Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: moll.markus (at) arcor.de (Markus Moll)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 
     32 #include "ceres/polynomial.h"
     33 
     34 #include <cmath>
     35 #include <cstddef>
     36 #include <vector>
     37 
     38 #include "Eigen/Dense"
     39 #include "ceres/internal/port.h"
     40 #include "glog/logging.h"
     41 
     42 namespace ceres {
     43 namespace internal {
     44 namespace {
     45 
     46 // Balancing function as described by B. N. Parlett and C. Reinsch,
     47 // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
     48 // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
     49 // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
     50 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
     51   CHECK_NOTNULL(companion_matrix_ptr);
     52   Matrix& companion_matrix = *companion_matrix_ptr;
     53   Matrix companion_matrix_offdiagonal = companion_matrix;
     54   companion_matrix_offdiagonal.diagonal().setZero();
     55 
     56   const int degree = companion_matrix.rows();
     57 
     58   // gamma <= 1 controls how much a change in the scaling has to
     59   // lower the 1-norm of the companion matrix to be accepted.
     60   //
     61   // gamma = 1 seems to lead to cycles (numerical issues?), so
     62   // we set it slightly lower.
     63   const double gamma = 0.9;
     64 
     65   // Greedily scale row/column pairs until there is no change.
     66   bool scaling_has_changed;
     67   do {
     68     scaling_has_changed = false;
     69 
     70     for (int i = 0; i < degree; ++i) {
     71       const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
     72       const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
     73 
     74       // Decompose row_norm/col_norm into mantissa * 2^exponent,
     75       // where 0.5 <= mantissa < 1. Discard mantissa (return value
     76       // of frexp), as only the exponent is needed.
     77       int exponent = 0;
     78       std::frexp(row_norm / col_norm, &exponent);
     79       exponent /= 2;
     80 
     81       if (exponent != 0) {
     82         const double scaled_col_norm = std::ldexp(col_norm, exponent);
     83         const double scaled_row_norm = std::ldexp(row_norm, -exponent);
     84         if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
     85           // Accept the new scaling. (Multiplication by powers of 2 should not
     86           // introduce rounding errors (ignoring non-normalized numbers and
     87           // over- or underflow))
     88           scaling_has_changed = true;
     89           companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
     90           companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
     91         }
     92       }
     93     }
     94   } while (scaling_has_changed);
     95 
     96   companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
     97   companion_matrix = companion_matrix_offdiagonal;
     98   VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
     99 }
    100 
    101 void BuildCompanionMatrix(const Vector& polynomial,
    102                           Matrix* companion_matrix_ptr) {
    103   CHECK_NOTNULL(companion_matrix_ptr);
    104   Matrix& companion_matrix = *companion_matrix_ptr;
    105 
    106   const int degree = polynomial.size() - 1;
    107 
    108   companion_matrix.resize(degree, degree);
    109   companion_matrix.setZero();
    110   companion_matrix.diagonal(-1).setOnes();
    111   companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
    112 }
    113 
    114 // Remove leading terms with zero coefficients.
    115 Vector RemoveLeadingZeros(const Vector& polynomial_in) {
    116   int i = 0;
    117   while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
    118     ++i;
    119   }
    120   return polynomial_in.tail(polynomial_in.size() - i);
    121 }
    122 }  // namespace
    123 
    124 bool FindPolynomialRoots(const Vector& polynomial_in,
    125                          Vector* real,
    126                          Vector* imaginary) {
    127   if (polynomial_in.size() == 0) {
    128     LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
    129     return false;
    130   }
    131 
    132   Vector polynomial = RemoveLeadingZeros(polynomial_in);
    133   const int degree = polynomial.size() - 1;
    134 
    135   // Is the polynomial constant?
    136   if (degree == 0) {
    137     LOG(WARNING) << "Trying to extract roots from a constant "
    138                  << "polynomial in FindPolynomialRoots";
    139     return true;
    140   }
    141 
    142   // Divide by leading term
    143   const double leading_term = polynomial(0);
    144   polynomial /= leading_term;
    145 
    146   // Separately handle linear polynomials.
    147   if (degree == 1) {
    148     if (real != NULL) {
    149       real->resize(1);
    150       (*real)(0) = -polynomial(1);
    151     }
    152     if (imaginary != NULL) {
    153       imaginary->resize(1);
    154       imaginary->setZero();
    155     }
    156   }
    157 
    158   // The degree is now known to be at least 2.
    159   // Build and balance the companion matrix to the polynomial.
    160   Matrix companion_matrix(degree, degree);
    161   BuildCompanionMatrix(polynomial, &companion_matrix);
    162   BalanceCompanionMatrix(&companion_matrix);
    163 
    164   // Find its (complex) eigenvalues.
