1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/CodeGen/Passes.h" 17 #include "AllocationOrder.h" 18 #include "InterferenceCache.h" 19 #include "LiveDebugVariables.h" 20 #include "RegAllocBase.h" 21 #include "SpillPlacement.h" 22 #include "Spiller.h" 23 #include "SplitKit.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/CalcSpillWeights.h" 27 #include "llvm/CodeGen/EdgeBundles.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveRegMatrix.h" 31 #include "llvm/CodeGen/LiveStackAnalysis.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegAllocRegistry.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/PassAnalysisSupport.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <queue> 46 47 using namespace llvm; 48 49 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 50 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 51 STATISTIC(NumEvicted, "Number of interferences evicted"); 52 53 static cl::opt<SplitEditor::ComplementSpillMode> 54 SplitSpillMode("split-spill-mode", cl::Hidden, 55 cl::desc("Spill mode for splitting live ranges"), 56 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 57 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 58 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 59 clEnumValEnd), 60 cl::init(SplitEditor::SM_Partition)); 61 62 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 63 createGreedyRegisterAllocator); 64 65 namespace { 66 class RAGreedy : public MachineFunctionPass, 67 public RegAllocBase, 68 private LiveRangeEdit::Delegate { 69 70 // context 71 MachineFunction *MF; 72 73 // analyses 74 SlotIndexes *Indexes; 75 MachineBlockFrequencyInfo *MBFI; 76 MachineDominatorTree *DomTree; 77 MachineLoopInfo *Loops; 78 EdgeBundles *Bundles; 79 SpillPlacement *SpillPlacer; 80 LiveDebugVariables *DebugVars; 81 82 // state 83 OwningPtr<Spiller> SpillerInstance; 84 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 85 unsigned NextCascade; 86 87 // Live ranges pass through a number of stages as we try to allocate them. 88 // Some of the stages may also create new live ranges: 89 // 90 // - Region splitting. 91 // - Per-block splitting. 92 // - Local splitting. 93 // - Spilling. 94 // 95 // Ranges produced by one of the stages skip the previous stages when they are 96 // dequeued. This improves performance because we can skip interference checks 97 // that are unlikely to give any results. It also guarantees that the live 98 // range splitting algorithm terminates, something that is otherwise hard to 99 // ensure. 100 enum LiveRangeStage { 101 /// Newly created live range that has never been queued. 102 RS_New, 103 104 /// Only attempt assignment and eviction. Then requeue as RS_Split. 105 RS_Assign, 106 107 /// Attempt live range splitting if assignment is impossible. 108 RS_Split, 109 110 /// Attempt more aggressive live range splitting that is guaranteed to make 111 /// progress. This is used for split products that may not be making 112 /// progress. 113 RS_Split2, 114 115 /// Live range will be spilled. No more splitting will be attempted. 116 RS_Spill, 117 118 /// There is nothing more we can do to this live range. Abort compilation 119 /// if it can't be assigned. 120 RS_Done 121 }; 122 123 static const char *const StageName[]; 124 125 // RegInfo - Keep additional information about each live range. 126 struct RegInfo { 127 LiveRangeStage Stage; 128 129 // Cascade - Eviction loop prevention. See canEvictInterference(). 130 unsigned Cascade; 131 132 RegInfo() : Stage(RS_New), Cascade(0) {} 133 }; 134 135 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 136 137 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 138 return ExtraRegInfo[VirtReg.reg].Stage; 139 } 140 141 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 142 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 143 ExtraRegInfo[VirtReg.reg].Stage = Stage; 144 } 145 146 template<typename Iterator> 147 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 148 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 149 for (;Begin != End; ++Begin) { 150 unsigned Reg = (*Begin)->reg; 151 if (ExtraRegInfo[Reg].Stage == RS_New) 152 ExtraRegInfo[Reg].Stage = NewStage; 153 } 154 } 155 156 /// Cost of evicting interference. 157 struct EvictionCost { 158 unsigned BrokenHints; ///< Total number of broken hints. 159 float MaxWeight; ///< Maximum spill weight evicted. 160 161 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 162 163 bool isMax() const { return BrokenHints == ~0u; } 164 165 bool operator<(const EvictionCost &O) const { 166 if (BrokenHints != O.BrokenHints) 167 return BrokenHints < O.BrokenHints; 168 return MaxWeight < O.MaxWeight; 169 } 170 }; 171 172 // splitting state. 173 OwningPtr<SplitAnalysis> SA; 174 OwningPtr<SplitEditor> SE; 175 176 /// Cached per-block interference maps 177 InterferenceCache IntfCache; 178 179 /// All basic blocks where the current register has uses. 180 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 181 182 /// Global live range splitting candidate info. 183 struct GlobalSplitCandidate { 184 // Register intended for assignment, or 0. 185 unsigned PhysReg; 186 187 // SplitKit interval index for this candidate. 188 unsigned IntvIdx; 189 190 // Interference for PhysReg. 191 InterferenceCache::Cursor Intf; 192 193 // Bundles where this candidate should be live. 194 BitVector LiveBundles; 195 SmallVector<unsigned, 8> ActiveBlocks; 196 197 void reset(InterferenceCache &Cache, unsigned Reg) { 198 PhysReg = Reg; 199 IntvIdx = 0; 200 Intf.setPhysReg(Cache, Reg); 201 LiveBundles.clear(); 202 ActiveBlocks.clear(); 203 } 204 205 // Set B[i] = C for every live bundle where B[i] was NoCand. 206 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 207 unsigned Count = 0; 208 for (int i = LiveBundles.find_first(); i >= 0; 209 i = LiveBundles.find_next(i)) 210 if (B[i] == NoCand) { 211 B[i] = C; 212 Count++; 213 } 214 return Count; 215 } 216 }; 217 218 /// Candidate info for for each PhysReg in AllocationOrder. 219 /// This vector never shrinks, but grows to the size of the largest register 220 /// class. 221 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 222 223 enum { NoCand = ~0u }; 224 225 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 226 /// NoCand which indicates the stack interval. 227 SmallVector<unsigned, 32> BundleCand; 228 229 public: 230 RAGreedy(); 231 232 /// Return the pass name. 233 virtual const char* getPassName() const { 234 return "Greedy Register Allocator"; 235 } 236 237 /// RAGreedy analysis usage. 