1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef CODEGEN_DAGPATTERNS_H 16 #define CODEGEN_DAGPATTERNS_H 17 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenTarget.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include <algorithm> 24 #include <map> 25 #include <set> 26 #include <vector> 27 28 namespace llvm { 29 class Record; 30 class Init; 31 class ListInit; 32 class DagInit; 33 class SDNodeInfo; 34 class TreePattern; 35 class TreePatternNode; 36 class CodeGenDAGPatterns; 37 class ComplexPattern; 38 39 /// EEVT::DAGISelGenValueType - These are some extended forms of 40 /// MVT::SimpleValueType that we use as lattice values during type inference. 41 /// The existing MVT iAny, fAny and vAny types suffice to represent 42 /// arbitrary integer, floating-point, and vector types, so only an unknown 43 /// value is needed. 44 namespace EEVT { 45 /// TypeSet - This is either empty if it's completely unknown, or holds a set 46 /// of types. It is used during type inference because register classes can 47 /// have multiple possible types and we don't know which one they get until 48 /// type inference is complete. 49 /// 50 /// TypeSet can have three states: 51 /// Vector is empty: The type is completely unknown, it can be any valid 52 /// target type. 53 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one 54 /// of those types only. 55 /// Vector has one concrete type: The type is completely known. 56 /// 57 class TypeSet { 58 SmallVector<MVT::SimpleValueType, 4> TypeVec; 59 public: 60 TypeSet() {} 61 TypeSet(MVT::SimpleValueType VT, TreePattern &TP); 62 TypeSet(ArrayRef<MVT::SimpleValueType> VTList); 63 64 bool isCompletelyUnknown() const { return TypeVec.empty(); } 65 66 bool isConcrete() const { 67 if (TypeVec.size() != 1) return false; 68 unsigned char T = TypeVec[0]; (void)T; 69 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); 70 return true; 71 } 72 73 MVT::SimpleValueType getConcrete() const { 74 assert(isConcrete() && "Type isn't concrete yet"); 75 return (MVT::SimpleValueType)TypeVec[0]; 76 } 77 78 bool isDynamicallyResolved() const { 79 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; 80 } 81 82 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { 83 assert(!TypeVec.empty() && "Not a type list!"); 84 return TypeVec; 85 } 86 87 bool isVoid() const { 88 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; 89 } 90 91 /// hasIntegerTypes - Return true if this TypeSet contains any integer value 92 /// types. 93 bool hasIntegerTypes() const; 94 95 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 96 /// a floating point value type. 97 bool hasFloatingPointTypes() const; 98 99 /// hasVectorTypes - Return true if this TypeSet contains a vector value 100 /// type. 101 bool hasVectorTypes() const; 102 103 /// getName() - Return this TypeSet as a string. 104 std::string getName() const; 105 106 /// MergeInTypeInfo - This merges in type information from the specified 107 /// argument. If 'this' changes, it returns true. If the two types are 108 /// contradictory (e.g. merge f32 into i32) then this flags an error. 109 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); 110 111 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { 112 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); 113 } 114 115 /// Force this type list to only contain integer types. 116 bool EnforceInteger(TreePattern &TP); 117 118 /// Force this type list to only contain floating point types. 119 bool EnforceFloatingPoint(TreePattern &TP); 120 121 /// EnforceScalar - Remove all vector types from this type list. 122 bool EnforceScalar(TreePattern &TP); 123 124 /// EnforceVector - Remove all non-vector types from this type list. 125 bool EnforceVector(TreePattern &TP); 126 127 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 128 /// this an other based on this information. 129 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); 130 131 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 132 /// whose element is VT. 133 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 134 135 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to 136 /// be a vector type VT. 137 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 138 139 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } 140 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } 141 142 private: 143 /// FillWithPossibleTypes - Set to all legal types and return true, only 144 /// valid on completely unknown type sets. If Pred is non-null, only MVTs 145 /// that pass the predicate are added. 