include "ui/gfx/safe_integer_conversions.h" 16 #include "ui/gfx/size_conversions.h" 17 18 namespace cc { 19 20 scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create( 21 float contents_scale, 22 gfx::Size layer_bounds, 23 PictureLayerTilingClient* client) { 24 return make_scoped_ptr(new PictureLayerTiling(contents_scale, 25 layer_bounds, 26 client)); 27 } 28 29 PictureLayerTiling::PictureLayerTiling(float contents_scale, 30 gfx::Size layer_bounds, 31 PictureLayerTilingClient* client) 32 : contents_scale_(contents_scale), 33 layer_bounds_(layer_bounds), 34 resolution_(NON_IDEAL_RESOLUTION), 35 client_(client), 36 tiling_data_(gfx::Size(), gfx::Size(), true), 37 last_impl_frame_time_in_seconds_(0.0) { 38 gfx::Size content_bounds = 39 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)); 40 gfx::Size tile_size = client_->CalculateTileSize(content_bounds); 41 42 DCHECK(!gfx::ToFlooredSize( 43 gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) << 44 "Tiling created with scale too small as contents become empty." << 45 " Layer bounds: " << layer_bounds.ToString() << 46 " Contents scale: " << contents_scale; 47 48 tiling_data_.SetTotalSize(content_bounds); 49 tiling_data_.SetMaxTextureSize(tile_size); 50 } 51 52 PictureLayerTiling::~PictureLayerTiling() { 53 } 54 55 void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { 56 client_ = client; 57 } 58 59 gfx::Rect PictureLayerTiling::ContentRect() const { 60 return gfx::Rect(tiling_data_.total_size()); 61 } 62 63 gfx::SizeF PictureLayerTiling::ContentSizeF() const { 64 return gfx::ScaleSize(layer_bounds_, contents_scale_); 65 } 66 67 Tile* PictureLayerTiling::TileAt(int i, int j) const { 68 TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j)); 69 if (iter == tiles_.end()) 70 return NULL; 71 return iter->second.get(); 72 } 73 74 void PictureLayerTiling::CreateTile(int i, 75 int j, 76 const PictureLayerTiling* twin_tiling) { 77 TileMapKey key(i, j); 78 DCHECK(tiles_.find(key) == tiles_.end()); 79 80 gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j); 81 gfx::Rect tile_rect = paint_rect; 82 tile_rect.set_size(tiling_data_.max_texture_size()); 83 84 // Check our twin for a valid tile. 85 if (twin_tiling && 86 tiling_data_.max_texture_size() == 87 twin_tiling->tiling_data_.max_texture_size()) { 88 if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) { 89 gfx::Rect rect = 90 gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_); 91 if (!client_->GetInvalidation()->Intersects(rect)) { 92 tiles_[key] = candidate_tile; 93 return; 94 } 95 } 96 } 97 98 // Create a new tile because our twin didn't have a valid one. 99 scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect); 100 if (tile.get()) 101 tiles_[key] = tile; 102 } 103 104 Region PictureLayerTiling::OpaqueRegionInContentRect( 105 gfx::Rect content_rect) const { 106 Region opaque_region; 107 // TODO(enne): implement me 108 return opaque_region; 109 } 110 111 void PictureLayerTiling::SetCanUseLCDText(bool can_use_lcd_text) { 112 for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) 113 it->second->set_can_use_lcd_text(can_use_lcd_text); 114 } 115 116 void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() { 117 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 118 bool include_borders = true; 119 for (TilingData::Iterator iter( 120 &tiling_data_, live_tiles_rect_, include_borders); 121 iter; 122 ++iter) { 123 TileMapKey key = iter.index(); 124 TileMap::iterator find = tiles_.find(key); 125 if (find != tiles_.end()) 126 continue; 127 CreateTile(key.first, key.second, twin_tiling); 128 } 129 } 130 131 void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) { 132 if (layer_bounds_ == layer_bounds) 133 return; 134 135 DCHECK(!layer_bounds.IsEmpty()); 136 137 gfx::Size old_layer_bounds = layer_bounds_; 138 layer_bounds_ = layer_bounds; 139 gfx::Size old_content_bounds = tiling_data_.total_size(); 140 gfx::Size content_bounds = 141 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_)); 142 143 gfx::Size tile_size = client_->CalculateTileSize(content_bounds); 144 if (tile_size != tiling_data_.max_texture_size()) { 145 tiling_data_.SetTotalSize(content_bounds); 146 tiling_data_.SetMaxTextureSize(tile_size); 147 Reset(); 148 return; 149 } 150 151 // Any tiles outside our new bounds are invalid and should be dropped. 