238 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 239 virtual void releaseMemory(); 240 virtual Spiller &spiller() { return *SpillerInstance; } 241 virtual void enqueue(LiveInterval *LI); 242 virtual LiveInterval *dequeue(); 243 virtual unsigned selectOrSplit(LiveInterval&, 244 SmallVectorImpl<LiveInterval*>&); 245 246 /// Perform register allocation. 247 virtual bool runOnMachineFunction(MachineFunction &mf); 248 249 static char ID; 250 251 private: 252 bool LRE_CanEraseVirtReg(unsigned); 253 void LRE_WillShrinkVirtReg(unsigned); 254 void LRE_DidCloneVirtReg(unsigned, unsigned); 255 256 BlockFrequency calcSpillCost(); 257 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 258 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 259 void growRegion(GlobalSplitCandidate &Cand); 260 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 261 bool calcCompactRegion(GlobalSplitCandidate&); 262 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 263 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 264 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 265 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 266 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 267 void evictInterference(LiveInterval&, unsigned, 268 SmallVectorImpl<LiveInterval*>&); 269 270 unsigned tryAssign(LiveInterval&, AllocationOrder&, 271 SmallVectorImpl<LiveInterval*>&); 272 unsigned tryEvict(LiveInterval&, AllocationOrder&, 273 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 274 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 275 SmallVectorImpl<LiveInterval*>&); 276 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 277 SmallVectorImpl<LiveInterval*>&); 278 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 279 SmallVectorImpl<LiveInterval*>&); 280 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 281 SmallVectorImpl<LiveInterval*>&); 282 unsigned trySplit(LiveInterval&, AllocationOrder&, 283 SmallVectorImpl<LiveInterval*>&); 284 }; 285 } // end anonymous namespace 286 287 char RAGreedy::ID = 0; 288 289 #ifndef NDEBUG 290 const char *const RAGreedy::StageName[] = { 291 "RS_New", 292 "RS_Assign", 293 "RS_Split", 294 "RS_Split2", 295 "RS_Spill", 296 "RS_Done" 297 }; 298 #endif 299 300 // Hysteresis to use when comparing floats. 301 // This helps stabilize decisions based on float comparisons. 302 const float Hysteresis = 0.98f; 303 304 305 FunctionPass* llvm::createGreedyRegisterAllocator() { 306 return new RAGreedy(); 307 } 308 309 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 310 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 311 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 312 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 313 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 314 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 315 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 316 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 317 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 318 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 319 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 320 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 321 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); 322 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 323 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 324 } 325 326 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 327 AU.setPreservesCFG(); 328 AU.addRequired<MachineBlockFrequencyInfo>(); 329 AU.addPreserved<MachineBlockFrequencyInfo>(); 330 AU.addRequired<AliasAnalysis>(); 331 AU.addPreserved<AliasAnalysis>(); 332 AU.addRequired<LiveIntervals>(); 333 AU.addPreserved<LiveIntervals>(); 334 AU.addRequired<SlotIndexes>(); 335 AU.addPreserved<SlotIndexes>(); 336 AU.addRequired<LiveDebugVariables>(); 337 AU.addPreserved<LiveDebugVariables>(); 338 AU.addRequired<LiveStacks>(); 339 AU.addPreserved<LiveStacks>(); 340 AU.addRequired<CalculateSpillWeights>(); 341 AU.addRequired<MachineDominatorTree>(); 342 AU.addPreserved<MachineDominatorTree>(); 343 AU.addRequired<MachineLoopInfo>(); 344 AU.addPreserved<MachineLoopInfo>(); 345 AU.addRequired<VirtRegMap>(); 346 AU.addPreserved<VirtRegMap>(); 347 AU.addRequired<LiveRegMatrix>(); 348 AU.addPreserved<LiveRegMatrix>(); 349 AU.addRequired<EdgeBundles>(); 350 AU.addRequired<SpillPlacement>(); 351 MachineFunctionPass::getAnalysisUsage(AU); 352 } 353 354 355 //===----------------------------------------------------------------------===// 356 // LiveRangeEdit delegate methods 357 //===----------------------------------------------------------------------===// 358 359 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 360 if (VRM->hasPhys(VirtReg)) { 361 Matrix->unassign(LIS->getInterval(VirtReg)); 362 return true; 363 } 364 // Unassigned virtreg is probably in the priority queue. 365 // RegAllocBase will erase it after dequeueing. 366 return false; 367 } 368 369 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 370 if (!VRM->hasPhys(VirtReg)) 371 return; 372 373 // Register is assigned, put it back on the queue for reassignment. 374 LiveInterval &LI = LIS->getInterval(VirtReg); 375 Matrix->unassign(LI); 376 enqueue(&LI); 377 } 378 379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 380 // Cloning a register we haven't even heard about yet? Just ignore it. 381 if (!ExtraRegInfo.inBounds(Old)) 382 return; 383 384 // LRE may clone a virtual register because dead code elimination causes it to 385 // be split into connected components. The new components are much smaller 386 // than the original, so they should get a new chance at being assigned. 387 // same stage as the parent. 388 ExtraRegInfo[Old].Stage = RS_Assign; 389 ExtraRegInfo.grow(New); 390 ExtraRegInfo[New] = ExtraRegInfo[Old]; 391 } 392 393 void RAGreedy::releaseMemory() { 394 SpillerInstance.reset(0); 395 ExtraRegInfo.clear(); 396 GlobalCand.clear(); 397 } 398 399 void RAGreedy::enqueue(LiveInterval *LI) { 400 // Prioritize live ranges by size, assigning larger ranges first. 401 // The queue holds (size, reg) pairs. 402 const unsigned Size = LI->getSize(); 403 const unsigned Reg = LI->reg; 404 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 405 "Can only enqueue virtual registers"); 406 unsigned Prio; 407 408 ExtraRegInfo.grow(Reg); 409 if (ExtraRegInfo[Reg].Stage == RS_New) 410 ExtraRegInfo[Reg].Stage = RS_Assign; 411 412 if (ExtraRegInfo[Reg].Stage == RS_Split) { 413 // Unsplit ranges that couldn't be allocated immediately are deferred until 414 // everything else has been allocated. 