146 bool FillWithPossibleTypes(TreePattern &TP, 147 bool (*Pred)(MVT::SimpleValueType) = 0, 148 const char *PredicateName = 0); 149 }; 150 } 151 152 /// Set type used to track multiply used variables in patterns 153 typedef std::set<std::string> MultipleUseVarSet; 154 155 /// SDTypeConstraint - This is a discriminated union of constraints, 156 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 157 struct SDTypeConstraint { 158 SDTypeConstraint(Record *R); 159 160 unsigned OperandNo; // The operand # this constraint applies to. 161 enum { 162 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 163 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 164 SDTCisSubVecOfVec 165 } ConstraintType; 166 167 union { // The discriminated union. 168 struct { 169 MVT::SimpleValueType VT; 170 } SDTCisVT_Info; 171 struct { 172 unsigned OtherOperandNum; 173 } SDTCisSameAs_Info; 174 struct { 175 unsigned OtherOperandNum; 176 } SDTCisVTSmallerThanOp_Info; 177 struct { 178 unsigned BigOperandNum; 179 } SDTCisOpSmallerThanOp_Info; 180 struct { 181 unsigned OtherOperandNum; 182 } SDTCisEltOfVec_Info; 183 struct { 184 unsigned OtherOperandNum; 185 } SDTCisSubVecOfVec_Info; 186 } x; 187 188 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 189 /// constraint to the nodes operands. This returns true if it makes a 190 /// change, false otherwise. If a type contradiction is found, an error 191 /// is flagged. 192 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 193 TreePattern &TP) const; 194 }; 195 196 /// SDNodeInfo - One of these records is created for each SDNode instance in 197 /// the target .td file. This represents the various dag nodes we will be 198 /// processing. 199 class SDNodeInfo { 200 Record *Def; 201 std::string EnumName; 202 std::string SDClassName; 203 unsigned Properties; 204 unsigned NumResults; 205 int NumOperands; 206 std::vector<SDTypeConstraint> TypeConstraints; 207 public: 208 SDNodeInfo(Record *R); // Parse the specified record. 209 210 unsigned getNumResults() const { return NumResults; } 211 212 /// getNumOperands - This is the number of operands required or -1 if 213 /// variadic. 214 int getNumOperands() const { return NumOperands; } 215 Record *getRecord() const { return Def; } 216 const std::string &getEnumName() const { return EnumName; } 217 const std::string &getSDClassName() const { return SDClassName; } 218 219 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 220 return TypeConstraints; 221 } 222 223 /// getKnownType - If the type constraints on this node imply a fixed type 224 /// (e.g. all stores return void, etc), then return it as an 225 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 226 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 227 228 /// hasProperty - Return true if this node has the specified property. 229 /// 230 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 231 232 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 233 /// constraints for this node to the operands of the node. This returns 234 /// true if it makes a change, false otherwise. If a type contradiction is 235 /// found, an error is flagged. 236 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { 237 bool MadeChange = false; 238 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 239 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 240 return MadeChange; 241 } 242 }; 243 244 /// TreePredicateFn - This is an abstraction that represents the predicates on 245 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 246 /// provide nice accessors. 247 class TreePredicateFn { 248 /// PatFragRec - This is the TreePattern for the PatFrag that we 249 /// originally came from. 250 TreePattern *PatFragRec; 251 public: 252 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 253 TreePredicateFn(TreePattern *N); 254 255 256 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 257 258 /// isAlwaysTrue - Return true if this is a noop predicate. 259 bool isAlwaysTrue() const; 260 261 bool isImmediatePattern() const { return !getImmCode().empty(); } 262 263 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 264 /// this is an immediate predicate. It is an error to call this on a 265 /// non-immediate pattern. 266 std::string getImmediatePredicateCode() const { 267 std::string Result = getImmCode(); 268 assert(!Result.empty() && "Isn't an immediate pattern!"); 269 return Result; 270 } 271 272 273 bool operator==(const TreePredicateFn &RHS) const { 274 return PatFragRec == RHS.PatFragRec; 275 } 276 277 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 278 279 /// Return the name to use in the generated code to reference this, this is 280 /// "Predicate_foo" if from a pattern fragment "foo". 281 std::string getFnName() const; 282 283 /// getCodeToRunOnSDNode - Return the code for the function body that 284 /// evaluates this predicate. The argument is expected to be in "Node", 285 /// not N. This handles casting and conversion to a concrete node type as 286 /// appropriate. 287 std::string getCodeToRunOnSDNode() const; 288 289 private: 290 std::string getPredCode() const; 291 std::string getImmCode() const; 292 }; 293 294 295 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped 296 /// patterns), and as such should be ref counted. We currently just leak all 297 /// TreePatternNode objects! 