152 gfx::Rect bounded_live_tiles_rect(live_tiles_rect_); 153 bounded_live_tiles_rect.Intersect(gfx::Rect(content_bounds)); 154 SetLiveTilesRect(bounded_live_tiles_rect); 155 tiling_data_.SetTotalSize(content_bounds); 156 157 // Create tiles for newly exposed areas. 158 Region layer_region((gfx::Rect(layer_bounds_))); 159 layer_region.Subtract(gfx::Rect(old_layer_bounds)); 160 Invalidate(layer_region); 161 } 162 163 void PictureLayerTiling::Invalidate(const Region& layer_region) { 164 std::vector<TileMapKey> new_tile_keys; 165 for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { 166 gfx::Rect layer_rect = iter.rect(); 167 gfx::Rect content_rect = 168 gfx::ScaleToEnclosingRect(layer_rect, contents_scale_); 169 content_rect.Intersect(live_tiles_rect_); 170 if (content_rect.IsEmpty()) 171 continue; 172 bool include_borders = true; 173 for (TilingData::Iterator iter( 174 &tiling_data_, content_rect, include_borders); 175 iter; 176 ++iter) { 177 TileMapKey key(iter.index()); 178 TileMap::iterator find = tiles_.find(key); 179 if (find == tiles_.end()) 180 continue; 181 tiles_.erase(find); 182 new_tile_keys.push_back(key); 183 } 184 } 185 186 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 187 for (size_t i = 0; i < new_tile_keys.size(); ++i) 188 CreateTile(new_tile_keys[i].first, new_tile_keys[i].second, twin_tiling); 189 } 190 191 PictureLayerTiling::CoverageIterator::CoverageIterator() 192 : tiling_(NULL), 193 current_tile_(NULL), 194 tile_i_(0), 195 tile_j_(0), 196 left_(0), 197 top_(0), 198 right_(-1), 199 bottom_(-1) { 200 } 201 202 PictureLayerTiling::CoverageIterator::CoverageIterator( 203 const PictureLayerTiling* tiling, 204 float dest_scale, 205 gfx::Rect dest_rect) 206 : tiling_(tiling), 207 dest_rect_(dest_rect), 208 dest_to_content_scale_(0), 209 current_tile_(NULL), 210 tile_i_(0), 211 tile_j_(0), 212 left_(0), 213 top_(0), 214 right_(-1), 215 bottom_(-1) { 216 DCHECK(tiling_); 217 if (dest_rect_.IsEmpty()) 218 return; 219 220 dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; 221 // This is the maximum size that the dest rect can be, given the content size. 222 gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize( 223 tiling_->ContentRect().size(), 224 1 / dest_to_content_scale_, 225 1 / dest_to_content_scale_)); 226 227 gfx::Rect content_rect = 228 gfx::ScaleToEnclosingRect(dest_rect_, 229 dest_to_content_scale_, 230 dest_to_content_scale_); 231 // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to 232 // check for non-intersection first. 233 content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size())); 234 if (content_rect.IsEmpty()) 235 return; 236 237 left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); 238 top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); 239 right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( 240 content_rect.right() - 1); 241 bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( 242 content_rect.bottom() - 1); 243 244 tile_i_ = left_ - 1; 245 tile_j_ = top_; 246 ++(*this); 247 } 248 249 PictureLayerTiling::CoverageIterator::~CoverageIterator() { 250 } 251 252 PictureLayerTiling::CoverageIterator& 253 PictureLayerTiling::CoverageIterator::operator++() { 254 if (tile_j_ > bottom_) 255 return *this; 256 257 bool first_time = tile_i_ < left_; 258 bool new_row = false; 259 tile_i_++; 260 if (tile_i_ > right_) { 261 tile_i_ = left_; 262 tile_j_++; 263 new_row = true; 264 if (tile_j_ > bottom_) { 265 current_tile_ = NULL; 266 return *this; 267 } 268 } 269 270 current_tile_ = tiling_->TileAt(tile_i_, tile_j_); 271 272 // Calculate the current geometry rect. Due to floating point rounding 273 // and ToEnclosingRect, tiles might overlap in destination space on the 274 // edges. 