415 Prio = Size; 416 } else { 417 if (ExtraRegInfo[Reg].Stage == RS_Assign && !LI->empty() && 418 LIS->intervalIsInOneMBB(*LI)) { 419 // Allocate original local ranges in linear instruction order. Since they 420 // are singly defined, this produces optimal coloring in the absence of 421 // global interference and other constraints. 422 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 423 } 424 else { 425 // Allocate global and split ranges in long->short order. Long ranges that 426 // don't fit should be spilled (or split) ASAP so they don't create 427 // interference. Mark a bit to prioritize global above local ranges. 428 Prio = (1u << 29) + Size; 429 } 430 // Mark a higher bit to prioritize global and local above RS_Split. 431 Prio |= (1u << 31); 432 433 // Boost ranges that have a physical register hint. 434 if (VRM->hasKnownPreference(Reg)) 435 Prio |= (1u << 30); 436 } 437 // The virtual register number is a tie breaker for same-sized ranges. 438 // Give lower vreg numbers higher priority to assign them first. 439 Queue.push(std::make_pair(Prio, ~Reg)); 440 } 441 442 LiveInterval *RAGreedy::dequeue() { 443 if (Queue.empty()) 444 return 0; 445 LiveInterval *LI = &LIS->getInterval(~Queue.top().second); 446 Queue.pop(); 447 return LI; 448 } 449 450 451 //===----------------------------------------------------------------------===// 452 // Direct Assignment 453 //===----------------------------------------------------------------------===// 454 455 /// tryAssign - Try to assign VirtReg to an available register. 456 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 457 AllocationOrder &Order, 458 SmallVectorImpl<LiveInterval*> &NewVRegs) { 459 Order.rewind(); 460 unsigned PhysReg; 461 while ((PhysReg = Order.next())) 462 if (!Matrix->checkInterference(VirtReg, PhysReg)) 463 break; 464 if (!PhysReg || Order.isHint()) 465 return PhysReg; 466 467 // PhysReg is available, but there may be a better choice. 468 469 // If we missed a simple hint, try to cheaply evict interference from the 470 // preferred register. 471 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 472 if (Order.isHint(Hint)) { 473 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 474 EvictionCost MaxCost(1); 475 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 476 evictInterference(VirtReg, Hint, NewVRegs); 477 return Hint; 478 } 479 } 480 481 // Try to evict interference from a cheaper alternative. 482 unsigned Cost = TRI->getCostPerUse(PhysReg); 483 484 // Most registers have 0 additional cost. 485 if (!Cost) 486 return PhysReg; 487 488 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 489 << '\n'); 490 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 491 return CheapReg ? CheapReg : PhysReg; 492 } 493 494 495 //===----------------------------------------------------------------------===// 496 // Interference eviction 497 //===----------------------------------------------------------------------===// 498 499 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 500 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 501 unsigned PhysReg; 502 while ((PhysReg = Order.next())) { 503 if (PhysReg == PrevReg) 504 continue; 505 506 MCRegUnitIterator Units(PhysReg, TRI); 507 for (; Units.isValid(); ++Units) { 508 // Instantiate a "subquery", not to be confused with the Queries array. 509 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 510 if (subQ.checkInterference()) 511 break; 512 } 513 // If no units have interference, break out with the current PhysReg. 514 if (!Units.isValid()) 515 break; 516 } 517 if (PhysReg) 518 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 519 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 520 << '\n'); 521 return PhysReg; 522 } 523 524 /// shouldEvict - determine if A should evict the assigned live range B. The 525 /// eviction policy defined by this function together with the allocation order 526 /// defined by enqueue() decides which registers ultimately end up being split 527 /// and spilled. 528 /// 529 /// Cascade numbers are used to prevent infinite loops if this function is a 530 /// cyclic relation. 531 /// 532 /// @param A The live range to be assigned. 533 /// @param IsHint True when A is about to be assigned to its preferred 534 /// register. 535 /// @param B The live range to be evicted. 536 /// @param BreaksHint True when B is already assigned to its preferred register. 537 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 538 LiveInterval &B, bool BreaksHint) { 539 bool CanSplit = getStage(B) < RS_Spill; 540 541 // Be fairly aggressive about following hints as long as the evictee can be 542 // split. 543 if (CanSplit && IsHint && !BreaksHint) 544 return true; 545 546 return A.weight > B.weight; 547 } 548 549 /// canEvictInterference - Return true if all interferences between VirtReg and 550 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 551 /// 552 /// @param VirtReg Live range that is about to be assigned. 553 /// @param PhysReg Desired register for assignment. 554 /// @param IsHint True when PhysReg is VirtReg's preferred register. 555 /// @param MaxCost Only look for cheaper candidates and update with new cost 556 /// when returning true. 557 /// @returns True when interference can be evicted cheaper than MaxCost. 558 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 559 bool IsHint, EvictionCost &MaxCost) { 560 // It is only possible to evict virtual register interference. 561 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 562 return false; 563 564 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 565 566 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 567 // involved in an eviction before. If a cascade number was assigned, deny 568 // evicting anything with the same or a newer cascade number. This prevents 569 // infinite eviction loops. 570 // 571 // This works out so a register without a cascade number is allowed to evict 572 // anything, and it can be evicted by anything. 573 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 574 if (!Cascade) 575 Cascade = NextCascade; 576 577 EvictionCost Cost; 578 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 579 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 580 // If there is 10 or more interferences, chances are one is heavier. 