298 class TreePatternNode { 299 /// The type of each node result. Before and during type inference, each 300 /// result may be a set of possible types. After (successful) type inference, 301 /// each is a single concrete type. 302 SmallVector<EEVT::TypeSet, 1> Types; 303 304 /// Operator - The Record for the operator if this is an interior node (not 305 /// a leaf). 306 Record *Operator; 307 308 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 309 /// 310 Init *Val; 311 312 /// Name - The name given to this node with the :$foo notation. 313 /// 314 std::string Name; 315 316 /// PredicateFns - The predicate functions to execute on this node to check 317 /// for a match. If this list is empty, no predicate is involved. 318 std::vector<TreePredicateFn> PredicateFns; 319 320 /// TransformFn - The transformation function to execute on this node before 321 /// it can be substituted into the resulting instruction on a pattern match. 322 Record *TransformFn; 323 324 std::vector<TreePatternNode*> Children; 325 public: 326 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, 327 unsigned NumResults) 328 : Operator(Op), Val(0), TransformFn(0), Children(Ch) { 329 Types.resize(NumResults); 330 } 331 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 332 : Operator(0), Val(val), TransformFn(0) { 333 Types.resize(NumResults); 334 } 335 ~TreePatternNode(); 336 337 bool hasName() const { return !Name.empty(); } 338 const std::string &getName() const { return Name; } 339 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 340 341 bool isLeaf() const { return Val != 0; } 342 343 // Type accessors. 344 unsigned getNumTypes() const { return Types.size(); } 345 MVT::SimpleValueType getType(unsigned ResNo) const { 346 return Types[ResNo].getConcrete(); 347 } 348 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } 349 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } 350 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } 351 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } 352 353 bool hasTypeSet(unsigned ResNo) const { 354 return Types[ResNo].isConcrete(); 355 } 356 bool isTypeCompletelyUnknown(unsigned ResNo) const { 357 return Types[ResNo].isCompletelyUnknown(); 358 } 359 bool isTypeDynamicallyResolved(unsigned ResNo) const { 360 return Types[ResNo].isDynamicallyResolved(); 361 } 362 363 Init *getLeafValue() const { assert(isLeaf()); return Val; } 364 Record *getOperator() const { assert(!isLeaf()); return Operator; } 365 366 unsigned getNumChildren() const { return Children.size(); } 367 TreePatternNode *getChild(unsigned N) const { return Children[N]; } 368 void setChild(unsigned i, TreePatternNode *N) { 369 Children[i] = N; 370 } 371 372 /// hasChild - Return true if N is any of our children. 373 bool hasChild(const TreePatternNode *N) const { 374 for (unsigned i = 0, e = Children.size(); i != e; ++i) 375 if (Children[i] == N) return true; 376 return false; 377 } 378 379 bool hasAnyPredicate() const { return !PredicateFns.empty(); } 380 381 const std::vector<TreePredicateFn> &getPredicateFns() const { 382 return PredicateFns; 383 } 384 void clearPredicateFns() { PredicateFns.clear(); } 385 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { 386 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); 387 PredicateFns = Fns; 388 } 389 void addPredicateFn(const TreePredicateFn &Fn) { 390 assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); 391 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == 392 PredicateFns.end()) 393 PredicateFns.push_back(Fn); 394 } 395 396 Record *getTransformFn() const { return TransformFn; } 397 void setTransformFn(Record *Fn) { TransformFn = Fn; } 398 399 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 400 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 401 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 402 403 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 404 /// return the ComplexPattern information, otherwise return null. 405 const ComplexPattern * 406 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 407 408 /// NodeHasProperty - Return true if this node has the specified property. 409 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 410 411 /// TreeHasProperty - Return true if any node in this tree has the specified 412 /// property. 413 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 414 415 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 416 /// marked isCommutative. 417 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 418 419 void print(raw_ostream &OS) const; 420 void dump() const; 421 422 public: // Higher level manipulation routines. 