275 gfx::Rect last_geometry_rect = current_geometry_rect_; 276 277 gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); 278 279 current_geometry_rect_ = 280 gfx::ScaleToEnclosingRect(content_rect, 281 1 / dest_to_content_scale_, 282 1 / dest_to_content_scale_); 283 284 current_geometry_rect_.Intersect(dest_rect_); 285 286 if (first_time) 287 return *this; 288 289 // Iteration happens left->right, top->bottom. Running off the bottom-right 290 // edge is handled by the intersection above with dest_rect_. Here we make 291 // sure that the new current geometry rect doesn't overlap with the last. 292 int min_left; 293 int min_top; 294 if (new_row) { 295 min_left = dest_rect_.x(); 296 min_top = last_geometry_rect.bottom(); 297 } else { 298 min_left = last_geometry_rect.right(); 299 min_top = last_geometry_rect.y(); 300 } 301 302 int inset_left = std::max(0, min_left - current_geometry_rect_.x()); 303 int inset_top = std::max(0, min_top - current_geometry_rect_.y()); 304 current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); 305 306 if (!new_row) { 307 DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); 308 DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); 309 DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); 310 } 311 312 return *this; 313 } 314 315 gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const { 316 return current_geometry_rect_; 317 } 318 319 gfx::Rect 320 PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const { 321 gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); 322 rect.set_size(tiling_->tiling_data_.max_texture_size()); 323 return rect; 324 } 325 326 gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const { 327 gfx::PointF tex_origin = 328 tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); 329 330 // Convert from dest space => content space => texture space. 331 gfx::RectF texture_rect(current_geometry_rect_); 332 texture_rect.Scale(dest_to_content_scale_, 333 dest_to_content_scale_); 334 texture_rect.Offset(-tex_origin.OffsetFromOrigin()); 335 texture_rect.Intersect(tiling_->ContentRect()); 336 337 return texture_rect; 338 } 339 340 gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const { 341 return tiling_->tiling_data_.max_texture_size(); 342 } 343 344 void PictureLayerTiling::Reset() { 345 live_tiles_rect_ = gfx::Rect(); 346 tiles_.clear(); 347 } 348 349 void PictureLayerTiling::UpdateTilePriorities( 350 WhichTree tree, 351 gfx::Size device_viewport, 352 gfx::Rect viewport_in_layer_space, 353 gfx::Rect visible_layer_rect, 354 gfx::Size last_layer_bounds, 355 gfx::Size current_layer_bounds, 356 float last_layer_contents_scale, 357 float current_layer_contents_scale, 358 const gfx::Transform& last_screen_transform, 359 const gfx::Transform& current_screen_transform, 360 double current_frame_time_in_seconds, 361 size_t max_tiles_for_interest_area) { 362 if (!NeedsUpdateForFrameAtTime(current_frame_time_in_seconds)) { 363 // This should never be zero for the purposes of has_ever_been_updated(). 