581 if (Q.collectInterferingVRegs(10) >= 10) 582 return false; 583 584 // Check if any interfering live range is heavier than MaxWeight. 585 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 586 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 587 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 588 "Only expecting virtual register interference from query"); 589 // Never evict spill products. They cannot split or spill. 590 if (getStage(*Intf) == RS_Done) 591 return false; 592 // Once a live range becomes small enough, it is urgent that we find a 593 // register for it. This is indicated by an infinite spill weight. These 594 // urgent live ranges get to evict almost anything. 595 // 596 // Also allow urgent evictions of unspillable ranges from a strictly 597 // larger allocation order. 598 bool Urgent = !VirtReg.isSpillable() && 599 (Intf->isSpillable() || 600 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 601 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 602 // Only evict older cascades or live ranges without a cascade. 603 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 604 if (Cascade <= IntfCascade) { 605 if (!Urgent) 606 return false; 607 // We permit breaking cascades for urgent evictions. It should be the 608 // last resort, though, so make it really expensive. 609 Cost.BrokenHints += 10; 610 } 611 // Would this break a satisfied hint? 612 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 613 // Update eviction cost. 614 Cost.BrokenHints += BreaksHint; 615 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 616 // Abort if this would be too expensive. 617 if (!(Cost < MaxCost)) 618 return false; 619 if (Urgent) 620 continue; 621 // If !MaxCost.isMax(), then we're just looking for a cheap register. 622 // Evicting another local live range in this case could lead to suboptimal 623 // coloring. 624 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 625 !canReassign(*Intf, PhysReg)) { 626 return false; 627 } 628 // Finally, apply the eviction policy for non-urgent evictions. 629 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 630 return false; 631 } 632 } 633 MaxCost = Cost; 634 return true; 635 } 636 637 /// evictInterference - Evict any interferring registers that prevent VirtReg 638 /// from being assigned to Physreg. This assumes that canEvictInterference 639 /// returned true. 640 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 641 SmallVectorImpl<LiveInterval*> &NewVRegs) { 642 // Make sure that VirtReg has a cascade number, and assign that cascade 643 // number to every evicted register. These live ranges than then only be 644 // evicted by a newer cascade, preventing infinite loops. 645 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 646 if (!Cascade) 647 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 648 649 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 650 << " interference: Cascade " << Cascade << '\n'); 651 652 // Collect all interfering virtregs first. 653 SmallVector<LiveInterval*, 8> Intfs; 654 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 655 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 656 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 657 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 658 Intfs.append(IVR.begin(), IVR.end()); 659 } 660 661 // Evict them second. This will invalidate the queries. 662 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 663 LiveInterval *Intf = Intfs[i]; 664 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 665 if (!VRM->hasPhys(Intf->reg)) 666 continue; 667 Matrix->unassign(*Intf); 668 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 669 VirtReg.isSpillable() < Intf->isSpillable()) && 670 "Cannot decrease cascade number, illegal eviction"); 671 ExtraRegInfo[Intf->reg].Cascade = Cascade; 672 ++NumEvicted; 673 NewVRegs.push_back(Intf); 674 } 675 } 676 677 /// tryEvict - Try to evict all interferences for a physreg. 678 /// @param VirtReg Currently unassigned virtual register. 679 /// @param Order Physregs to try. 680 /// @return Physreg to assign VirtReg, or 0. 681 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 682 AllocationOrder &Order, 683 SmallVectorImpl<LiveInterval*> &NewVRegs, 684 unsigned CostPerUseLimit) { 685 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 686 687 // Keep track of the cheapest interference seen so far. 688 EvictionCost BestCost(~0u); 689 unsigned BestPhys = 0; 690 unsigned OrderLimit = Order.getOrder().size(); 691 692 // When we are just looking for a reduced cost per use, don't break any 693 // hints, and only evict smaller spill weights. 694 if (CostPerUseLimit < ~0u) { 695 BestCost.BrokenHints = 0; 696 BestCost.MaxWeight = VirtReg.weight; 697 698 // Check of any registers in RC are below CostPerUseLimit. 699 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 700 unsigned MinCost = RegClassInfo.getMinCost(RC); 701 if (MinCost >= CostPerUseLimit) { 702 DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost 703 << ", no cheaper registers to be found.\n"); 704 return 0; 705 } 706 707 // It is normal for register classes to have a long tail of registers with 708 // the same cost. We don't need to look at them if they're too expensive. 709 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 710 OrderLimit = RegClassInfo.getLastCostChange(RC); 711 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 712 } 713 } 714 715 Order.rewind(); 716 while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) { 717 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 718 continue; 719 // The first use of a callee-saved register in a function has cost 1. 