423 424 /// clone - Return a new copy of this tree. 425 /// 426 TreePatternNode *clone() const; 427 428 /// RemoveAllTypes - Recursively strip all the types of this tree. 429 void RemoveAllTypes(); 430 431 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 432 /// the specified node. For this comparison, all of the state of the node 433 /// is considered, except for the assigned name. Nodes with differing names 434 /// that are otherwise identical are considered isomorphic. 435 bool isIsomorphicTo(const TreePatternNode *N, 436 const MultipleUseVarSet &DepVars) const; 437 438 /// SubstituteFormalArguments - Replace the formal arguments in this tree 439 /// with actual values specified by ArgMap. 440 void SubstituteFormalArguments(std::map<std::string, 441 TreePatternNode*> &ArgMap); 442 443 /// InlinePatternFragments - If this pattern refers to any pattern 444 /// fragments, inline them into place, giving us a pattern without any 445 /// PatFrag references. 446 TreePatternNode *InlinePatternFragments(TreePattern &TP); 447 448 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 449 /// this node and its children in the tree. This returns true if it makes a 450 /// change, false otherwise. If a type contradiction is found, flag an error. 451 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 452 453 /// UpdateNodeType - Set the node type of N to VT if VT contains 454 /// information. If N already contains a conflicting type, then flag an 455 /// error. This returns true if any information was updated. 456 /// 457 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, 458 TreePattern &TP) { 459 return Types[ResNo].MergeInTypeInfo(InTy, TP); 460 } 461 462 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 463 TreePattern &TP) { 464 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); 465 } 466 467 // Update node type with types inferred from an instruction operand or result 468 // def from the ins/outs lists. 469 // Return true if the type changed. 470 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 471 472 /// ContainsUnresolvedType - Return true if this tree contains any 473 /// unresolved types. 474 bool ContainsUnresolvedType() const { 475 for (unsigned i = 0, e = Types.size(); i != e; ++i) 476 if (!Types[i].isConcrete()) return true; 477 478 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 479 if (getChild(i)->ContainsUnresolvedType()) return true; 480 return false; 481 } 482 483 /// canPatternMatch - If it is impossible for this pattern to match on this 484 /// target, fill in Reason and return false. Otherwise, return true. 485 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 486 }; 487 488 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 489 TPN.print(OS); 490 return OS; 491 } 492 493 494 /// TreePattern - Represent a pattern, used for instructions, pattern 495 /// fragments, etc. 496 /// 497 class TreePattern { 498 /// Trees - The list of pattern trees which corresponds to this pattern. 499 /// Note that PatFrag's only have a single tree. 500 /// 501 std::vector<TreePatternNode*> Trees; 502 503 /// NamedNodes - This is all of the nodes that have names in the trees in this 504 /// pattern. 505 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; 506 507 /// TheRecord - The actual TableGen record corresponding to this pattern. 508 /// 509 Record *TheRecord; 510 511 /// Args - This is a list of all of the arguments to this pattern (for 512 /// PatFrag patterns), which are the 'node' markers in this pattern. 513 std::vector<std::string> Args; 514 515 /// CDP - the top-level object coordinating this madness. 516 /// 517 CodeGenDAGPatterns &CDP; 518 519 /// isInputPattern - True if this is an input pattern, something to match. 520 /// False if this is an output pattern, something to emit. 521 bool isInputPattern; 522 523 /// hasError - True if the currently processed nodes have unresolvable types 524 /// or other non-fatal errors 525 bool HasError; 526 public: 527 528 /// TreePattern constructor - Parse the specified DagInits into the 529 /// current record. 530 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 531 CodeGenDAGPatterns &ise); 532 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 533 CodeGenDAGPatterns &ise); 534 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 535 CodeGenDAGPatterns &ise); 536 537 /// getTrees - Return the tree patterns which corresponds to this pattern. 538 /// 539 const std::vector<TreePatternNode*> &getTrees() const { return Trees; } 540 unsigned getNumTrees() const { return Trees.size(); } 541 TreePatternNode *getTree(unsigned i) const { return Trees[i]; } 542 TreePatternNode *getOnlyTree() const { 543 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 544 return Trees[0]; 545 } 546 547 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { 548 if (NamedNodes.empty()) 549 ComputeNamedNodes(); 550 return NamedNodes; 551 } 552 553 /// getRecord - Return the actual TableGen record corresponding to this 554 /// pattern. 