    165   Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
    166   if (solver.info() != Eigen::Success) {
    167     LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
    168     return false;
    169   }
    170 
    171   // Output roots
    172   if (real != NULL) {
    173     *real = solver.eigenvalues().real();
    174   } else {
    175     LOG(WARNING) << "NULL pointer passed as real argument to "
    176                  << "FindPolynomialRoots. Real parts of the roots will not "
    177                  << "be returned.";
    178   }
    179   if (imaginary != NULL) {
    180     *imaginary = solver.eigenvalues().imag();
    181   }
    182   return true;
    183 }
    184 
    185 Vector DifferentiatePolynomial(const Vector& polynomial) {
    186   const int degree = polynomial.rows() - 1;
    187   CHECK_GE(degree, 0);
    188 
    189   // Degree zero polynomials are constants, and their derivative does
    190   // not result in a smaller degree polynomial, just a degree zero
    191   // polynomial with value zero.
    192   if (degree == 0) {
    193     return Eigen::VectorXd::Zero(1);
    194   }
    195 
    196   Vector derivative(degree);
    197   for (int i = 0; i < degree; ++i) {
    198     derivative(i) = (degree - i) * polynomial(i);
    199   }
    200 
    201   return derivative;
    202 }
    203 
    204 void MinimizePolynomial(const Vector& polynomial,
    205                         const double x_min,
    206                         const double x_max,
    207                         double* optimal_x,
    208                         double* optimal_value) {
    209   // Find the minimum of the polynomial at the two ends.
    210   //
    211   // We start by inspecting the middle of the interval. Technically
    212   // this is not needed, but we do this to make this code as close to
    213   // the minFunc package as possible.
    214   *optimal_x = (x_min + x_max) / 2.0;
    215   *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
    216 
    217   const double x_min_value = EvaluatePolynomial(polynomial, x_min);
    218   if (x_min_value < *optimal_value) {
    219     *optimal_value = x_min_value;
    220     *optimal_x = x_min;
    221   }
    222 
    223   const double x_max_value = EvaluatePolynomial(polynomial, x_max);
    224   if (x_max_value < *optimal_value) {
    225     *optimal_value = x_max_value;
    226     *optimal_x = x_max;
    227   }
    228 
    229   // If the polynomial is linear or constant, we are done.
    230   if (polynomial.rows() <= 2) {
    231     return;
    232   }
    233 
    234   const Vector derivative = DifferentiatePolynomial(polynomial);
    235   Vector roots_real;
    236   if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
    237     LOG(WARNING) << "Unable to find the critical points of "
    238                  << "the interpolating polynomial.";
    239     return;
    240   }
    241 
    242   // This is a bit of an overkill, as some of the roots may actually
    243   // have a complex part, but its simpler to just check these values.
    244   for (int i = 0; i < roots_real.rows(); ++i) {
    245     const double root = roots_real(i);
    246     if ((root < x_min) || (root > x_max)) {
    247       continue;
    248     }
    249 
    250     const double value = EvaluatePolynomial(polynomial, root);
    251     if (value < *optimal_value) {
    252       *optimal_value = value;
    253       *optimal_x = root;
    254     }
    255   }
    256 }
    257 
    258 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
    259   const int num_samples = samples.size();
    260   int num_constraints = 0;
    261   for (int i = 0; i < num_samples; ++i) {
    262     if (samples[i].value_is_valid) {
    263       ++num_constraints;
    264     }
    265     if (samples[i].gradient_is_valid) {
    266       ++num_constraints;
    267     }
    268   }
    269 
    270   const int degree = num_constraints - 1;
    271   Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
    272   Vector rhs = Vector::Zero(num_constraints);
    273 
    274   int row = 0;
    275   for (int i = 0; i < num_samples; ++i) {
    276     const FunctionSample& sample = samples[i];
    277     if (sample.value_is_valid) {
    278       for (int j = 0; j <= degree; ++j) {
    279         lhs(row, j) = pow(sample.x, degree - j);
    280       }
    281       rhs(row) = sample.value;
    282       ++row;
    283     }
    284 
    285     if (sample.gradient_is_valid) {
    286       for (int j = 0; j < degree; ++j) {
    287         lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
    288       }
    289       rhs(row) = sample.gradient;
    290       ++row;
    291     }
    292   }
    293 
    294   return lhs.fullPivLu().solve(rhs);
    295 }
    296 
    297 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
    298                                      double x_min,
    299                                      double x_max,
    300                                      double* optimal_x,
    301                                      double* optimal_value) {
    302   const Vector polynomial = FindInterpolatingPolynomial(samples);
    303   MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
    304   for (int i = 0; i < samples.size(); ++i) {
    305     const FunctionSample& sample = samples[i];
    306     if ((sample.x < x_min) || (sample.x > x_max)) {
    307       continue;
    308     }
    309 
    310     const double value = EvaluatePolynomial(polynomial, sample.x);
    311     if (value < *optimal_value) {
    312       *optimal_x = sample.x;
    313       *optimal_value = value;
    314     }
    315   }
    316 }
    317 
    318 }  // namespace internal
    319 }  // namespace ceres
    320