720 // Don't start using a CSR when the CostPerUseLimit is low. 721 if (CostPerUseLimit == 1) 722 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 723 if (!MRI->isPhysRegUsed(CSR)) { 724 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 725 << PrintReg(CSR, TRI) << '\n'); 726 continue; 727 } 728 729 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 730 continue; 731 732 // Best so far. 733 BestPhys = PhysReg; 734 735 // Stop if the hint can be used. 736 if (Order.isHint()) 737 break; 738 } 739 740 if (!BestPhys) 741 return 0; 742 743 evictInterference(VirtReg, BestPhys, NewVRegs); 744 return BestPhys; 745 } 746 747 748 //===----------------------------------------------------------------------===// 749 // Region Splitting 750 //===----------------------------------------------------------------------===// 751 752 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 753 /// interference pattern in Physreg and its aliases. Add the constraints to 754 /// SpillPlacement and return the static cost of this split in Cost, assuming 755 /// that all preferences in SplitConstraints are met. 756 /// Return false if there are no bundles with positive bias. 757 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 758 BlockFrequency &Cost) { 759 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 760 761 // Reset interference dependent info. 762 SplitConstraints.resize(UseBlocks.size()); 763 BlockFrequency StaticCost = 0; 764 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 765 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 766 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 767 768 BC.Number = BI.MBB->getNumber(); 769 Intf.moveToBlock(BC.Number); 770 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 771 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 772 BC.ChangesValue = BI.FirstDef.isValid(); 773 774 if (!Intf.hasInterference()) 775 continue; 776 777 // Number of spill code instructions to insert. 778 unsigned Ins = 0; 779 780 // Interference for the live-in value. 781 if (BI.LiveIn) { 782 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 783 BC.Entry = SpillPlacement::MustSpill, ++Ins; 784 else if (Intf.first() < BI.FirstInstr) 785 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 786 else if (Intf.first() < BI.LastInstr) 787 ++Ins; 788 } 789 790 // Interference for the live-out value. 791 if (BI.LiveOut) { 792 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 793 BC.Exit = SpillPlacement::MustSpill, ++Ins; 794 else if (Intf.last() > BI.LastInstr) 795 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 796 else if (Intf.last() > BI.FirstInstr) 797 ++Ins; 798 } 799 800 // Accumulate the total frequency of inserted spill code. 801 while (Ins--) 802 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 803 } 804 Cost = StaticCost; 805 806 // Add constraints for use-blocks. Note that these are the only constraints 807 // that may add a positive bias, it is downhill from here. 808 SpillPlacer->addConstraints(SplitConstraints); 809 return SpillPlacer->scanActiveBundles(); 810 } 811 812 813 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 814 /// live-through blocks in Blocks. 815 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 816 ArrayRef<unsigned> Blocks) { 817 const unsigned GroupSize = 8; 818 SpillPlacement::BlockConstraint BCS[GroupSize]; 819 unsigned TBS[GroupSize]; 820 unsigned B = 0, T = 0; 821 822 for (unsigned i = 0; i != Blocks.size(); ++i) { 823 unsigned Number = Blocks[i]; 824 Intf.moveToBlock(Number); 825 826 if (!Intf.hasInterference()) { 827 assert(T < GroupSize && "Array overflow"); 828 TBS[T] = Number; 829 if (++T == GroupSize) { 830 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 831 T = 0; 832 } 833 continue; 834 } 835 836 assert(B < GroupSize && "Array overflow"); 837 BCS[B].Number = Number; 838 839 // Interference for the live-in value. 840 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 841 BCS[B].Entry = SpillPlacement::MustSpill; 842 else 843 BCS[B].Entry = SpillPlacement::PrefSpill; 844 845 // Interference for the live-out value. 846 if (Intf.last() >= SA->getLastSplitPoint(Number)) 847 BCS[B].Exit = SpillPlacement::MustSpill; 848 else 849 BCS[B].Exit = SpillPlacement::PrefSpill; 850 851 if (++B == GroupSize) { 852 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 853 SpillPlacer->addConstraints(Array); 854 B = 0; 855 } 856 } 857 858 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 859 SpillPlacer->addConstraints(Array); 860 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 861 } 862 863 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 864 // Keep track of through blocks that have not been added to SpillPlacer. 865 BitVector Todo = SA->getThroughBlocks(); 866 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 867 unsigned AddedTo = 0; 868 #ifndef NDEBUG 869 unsigned Visited = 0; 870 #endif 871 872 for (;;) { 873 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 874 // Find new through blocks in the periphery of PrefRegBundles. 875 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 876 unsigned Bundle = NewBundles[i]; 877 // Look at all blocks connected to Bundle in the full graph. 878 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 879 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 880 I != E; ++I) { 881 unsigned Block = *I; 882 if (!Todo.test(Block)) 883 continue; 884 Todo.reset(Block); 885 // This is a new through block. Add it to SpillPlacer later. 886 ActiveBlocks.push_back(Block); 887 #ifndef NDEBUG 888 ++Visited; 889 #endif 890 } 891 } 892 // Any new blocks to add? 893 if (ActiveBlocks.size() == AddedTo) 894 break; 895 896 // Compute through constraints from the interference, or assume that all 897 // through blocks prefer spilling when forming compact regions. 898 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 899 if (Cand.PhysReg) 900 addThroughConstraints(Cand.Intf, NewBlocks); 901 else 902 // Provide a strong negative bias on through blocks to prevent unwanted 903 // liveness on loop backedges. 904 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 905 AddedTo = ActiveBlocks.size(); 906 907 // Perhaps iterating can enable more bundles? 908 SpillPlacer->iterate(); 909 } 910 DEBUG(dbgs() << ", v=" << Visited); 911 } 912 913 /// calcCompactRegion - Compute the set of edge bundles that should be live 914 /// when splitting the current live range into compact regions. Compact 915 /// regions can be computed without looking at interference. They are the 916 /// regions formed by removing all the live-through blocks from the live range. 917 /// 918 /// Returns false if the current live range is already compact, or if the 919 /// compact regions would form single block regions anyway. 920 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 921 // Without any through blocks, the live range is already compact. 922 if (!SA->getNumThroughBlocks()) 923 return false; 924 925 // Compact regions don't correspond to any physreg. 926 Cand.reset(IntfCache, 0); 927 928 DEBUG(dbgs() << "Compact region bundles"); 929 930 // Use the spill placer to determine the live bundles. GrowRegion pretends 931 // that all the through blocks have interference when PhysReg is unset. 