364 DCHECK_NE(current_frame_time_in_seconds, 0.0); 365 return; 366 } 367 if (ContentRect().IsEmpty()) { 368 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; 369 return; 370 } 371 372 gfx::Rect viewport_in_content_space = 373 gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_); 374 gfx::Rect visible_content_rect = 375 gfx::ScaleToEnclosingRect(visible_layer_rect, contents_scale_); 376 377 gfx::Size tile_size = tiling_data_.max_texture_size(); 378 int64 interest_rect_area = 379 max_tiles_for_interest_area * tile_size.width() * tile_size.height(); 380 381 gfx::Rect starting_rect = visible_content_rect.IsEmpty() 382 ? viewport_in_content_space 383 : visible_content_rect; 384 gfx::Rect interest_rect = ExpandRectEquallyToAreaBoundedBy( 385 starting_rect, 386 interest_rect_area, 387 ContentRect(), 388 &expansion_cache_); 389 DCHECK(interest_rect.IsEmpty() || 390 ContentRect().Contains(interest_rect)); 391 392 SetLiveTilesRect(interest_rect); 393 394 double time_delta = 0; 395 if (last_impl_frame_time_in_seconds_ != 0.0 && 396 last_layer_bounds == current_layer_bounds) { 397 time_delta = 398 current_frame_time_in_seconds - last_impl_frame_time_in_seconds_; 399 } 400 401 gfx::RectF view_rect(device_viewport); 402 float current_scale = current_layer_contents_scale / contents_scale_; 403 float last_scale = last_layer_contents_scale / contents_scale_; 404 405 // Fast path tile priority calculation when both transforms are translations. 406 if (last_screen_transform.IsApproximatelyIdentityOrTranslation( 407 std::numeric_limits<float>::epsilon()) && 408 current_screen_transform.IsApproximatelyIdentityOrTranslation( 409 std::numeric_limits<float>::epsilon())) { 410 gfx::Vector2dF current_offset( 411 current_screen_transform.matrix().get(0, 3), 412 current_screen_transform.matrix().get(1, 3)); 413 gfx::Vector2dF last_offset( 414 last_screen_transform.matrix().get(0, 3), 415 last_screen_transform.matrix().get(1, 3)); 416 417 bool include_borders = true; 418 for (TilingData::Iterator iter(&tiling_data_, interest_rect, include_borders); 419 iter; ++iter) { 420 TileMap::iterator find = tiles_.find(iter.index()); 421 if (find == tiles_.end()) 422 continue; 423 Tile* tile = find->second.get(); 424 425 gfx::Rect tile_bounds = 426 tiling_data_.TileBounds(iter.index_x(), iter.index_y()); 427 gfx::RectF current_screen_rect = gfx::ScaleRect( 428 tile_bounds, 429 current_scale, 430 current_scale) + current_offset; 431 gfx::RectF last_screen_rect = gfx::ScaleRect( 432 tile_bounds, 433 last_scale, 434 last_scale) + last_offset; 435 436 float distance_to_visible_in_pixels = 437 current_screen_rect.ManhattanInternalDistance(view_rect); 438 439 float time_to_visible_in_seconds = 440 TilePriority::TimeForBoundsToIntersect( 441 last_screen_rect, current_screen_rect, time_delta, view_rect); 442 TilePriority priority( 443 resolution_, 444 time_to_visible_in_seconds, 445 distance_to_visible_in_pixels); 446 tile->SetPriority(tree, priority); 447 } 448 } else if (!last_screen_transform.HasPerspective() && 449 !current_screen_transform.HasPerspective()) { 450 // Secondary fast path that can be applied for any affine transforms. 451 452 // Initialize the necessary geometry in screen space, so that we can 453 // iterate over tiles in screen space without needing a costly transform 454 // mapping for each tile. 455 456 // Apply screen space transform to the local origin point (0, 0); only the 457 // translation component is needed and can be initialized directly. 458 gfx::Point current_screen_space_origin( 459 current_screen_transform.matrix().get(0, 3), 460 current_screen_transform.matrix().get(1, 3)); 461 462 gfx::Point last_screen_space_origin( 463 last_screen_transform.matrix().get(0, 3), 464 last_screen_transform.matrix().get(1, 3)); 465 466 float current_tile_width = tiling_data_.TileSizeX(0) * current_scale; 467 float last_tile_width = tiling_data_.TileSizeX(0) * last_scale; 468 float current_tile_height = tiling_data_.TileSizeY(0) * current_scale; 469 float last_tile_height = tiling_data_.TileSizeY(0) * last_scale; 470 471 // Apply screen space transform to local basis vectors (tile_width, 0) and 472 // (0, tile_height); the math simplifies and can be initialized directly. 