555 /// 556 Record *getRecord() const { return TheRecord; } 557 558 unsigned getNumArgs() const { return Args.size(); } 559 const std::string &getArgName(unsigned i) const { 560 assert(i < Args.size() && "Argument reference out of range!"); 561 return Args[i]; 562 } 563 std::vector<std::string> &getArgList() { return Args; } 564 565 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 566 567 /// InlinePatternFragments - If this pattern refers to any pattern 568 /// fragments, inline them into place, giving us a pattern without any 569 /// PatFrag references. 570 void InlinePatternFragments() { 571 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 572 Trees[i] = Trees[i]->InlinePatternFragments(*this); 573 } 574 575 /// InferAllTypes - Infer/propagate as many types throughout the expression 576 /// patterns as possible. Return true if all types are inferred, false 577 /// otherwise. Bail out if a type contradiction is found. 578 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > 579 *NamedTypes=0); 580 581 /// error - If this is the first error in the current resolution step, 582 /// print it and set the error flag. Otherwise, continue silently. 583 void error(const std::string &Msg); 584 bool hasError() const { 585 return HasError; 586 } 587 void resetError() { 588 HasError = false; 589 } 590 591 void print(raw_ostream &OS) const; 592 void dump() const; 593 594 private: 595 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); 596 void ComputeNamedNodes(); 597 void ComputeNamedNodes(TreePatternNode *N); 598 }; 599 600 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 601 /// that has a set ExecuteAlways / DefaultOps field. 602 struct DAGDefaultOperand { 603 std::vector<TreePatternNode*> DefaultOps; 604 }; 605 606 class DAGInstruction { 607 TreePattern *Pattern; 608 std::vector<Record*> Results; 609 std::vector<Record*> Operands; 610 std::vector<Record*> ImpResults; 611 TreePatternNode *ResultPattern; 612 public: 613 DAGInstruction(TreePattern *TP, 614 const std::vector<Record*> &results, 615 const std::vector<Record*> &operands, 616 const std::vector<Record*> &impresults) 617 : Pattern(TP), Results(results), Operands(operands), 618 ImpResults(impresults), ResultPattern(0) {} 619 620 TreePattern *getPattern() const { return Pattern; } 621 unsigned getNumResults() const { return Results.size(); } 622 unsigned getNumOperands() const { return Operands.size(); } 623 unsigned getNumImpResults() const { return ImpResults.size(); } 624 const std::vector<Record*>& getImpResults() const { return ImpResults; } 625 626 void setResultPattern(TreePatternNode *R) { ResultPattern = R; } 627 628 Record *getResult(unsigned RN) const { 629 assert(RN < Results.size()); 630 return Results[RN]; 631 } 632 633 Record *getOperand(unsigned ON) const { 634 assert(ON < Operands.size()); 635 return Operands[ON]; 636 } 637 638 Record *getImpResult(unsigned RN) const { 639 assert(RN < ImpResults.size()); 640 return ImpResults[RN]; 641 } 642 643 TreePatternNode *getResultPattern() const { return ResultPattern; } 644 }; 645 646 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 647 /// processed to produce isel. 648 class PatternToMatch { 649 public: 650 PatternToMatch(Record *srcrecord, ListInit *preds, 651 TreePatternNode *src, TreePatternNode *dst, 652 const std::vector<Record*> &dstregs, 653 unsigned complexity, unsigned uid) 654 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), 655 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} 656 657 Record *SrcRecord; // Originating Record for the pattern. 658 ListInit *Predicates; // Top level predicate conditions to match. 659 TreePatternNode *SrcPattern; // Source pattern to match. 660 TreePatternNode *DstPattern; // Resulting pattern. 661 std::vector<Record*> Dstregs; // Physical register defs being matched. 662 unsigned AddedComplexity; // Add to matching pattern complexity. 663 unsigned ID; // Unique ID for the record. 664 665 Record *getSrcRecord() const { return SrcRecord; } 666 ListInit *getPredicates() const { return Predicates; } 667 TreePatternNode *getSrcPattern() const { return SrcPattern; } 668 TreePatternNode *getDstPattern() const { return DstPattern; } 669 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 670 unsigned getAddedComplexity() const { return AddedComplexity; } 671 672 std::string getPredicateCheck() const; 673 674 /// Compute the complexity metric for the input pattern. This roughly 675 /// corresponds to the number of nodes that are covered. 