932 SpillPlacer->prepare(Cand.LiveBundles); 933 934 // The static split cost will be zero since Cand.Intf reports no interference. 935 BlockFrequency Cost; 936 if (!addSplitConstraints(Cand.Intf, Cost)) { 937 DEBUG(dbgs() << ", none.\n"); 938 return false; 939 } 940 941 growRegion(Cand); 942 SpillPlacer->finish(); 943 944 if (!Cand.LiveBundles.any()) { 945 DEBUG(dbgs() << ", none.\n"); 946 return false; 947 } 948 949 DEBUG({ 950 for (int i = Cand.LiveBundles.find_first(); i>=0; 951 i = Cand.LiveBundles.find_next(i)) 952 dbgs() << " EB#" << i; 953 dbgs() << ".\n"; 954 }); 955 return true; 956 } 957 958 /// calcSpillCost - Compute how expensive it would be to split the live range in 959 /// SA around all use blocks instead of forming bundle regions. 960 BlockFrequency RAGreedy::calcSpillCost() { 961 BlockFrequency Cost = 0; 962 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 963 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 964 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 965 unsigned Number = BI.MBB->getNumber(); 966 // We normally only need one spill instruction - a load or a store. 967 Cost += SpillPlacer->getBlockFrequency(Number); 968 969 // Unless the value is redefined in the block. 970 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 971 Cost += SpillPlacer->getBlockFrequency(Number); 972 } 973 return Cost; 974 } 975 976 /// calcGlobalSplitCost - Return the global split cost of following the split 977 /// pattern in LiveBundles. This cost should be added to the local cost of the 978 /// interference pattern in SplitConstraints. 979 /// 980 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 981 BlockFrequency GlobalCost = 0; 982 const BitVector &LiveBundles = Cand.LiveBundles; 983 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 984 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 985 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 986 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 987 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 988 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 989 unsigned Ins = 0; 990 991 if (BI.LiveIn) 992 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 993 if (BI.LiveOut) 994 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 995 while (Ins--) 996 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 997 } 998 999 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1000 unsigned Number = Cand.ActiveBlocks[i]; 1001 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1002 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1003 if (!RegIn && !RegOut) 1004 continue; 1005 if (RegIn && RegOut) { 1006 // We need double spill code if this block has interference. 1007 Cand.Intf.moveToBlock(Number); 1008 if (Cand.Intf.hasInterference()) { 1009 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1010 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1011 } 1012 continue; 1013 } 1014 // live-in / stack-out or stack-in live-out. 1015 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1016 } 1017 return GlobalCost; 1018 } 1019 1020 /// splitAroundRegion - Split the current live range around the regions 1021 /// determined by BundleCand and GlobalCand. 1022 /// 1023 /// Before calling this function, GlobalCand and BundleCand must be initialized 1024 /// so each bundle is assigned to a valid candidate, or NoCand for the 1025 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1026 /// objects must be initialized for the current live range, and intervals 1027 /// created for the used candidates. 1028 /// 1029 /// @param LREdit The LiveRangeEdit object handling the current split. 1030 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1031 /// must appear in this list. 1032 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1033 ArrayRef<unsigned> UsedCands) { 1034 // These are the intervals created for new global ranges. We may create more 1035 // intervals for local ranges. 1036 const unsigned NumGlobalIntvs = LREdit.size(); 1037 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1038 assert(NumGlobalIntvs && "No global intervals configured"); 1039 1040 // Isolate even single instructions when dealing with a proper sub-class. 1041 // That guarantees register class inflation for the stack interval because it 1042 // is all copies. 1043 unsigned Reg = SA->getParent().reg; 1044 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1045 1046 // First handle all the blocks with uses. 1047 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1048 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1049 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1050 unsigned Number = BI.MBB->getNumber(); 1051 unsigned IntvIn = 0, IntvOut = 0; 1052 SlotIndex IntfIn, IntfOut; 1053 if (BI.LiveIn) { 1054 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1055 if (CandIn != NoCand) { 1056 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1057 IntvIn = Cand.IntvIdx; 1058 Cand.Intf.moveToBlock(Number); 1059 IntfIn = Cand.Intf.first(); 1060 } 1061 } 1062 if (BI.LiveOut) { 1063 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1064 if (CandOut != NoCand) { 1065 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1066 IntvOut = Cand.IntvIdx; 1067 Cand.Intf.moveToBlock(Number); 1068 IntfOut = Cand.Intf.last(); 1069 } 1070 } 1071 1072 // Create separate intervals for isolated blocks with multiple uses. 1073 if (!IntvIn && !IntvOut) { 1074 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1075 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1076 SE->splitSingleBlock(BI); 1077 continue; 1078 } 1079 1080 if (IntvIn && IntvOut) 1081 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1082 else if (IntvIn) 1083 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1084 else 1085 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1086 } 1087 1088 // Handle live-through blocks. The relevant live-through blocks are stored in 1089 // the ActiveBlocks list with each candidate. We need to filter out 1090 // duplicates. 