473 gfx::Vector2dF current_horizontal( 474 current_screen_transform.matrix().get(0, 0) * current_tile_width, 475 current_screen_transform.matrix().get(1, 0) * current_tile_width); 476 gfx::Vector2dF current_vertical( 477 current_screen_transform.matrix().get(0, 1) * current_tile_height, 478 current_screen_transform.matrix().get(1, 1) * current_tile_height); 479 480 gfx::Vector2dF last_horizontal( 481 last_screen_transform.matrix().get(0, 0) * last_tile_width, 482 last_screen_transform.matrix().get(1, 0) * last_tile_width); 483 gfx::Vector2dF last_vertical( 484 last_screen_transform.matrix().get(0, 1) * last_tile_height, 485 last_screen_transform.matrix().get(1, 1) * last_tile_height); 486 487 bool include_borders = true; 488 for (TilingData::Iterator iter(&tiling_data_, interest_rect, include_borders); 489 iter; ++iter) { 490 TileMap::iterator find = tiles_.find(iter.index()); 491 if (find == tiles_.end()) 492 continue; 493 494 Tile* tile = find->second.get(); 495 496 int i = iter.index_x(); 497 int j = iter.index_y(); 498 gfx::PointF current_tile_origin = current_screen_space_origin + 499 ScaleVector2d(current_horizontal, i) + 500 ScaleVector2d(current_vertical, j); 501 gfx::PointF last_tile_origin = last_screen_space_origin + 502 ScaleVector2d(last_horizontal, i) + 503 ScaleVector2d(last_vertical, j); 504 505 gfx::RectF current_screen_rect = gfx::QuadF( 506 current_tile_origin, 507 current_tile_origin + current_horizontal, 508 current_tile_origin + current_horizontal + current_vertical, 509 current_tile_origin + current_vertical).BoundingBox(); 510 511 gfx::RectF last_screen_rect = gfx::QuadF( 512 last_tile_origin, 513 last_tile_origin + last_horizontal, 514 last_tile_origin + last_horizontal + last_vertical, 515 last_tile_origin + last_vertical).BoundingBox(); 516 517 float distance_to_visible_in_pixels = 518 current_screen_rect.ManhattanInternalDistance(view_rect); 519 520 float time_to_visible_in_seconds = 521 TilePriority::TimeForBoundsToIntersect( 522 last_screen_rect, current_screen_rect, time_delta, view_rect); 523 TilePriority priority( 524 resolution_, 525 time_to_visible_in_seconds, 526 distance_to_visible_in_pixels); 527 tile->SetPriority(tree, priority); 528 } 529 } else { 530 bool include_borders = true; 531 for (TilingData::Iterator iter(&tiling_data_, interest_rect, include_borders); 532 iter; ++iter) { 533 TileMap::iterator find = tiles_.find(iter.index()); 534 if (find == tiles_.end()) 535 continue; 536 Tile* tile = find->second.get(); 537 538 gfx::Rect tile_bounds = 539 tiling_data_.TileBounds(iter.index_x(), iter.index_y()); 540 gfx::RectF current_layer_content_rect = gfx::ScaleRect( 541 tile_bounds, 542 current_scale, 543 current_scale); 544 gfx::RectF current_screen_rect = MathUtil::MapClippedRect( 545 current_screen_transform, current_layer_content_rect); 546 gfx::RectF last_layer_content_rect = gfx::ScaleRect( 547 tile_bounds, 548 last_scale, 549 last_scale); 550 gfx::RectF last_screen_rect = MathUtil::MapClippedRect( 551 last_screen_transform, last_layer_content_rect); 552 553 float distance_to_visible_in_pixels = 554 current_screen_rect.ManhattanInternalDistance(view_rect); 555 556 float time_to_visible_in_seconds = 557 TilePriority::TimeForBoundsToIntersect( 558 last_screen_rect, current_screen_rect, time_delta, view_rect); 559 560 TilePriority priority( 561 resolution_, 562 time_to_visible_in_seconds, 563 distance_to_visible_in_pixels); 564 tile->SetPriority(tree, priority); 565 } 566 } 567 568 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; 569 } 570 571 void PictureLayerTiling::SetLiveTilesRect( 572 gfx::Rect new_live_tiles_rect) { 573 DCHECK(new_live_tiles_rect.IsEmpty() || 574 ContentRect().Contains(new_live_tiles_rect)); 575 if (live_tiles_rect_ == new_live_tiles_rect) 576 return; 577 578 // Iterate to delete