676 unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 677 }; 678 679 class CodeGenDAGPatterns { 680 RecordKeeper &Records; 681 CodeGenTarget Target; 682 std::vector<CodeGenIntrinsic> Intrinsics; 683 std::vector<CodeGenIntrinsic> TgtIntrinsics; 684 685 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 686 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms; 687 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 688 std::map<Record*, TreePattern*, LessRecordByID> PatternFragments; 689 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 690 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 691 692 // Specific SDNode definitions: 693 Record *intrinsic_void_sdnode; 694 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 695 696 /// PatternsToMatch - All of the things we are matching on the DAG. The first 697 /// value is the pattern to match, the second pattern is the result to 698 /// emit. 699 std::vector<PatternToMatch> PatternsToMatch; 700 public: 701 CodeGenDAGPatterns(RecordKeeper &R); 702 ~CodeGenDAGPatterns(); 703 704 CodeGenTarget &getTargetInfo() { return Target; } 705 const CodeGenTarget &getTargetInfo() const { return Target; } 706 707 Record *getSDNodeNamed(const std::string &Name) const; 708 709 const SDNodeInfo &getSDNodeInfo(Record *R) const { 710 assert(SDNodes.count(R) && "Unknown node!"); 711 return SDNodes.find(R)->second; 712 } 713 714 // Node transformation lookups. 715 typedef std::pair<Record*, std::string> NodeXForm; 716 const NodeXForm &getSDNodeTransform(Record *R) const { 717 assert(SDNodeXForms.count(R) && "Invalid transform!"); 718 return SDNodeXForms.find(R)->second; 719 } 720 721 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 722 nx_iterator; 723 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } 724 nx_iterator nx_end() const { return SDNodeXForms.end(); } 725 726 727 const ComplexPattern &getComplexPattern(Record *R) const { 728 assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); 729 return ComplexPatterns.find(R)->second; 730 } 731 732 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 733 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 734 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 735 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 736 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 737 llvm_unreachable("Unknown intrinsic!"); 738 } 739 740 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 741 if (IID-1 < Intrinsics.size()) 742 return Intrinsics[IID-1]; 743 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 744 return TgtIntrinsics[IID-Intrinsics.size()-1]; 745 llvm_unreachable("Bad intrinsic ID!"); 746 } 747 748 unsigned getIntrinsicID(Record *R) const { 749 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 750 if (Intrinsics[i].TheDef == R) return i; 751 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 752 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 753 llvm_unreachable("Unknown intrinsic!"); 754 } 755 756 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 757 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); 758 return DefaultOperands.find(R)->second; 759 } 760 761 // Pattern Fragment information. 762 TreePattern *getPatternFragment(Record *R) const { 763 assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); 764 return PatternFragments.find(R)->second; 765 } 766 TreePattern *getPatternFragmentIfRead(Record *R) const { 767 if (!PatternFragments.count(R)) return 0; 768 return PatternFragments.find(R)->second; 769 } 770 771 typedef std::map<Record*, TreePattern*, LessRecordByID>::const_iterator 772 pf_iterator; 773 pf_iterator pf_begin() const { return PatternFragments.begin(); } 774 pf_iterator pf_end() const { return PatternFragments.end(); } 775 776 // Patterns to match information. 777 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 778 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 779 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 780 781 782 783 const DAGInstruction &getInstruction(Record *R) const { 784 assert(Instructions.count(R) && "Unknown instruction!"); 785 return Instructions.find(R)->second; 786 } 787 788 Record *get_intrinsic_void_sdnode() const { 789 return intrinsic_void_sdnode; 790 } 791 Record *get_intrinsic_w_chain_sdnode() const { 792 return intrinsic_w_chain_sdnode; 793 } 794 Record *get_intrinsic_wo_chain_sdnode() const { 795 return intrinsic_wo_chain_sdnode; 796 } 797 798 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 799 800 private: 801 void ParseNodeInfo(); 802 void ParseNodeTransforms(); 803 void ParseComplexPatterns(); 804 void ParsePatternFragments(); 805 void ParseDefaultOperands(); 806 void ParseInstructions(); 807 void ParsePatterns(); 808 void InferInstructionFlags(); 809 void GenerateVariants(); 810 void VerifyInstructionFlags(); 811 812 void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM); 813 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 814 std::map<std::string, 815 TreePatternNode*> &InstInputs, 816 std::map<std::string, 817 TreePatternNode*> &InstResults, 818 std::vector<Record*> &InstImpResults); 819 }; 820 } // end namespace llvm 821 822 #endif 823