1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: moll.markus (at) arcor.de (Markus Moll) 30 // sameeragarwal (at) google.com (Sameer Agarwal) 31 32 #include "ceres/polynomial.h" 33 34 #include <cmath> 35 #include <cstddef> 36 #include <vector> 37 38 #include "Eigen/Dense" 39 #include "ceres/internal/port.h" 40 #include "glog/logging.h" 41 42 namespace ceres { 43 namespace internal { 44 namespace { 45 46 // Balancing function as described by B. N. Parlett and C. Reinsch, 47 // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors". 48 // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304, 49 // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404 50 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) { 51 CHECK_NOTNULL(companion_matrix_ptr); 52 Matrix& companion_matrix = *companion_matrix_ptr; 53 Matrix companion_matrix_offdiagonal = companion_matrix; 54 companion_matrix_offdiagonal.diagonal().setZero(); 55 56 const int degree = companion_matrix.rows(); 57 58 // gamma <= 1 controls how much a change in the scaling has to 59 // lower the 1-norm of the companion matrix to be accepted. 60 // 61 // gamma = 1 seems to lead to cycles (numerical issues?), so 62 // we set it slightly lower. 63 const double gamma = 0.9; 64 65 // Greedily scale row/column pairs until there is no change. 66 bool scaling_has_changed; 67 do { 68 scaling_has_changed = false; 69 70 for (int i = 0; i < degree; ++i) { 71 const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>(); 72 const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>(); 73 74 // Decompose row_norm/col_norm into mantissa * 2^exponent, 75 // where 0.5 <= mantissa < 1. Discard mantissa (return value 76 // of frexp), as only the exponent is needed. 77 int exponent = 0; 78 std::frexp(row_norm / col_norm, &exponent); 79 exponent /= 2; 80 81 if (exponent != 0) { 82 const double scaled_col_norm = std::ldexp(col_norm, exponent); 83 const double scaled_row_norm = std::ldexp(row_norm, -exponent); 84 if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) { 85 // Accept the new scaling. (Multiplication by powers of 2 should not 86 // introduce rounding errors (ignoring non-normalized numbers and 87 // over- or underflow)) 88 scaling_has_changed = true; 89 companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent); 90 companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent); 91 } 92 } 93 } 94 } while (scaling_has_changed); 95 96 companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); 97 companion_matrix = companion_matrix_offdiagonal; 98 VLOG(3) << "Balanced companion matrix is\n" << companion_matrix; 99 } 100 101 void BuildCompanionMatrix(const Vector& polynomial, 102 Matrix* companion_matrix_ptr) { 103 CHECK_NOTNULL(companion_matrix_ptr); 104 Matrix& companion_matrix = *companion_matrix_ptr; 105 106 const int degree = polynomial.size() - 1; 107 108 companion_matrix.resize(degree, degree); 109 companion_matrix.setZero(); 110 companion_matrix.diagonal(-1).setOnes(); 111 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); 112 } 113 114 // Remove leading terms with zero coefficients. 115 Vector RemoveLeadingZeros(const Vector& polynomial_in) { 116 int i = 0; 117 while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) { 118 ++i; 119 } 120 return polynomial_in.tail(polynomial_in.size() - i); 121 } 122 } // namespace 123 124 bool FindPolynomialRoots(const Vector& polynomial_in, 125 Vector* real, 126 Vector* imaginary) { 127 if (polynomial_in.size() == 0) { 128 LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots"; 129 return false; 130 } 131 132 Vector polynomial = RemoveLeadingZeros(polynomial_in); 133 const int degree = polynomial.size() - 1; 134 135 // Is the polynomial constant? 136 if (degree == 0) { 137 LOG(WARNING) << "Trying to extract roots from a constant " 138 << "polynomial in FindPolynomialRoots"; 139 return true; 140 } 141 142 // Divide by leading term 143 const double leading_term = polynomial(0); 144 polynomial /= leading_term; 145 146 // Separately handle linear polynomials. 147 if (degree == 1) { 148 if (real != NULL) { 149 real->resize(1); 150 (*real)(0) = -polynomial(1); 151 } 152 if (imaginary != NULL) { 153 imaginary->resize(1); 154 imaginary->setZero(); 155 } 156 } 157 158 // The degree is now known to be at least 2. 159 // Build and balance the companion matrix to the polynomial. 160 Matrix companion_matrix(degree, degree); 161 BuildCompanionMatrix(polynomial, &companion_matrix); 162 BalanceCompanionMatrix(&companion_matrix); 163 164 // Find its (complex) eigenvalues. 