all tiles outside of our new live_tiles rect. 579 for (TilingData::DifferenceIterator iter(&tiling_data_, 580 live_tiles_rect_, 581 new_live_tiles_rect); 582 iter; 583 ++iter) { 584 TileMapKey key(iter.index()); 585 TileMap::iterator found = tiles_.find(key); 586 // If the tile was outside of the recorded region, it won't exist even 587 // though it was in the live rect. 588 if (found != tiles_.end()) 589 tiles_.erase(found); 590 } 591 592 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 593 594 // Iterate to allocate new tiles for all regions with newly exposed area. 595 for (TilingData::DifferenceIterator iter(&tiling_data_, 596 new_live_tiles_rect, 597 live_tiles_rect_); 598 iter; 599 ++iter) { 600 TileMapKey key(iter.index()); 601 CreateTile(key.first, key.second, twin_tiling); 602 } 603 604 live_tiles_rect_ = new_live_tiles_rect; 605 } 606 607 void PictureLayerTiling::DidBecomeRecycled() { 608 // DidBecomeActive below will set the active priority for tiles that are 609 // still in the tree. Calling this first on an active tiling that is becoming 610 // recycled takes care of tiles that are no longer in the active tree (eg. 611 // due to a pending invalidation). 612 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 613 it->second->SetPriority(ACTIVE_TREE, TilePriority()); 614 } 615 } 616 617 void PictureLayerTiling::DidBecomeActive() { 618 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 619 it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); 620 it->second->SetPriority(PENDING_TREE, TilePriority()); 621 622 // Tile holds a ref onto a picture pile. If the tile never gets invalidated 623 // and recreated, then that picture pile ref could exist indefinitely. To 624 // prevent this, ask the client to update the pile to its own ref. This 625 // will cause PicturePileImpls and their clones to get deleted once the 626 // corresponding PictureLayerImpl and any in flight raster jobs go out of 627 // scope. 628 client_->UpdatePile(it->second.get()); 629 } 630 } 631 632 void PictureLayerTiling::UpdateTilesToCurrentPile() { 633 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 634 client_->UpdatePile(it->second.get()); 635 } 636 } 637 638 scoped_ptr<base::Value> PictureLayerTiling::AsValue() const { 639 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); 640 state->SetInteger("num_tiles", tiles_.size()); 641 state->SetDouble("content_scale", contents_scale_); 642 state->Set("content_bounds", 643 MathUtil::AsValue(ContentRect().size()).release()); 644 return state.PassAs<base::Value>(); 645 } 646 647 size_t PictureLayerTiling::GPUMemoryUsageInBytes() const { 648 size_t amount = 0; 649 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 650 const Tile* tile = it->second.get(); 651 amount += tile->GPUMemoryUsageInBytes(); 652 } 653 return amount; 654 } 655 656 PictureLayerTiling::RectExpansionCache::RectExpansionCache() 657 : previous_target(0) { 658 } 659 660 namespace { 661 662 // This struct represents an event at which the expending rect intersects 663 // one of its boundaries. 4 intersection events will occur during expansion. 664 struct EdgeEvent { 665 enum { BOTTOM, TOP, LEFT, RIGHT } edge; 666 int* num_edges; 667 int distance; 668 }; 669 670 // Compute the delta to expand from edges to cover target_area. 671 int ComputeExpansionDelta(int num_x_edges, int num_y_edges, 672 int width, int height, 673 int64 target_area) { 674 // Compute coefficients for the quadratic equation: 675 // a*x^2 + b*x + c = 0 676 int a = num_y_edges * num_x_edges; 677 int b = num_y_edges * width + num_x_edges * height; 678 int64 c = static_cast<int64>(width) * height - target_area; 679 680 // Compute the delta for our edges using the quadratic equation. 