1091 BitVector Todo = SA->getThroughBlocks(); 1092 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1093 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1094 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1095 unsigned Number = Blocks[i]; 1096 if (!Todo.test(Number)) 1097 continue; 1098 Todo.reset(Number); 1099 1100 unsigned IntvIn = 0, IntvOut = 0; 1101 SlotIndex IntfIn, IntfOut; 1102 1103 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1104 if (CandIn != NoCand) { 1105 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1106 IntvIn = Cand.IntvIdx; 1107 Cand.Intf.moveToBlock(Number); 1108 IntfIn = Cand.Intf.first(); 1109 } 1110 1111 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1112 if (CandOut != NoCand) { 1113 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1114 IntvOut = Cand.IntvIdx; 1115 Cand.Intf.moveToBlock(Number); 1116 IntfOut = Cand.Intf.last(); 1117 } 1118 if (!IntvIn && !IntvOut) 1119 continue; 1120 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1121 } 1122 } 1123 1124 ++NumGlobalSplits; 1125 1126 SmallVector<unsigned, 8> IntvMap; 1127 SE->finish(&IntvMap); 1128 DebugVars->splitRegister(Reg, LREdit.regs()); 1129 1130 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1131 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1132 1133 // Sort out the new intervals created by splitting. We get four kinds: 1134 // - Remainder intervals should not be split again. 1135 // - Candidate intervals can be assigned to Cand.PhysReg. 1136 // - Block-local splits are candidates for local splitting. 1137 // - DCE leftovers should go back on the queue. 1138 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1139 LiveInterval &Reg = *LREdit.get(i); 1140 1141 // Ignore old intervals from DCE. 1142 if (getStage(Reg) != RS_New) 1143 continue; 1144 1145 // Remainder interval. Don't try splitting again, spill if it doesn't 1146 // allocate. 1147 if (IntvMap[i] == 0) { 1148 setStage(Reg, RS_Spill); 1149 continue; 1150 } 1151 1152 // Global intervals. Allow repeated splitting as long as the number of live 1153 // blocks is strictly decreasing. 1154 if (IntvMap[i] < NumGlobalIntvs) { 1155 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1156 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1157 << " blocks as original.\n"); 1158 // Don't allow repeated splitting as a safe guard against looping. 1159 setStage(Reg, RS_Split2); 1160 } 1161 continue; 1162 } 1163 1164 // Other intervals are treated as new. This includes local intervals created 1165 // for blocks with multiple uses, and anything created by DCE. 1166 } 1167 1168 if (VerifyEnabled) 1169 MF->verify(this, "After splitting live range around region"); 1170 } 1171 1172 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1173 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1174 unsigned NumCands = 0; 1175 unsigned BestCand = NoCand; 1176 BlockFrequency BestCost; 1177 SmallVector<unsigned, 8> UsedCands; 1178 1179 // Check if we can split this live range around a compact region. 1180 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1181 if (HasCompact) { 1182 // Yes, keep GlobalCand[0] as the compact region candidate. 1183 NumCands = 1; 1184 BestCost = BlockFrequency::getMaxFrequency(); 1185 } else { 1186 // No benefit from the compact region, our fallback will be per-block 1187 // splitting. Make sure we find a solution that is cheaper than spilling. 1188 BestCost = calcSpillCost(); 1189 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1190 } 1191 1192 Order.rewind(); 1193 while (unsigned PhysReg = Order.next()) { 1194 // Discard bad candidates before we run out of interference cache cursors. 1195 // This will only affect register classes with a lot of registers (>32). 1196 if (NumCands == IntfCache.getMaxCursors()) { 1197 unsigned WorstCount = ~0u; 1198 unsigned Worst = 0; 1199 for (unsigned i = 0; i != NumCands; ++i) { 1200 if (i == BestCand || !GlobalCand[i].PhysReg) 1201 continue; 1202 unsigned Count = GlobalCand[i].LiveBundles.count(); 1203 if (Count < WorstCount) 1204 Worst = i, WorstCount = Count; 1205 } 1206 --NumCands; 1207 GlobalCand[Worst] = GlobalCand[NumCands]; 1208 if (BestCand == NumCands) 1209 BestCand = Worst; 1210 } 1211 1212 if (GlobalCand.size() <= NumCands) 1213 GlobalCand.resize(NumCands+1); 1214 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1215 Cand.reset(IntfCache, PhysReg); 1216 1217 SpillPlacer->prepare(Cand.LiveBundles); 1218 BlockFrequency Cost; 1219 if (!addSplitConstraints(Cand.Intf, Cost)) { 1220 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1221 continue; 1222 } 1223 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1224 if (Cost >= BestCost) { 1225 DEBUG({ 1226 if (BestCand == NoCand) 1227 dbgs() << " worse than no bundles\n"; 1228 else 1229 dbgs() << " worse than " 1230 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1231 }); 1232 continue; 1233 } 1234 growRegion(Cand); 1235 1236 SpillPlacer->finish(); 1237 1238 // No live bundles, defer to splitSingleBlocks(). 1239 if (!Cand.LiveBundles.any()) { 1240 DEBUG(dbgs() << " no bundles.\n"); 1241 continue; 1242 } 1243 1244 Cost += calcGlobalSplitCost(Cand); 1245 DEBUG({ 1246 dbgs() << ", total = " << Cost << " with bundles"; 1247 for (int i = Cand.LiveBundles.find_first(); i>=0; 1248 i = Cand.LiveBundles.find_next(i)) 1249 dbgs() << " EB#" << i; 1250 dbgs() << ".\n"; 1251 }); 1252 if (Cost < BestCost) { 1253 BestCand = NumCands; 1254 BestCost = Cost; 1255 } 1256 ++NumCands; 1257 } 1258 1259 // No solutions found, fall back to single block splitting. 1260 if (!HasCompact && BestCand == NoCand) 1261 return 0; 1262 1263 // Prepare split editor. 1264 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1265 SE->reset(LREdit, SplitSpillMode); 1266 1267 // Assign all edge bundles to the preferred candidate, or NoCand. 1268 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1269 1270 // Assign bundles for the best candidate region. 1271 if (BestCand != NoCand) { 1272 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1273 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1274 UsedCands.push_back(BestCand); 1275 Cand.IntvIdx = SE->openIntv(); 1276 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1277 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1278 (void)B; 1279 } 1280 } 1281 1282 // Assign bundles for the compact region. 1283 if (HasCompact) { 1284 GlobalSplitCandidate &Cand = GlobalCand.front(); 1285 assert(!Cand.PhysReg && "Compact region has no physreg"); 1286 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1287 UsedCands.push_back(0); 1288 Cand.IntvIdx = SE->openIntv(); 1289 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1290 << Cand.IntvIdx << ".