165 Eigen::EigenSolver<Matrix> solver(companion_matrix, false); 166 if (solver.info() != Eigen::Success) { 167 LOG(ERROR) << "Failed to extract eigenvalues from companion matrix."; 168 return false; 169 } 170 171 // Output roots 172 if (real != NULL) { 173 *real = solver.eigenvalues().real(); 174 } else { 175 LOG(WARNING) << "NULL pointer passed as real argument to " 176 << "FindPolynomialRoots. Real parts of the roots will not " 177 << "be returned."; 178 } 179 if (imaginary != NULL) { 180 *imaginary = solver.eigenvalues().imag(); 181 } 182 return true; 183 } 184 185 Vector DifferentiatePolynomial(const Vector& polynomial) { 186 const int degree = polynomial.rows() - 1; 187 CHECK_GE(degree, 0); 188 189 // Degree zero polynomials are constants, and their derivative does 190 // not result in a smaller degree polynomial, just a degree zero 191 // polynomial with value zero. 192 if (degree == 0) { 193 return Eigen::VectorXd::Zero(1); 194 } 195 196 Vector derivative(degree); 197 for (int i = 0; i < degree; ++i) { 198 derivative(i) = (degree - i) * polynomial(i); 199 } 200 201 return derivative; 202 } 203 204 void MinimizePolynomial(const Vector& polynomial, 205 const double x_min, 206 const double x_max, 207 double* optimal_x, 208 double* optimal_value) { 209 // Find the minimum of the polynomial at the two ends. 210 // 211 // We start by inspecting the middle of the interval. Technically 212 // this is not needed, but we do this to make this code as close to 213 // the minFunc package as possible. 214 *optimal_x = (x_min + x_max) / 2.0; 215 *optimal_value = EvaluatePolynomial(polynomial, *optimal_x); 216 217 const double x_min_value = EvaluatePolynomial(polynomial, x_min); 218 if (x_min_value < *optimal_value) { 219 *optimal_value = x_min_value; 220 *optimal_x = x_min; 221 } 222 223 const double x_max_value = EvaluatePolynomial(polynomial, x_max); 224 if (x_max_value < *optimal_value) { 225 *optimal_value = x_max_value; 226 *optimal_x = x_max; 227 } 228 229 // If the polynomial is linear or constant, we are done. 230 if (polynomial.rows() <= 2) { 231 return; 232 } 233 234 const Vector derivative = DifferentiatePolynomial(polynomial); 235 Vector roots_real; 236 if (!FindPolynomialRoots(derivative, &roots_real, NULL)) { 237 LOG(WARNING) << "Unable to find the critical points of " 238 << "the interpolating polynomial."; 239 return; 240 } 241 242 // This is a bit of an overkill, as some of the roots may actually 243 // have a complex part, but its simpler to just check these values. 244 for (int i = 0; i < roots_real.rows(); ++i) { 245 const double root = roots_real(i); 246 if ((root < x_min) || (root > x_max)) { 247 continue; 248 } 249 250 const double value = EvaluatePolynomial(polynomial, root); 251 if (value < *optimal_value) { 252 *optimal_value = value; 253 *optimal_x = root; 254 } 255 } 256 } 257 258 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) { 259 const int num_samples = samples.size(); 260 int num_constraints = 0; 261 for (int i = 0; i < num_samples; ++i) { 262 if (samples[i].value_is_valid) { 263 ++num_constraints; 264 } 265 if (samples[i].gradient_is_valid) { 266 ++num_constraints; 267 } 268 } 269 270 const int degree = num_constraints - 1; 271 Matrix lhs = Matrix::Zero(num_constraints, num_constraints); 272 Vector rhs = Vector::Zero(num_constraints); 273 274 int row = 0; 275 for (int i = 0; i < num_samples; ++i) { 276 const FunctionSample& sample = samples[i]; 277 if (sample.value_is_valid) { 278 for (int j = 0; j <= degree; ++j) { 279 lhs(row, j) = pow(sample.x, degree - j); 280 } 281 rhs(row) = sample.value; 282 ++row; 283 } 284 285 if (sample.gradient_is_valid) { 286 for (int j = 0; j < degree; ++j) { 287 lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1); 288 } 289 rhs(row) = sample.gradient; 290 ++row; 291 } 292 } 293 294 return lhs.fullPivLu().solve(rhs); 295 } 296 297 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples, 298 double x_min, 299 double x_max, 300 double* optimal_x, 301 double* optimal_value) { 302 const Vector polynomial = FindInterpolatingPolynomial(samples); 303 MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value); 304 for (int i = 0; i < samples.size(); ++i) { 305 const FunctionSample& sample = samples[i]; 306 if ((sample.x < x_min) || (sample.x > x_max)) { 307 continue; 308 } 309 310 const double value = EvaluatePolynomial(polynomial, sample.x); 311 if (value < *optimal_value) { 312 *optimal_x = sample.x; 313 *optimal_value = value; 314 } 315 } 316 } 317 318 } // namespace internal 319 } // namespace ceres 320