681 return a == 0 ? -c / b : 682 (-b + static_cast<int>( 683 std::sqrt(static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a); 684 } 685 686 } // namespace 687 688 gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( 689 gfx::Rect starting_rect, 690 int64 target_area, 691 gfx::Rect bounding_rect, 692 RectExpansionCache* cache) { 693 if (starting_rect.IsEmpty()) 694 return starting_rect; 695 696 if (cache && 697 cache->previous_start == starting_rect && 698 cache->previous_bounds == bounding_rect && 699 cache->previous_target == target_area) 700 return cache->previous_result; 701 702 if (cache) { 703 cache->previous_start = starting_rect; 704 cache->previous_bounds = bounding_rect; 705 cache->previous_target = target_area; 706 } 707 708 DCHECK(!bounding_rect.IsEmpty()); 709 DCHECK_GT(target_area, 0); 710 711 // Expand the starting rect to cover target_area, if it is smaller than it. 712 int delta = ComputeExpansionDelta( 713 2, 2, starting_rect.width(), starting_rect.height(), target_area); 714 gfx::Rect expanded_starting_rect = starting_rect; 715 if (delta > 0) 716 expanded_starting_rect.Inset(-delta, -delta); 717 718 gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect); 719 if (rect.IsEmpty()) { 720 // The starting_rect and bounding_rect are far away. 721 if (cache) 722 cache->previous_result = rect; 723 return rect; 724 } 725 if (delta >= 0 && rect == expanded_starting_rect) { 726 // The starting rect already covers the entire bounding_rect and isn't too 727 // large for the target_area. 728 if (cache) 729 cache->previous_result = rect; 730 return rect; 731 } 732 733 // Continue to expand/shrink rect to let it cover target_area. 734 735 // These values will be updated by the loop and uses as the output. 736 int origin_x = rect.x(); 737 int origin_y = rect.y(); 738 int width = rect.width(); 739 int height = rect.height(); 740 741 // In the beginning we will consider 2 edges in each dimension. 742 int num_y_edges = 2; 743 int num_x_edges = 2; 744 745 // Create an event list. 746 EdgeEvent events[] = { 747 { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() }, 748 { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() }, 749 { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() }, 750 { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() } 751 }; 752 753 // Sort the events by distance (closest first). 754 if (events[0].distance > events[1].distance) std::swap(events[0], events[1]); 755 if (events[2].distance > events[3].distance) std::swap(events[2], events[3]); 756 if (events[0].distance > events[2].distance) std::swap(events[0], events[2]); 757 if (events[1].distance > events[3].distance) std::swap(events[1], events[3]); 758 if (events[1].distance > events[2].distance) std::swap(events[1], events[2]); 759 760 for (int event_index = 0; event_index < 4; event_index++) { 761 const EdgeEvent& event = events[event_index]; 762 763 int delta = ComputeExpansionDelta( 764 num_x_edges, num_y_edges, width, height, target_area); 765 766 // Clamp delta to our event distance. 767 if (delta > event.distance) 768 delta = event.distance; 769 770 // Adjust the edge count for this kind of edge. 771 --*event.num_edges; 772 773 // Apply the delta to the edges and edge events. 774 for (int i = event_index; i < 4; i++) { 775 switch (events[i].edge) { 776 case EdgeEvent::BOTTOM: 777 origin_y -= delta; 778 height += delta; 779 break; 780 case EdgeEvent::TOP: 781 height += delta; 782 break; 783 case EdgeEvent::LEFT: 784 origin_x -= delta; 785 width += delta; 786 break; 787 case EdgeEvent::RIGHT: 788 width += delta; 789 break; 790 } 791 events[i].distance -= delta; 792 } 793 794 // If our delta is less then our event distance, we're done. 795 if (delta < event.distance) 796 break; 797 } 798 799 gfx::Rect result(origin_x, origin_y, width, height); 800 if (cache) 801 cache->previous_result = result; 802 return result; 803 } 804 805 } // namespace cc 806