\n"); 1291 (void)B; 1292 } 1293 } 1294 1295 splitAroundRegion(LREdit, UsedCands); 1296 return 0; 1297 } 1298 1299 1300 //===----------------------------------------------------------------------===// 1301 // Per-Block Splitting 1302 //===----------------------------------------------------------------------===// 1303 1304 /// tryBlockSplit - Split a global live range around every block with uses. This 1305 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1306 /// they don't allocate. 1307 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1308 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1309 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1310 unsigned Reg = VirtReg.reg; 1311 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1312 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1313 SE->reset(LREdit, SplitSpillMode); 1314 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1315 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1316 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1317 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1318 SE->splitSingleBlock(BI); 1319 } 1320 // No blocks were split. 1321 if (LREdit.empty()) 1322 return 0; 1323 1324 // We did split for some blocks. 1325 SmallVector<unsigned, 8> IntvMap; 1326 SE->finish(&IntvMap); 1327 1328 // Tell LiveDebugVariables about the new ranges. 1329 DebugVars->splitRegister(Reg, LREdit.regs()); 1330 1331 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1332 1333 // Sort out the new intervals created by splitting. The remainder interval 1334 // goes straight to spilling, the new local ranges get to stay RS_New. 1335 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1336 LiveInterval &LI = *LREdit.get(i); 1337 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1338 setStage(LI, RS_Spill); 1339 } 1340 1341 if (VerifyEnabled) 1342 MF->verify(this, "After splitting live range around basic blocks"); 1343 return 0; 1344 } 1345 1346 1347 //===----------------------------------------------------------------------===// 1348 // Per-Instruction Splitting 1349 //===----------------------------------------------------------------------===// 1350 1351 /// tryInstructionSplit - Split a live range around individual instructions. 1352 /// This is normally not worthwhile since the spiller is doing essentially the 1353 /// same thing. However, when the live range is in a constrained register 1354 /// class, it may help to insert copies such that parts of the live range can 1355 /// be moved to a larger register class. 1356 /// 1357 /// This is similar to spilling to a larger register class. 1358 unsigned 1359 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1360 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1361 // There is no point to this if there are no larger sub-classes. 1362 if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg))) 1363 return 0; 1364 1365 // Always enable split spill mode, since we're effectively spilling to a 1366 // register. 1367 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1368 SE->reset(LREdit, SplitEditor::SM_Size); 1369 1370 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1371 if (Uses.size() <= 1) 1372 return 0; 1373 1374 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1375 1376 // Split around every non-copy instruction. 1377 for (unsigned i = 0; i != Uses.size(); ++i) { 1378 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1379 if (MI->isFullCopy()) { 1380 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1381 continue; 1382 } 1383 SE->openIntv(); 1384 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1385 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1386 SE->useIntv(SegStart, SegStop); 1387 } 1388 1389 if (LREdit.empty()) { 1390 DEBUG(dbgs() << "All uses were copies.\n"); 1391 return 0; 1392 } 1393 1394 SmallVector<unsigned, 8> IntvMap; 1395 SE->finish(&IntvMap); 1396 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1397 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1398 1399 // Assign all new registers to RS_Spill. This was the last chance. 1400 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1401 return 0; 1402 } 1403 1404 1405 //===----------------------------------------------------------------------===// 1406 // Local Splitting 1407 //===----------------------------------------------------------------------===// 1408 1409 1410 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1411 /// in order to use PhysReg between two entries in SA->UseSlots. 1412 /// 1413 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1414 /// 1415 void RAGreedy::calcGapWeights(unsigned PhysReg, 1416 SmallVectorImpl<float> &GapWeight) { 1417 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1418 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1419 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1420 const unsigned NumGaps = Uses.size()-1; 1421 1422 // Start and end points for the interference check. 1423 SlotIndex StartIdx = 1424 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1425 SlotIndex StopIdx = 1426 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1427 1428 GapWeight.assign(NumGaps, 0.0f); 1429 1430 // Add interference from each overlapping register. 1431 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1432 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1433 .checkInterference()) 1434 continue; 1435 1436 // We know that VirtReg is a continuous interval from FirstInstr to 1437 // LastInstr, so we don't need InterferenceQuery. 1438 // 1439 // Interference that overlaps an instruction is counted in both gaps 1440 // surrounding the instruction. The exception is interference before 1441 // StartIdx and after StopIdx. 1442 // 1443 LiveIntervalUnion::SegmentIter IntI = 1444 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1445 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1446 // Skip the gaps before IntI. 1447 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1448 if (++Gap == NumGaps) 1449 break; 1450 if (Gap == NumGaps) 1451 break; 1452 1453 // Update the gaps covered by IntI. 1454 const float weight = IntI.value()->weight; 1455 for (; Gap != NumGaps; ++Gap) { 1456 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1457 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1458 break; 1459 } 1460 if (Gap == NumGaps) 1461 break; 1462 } 1463 } 1464 1465 // Add fixed interference. 1466 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1467 const LiveInterval &LI = LIS->getRegUnit(*Units); 1468 LiveInterval::const_iterator I = LI.find(StartIdx); 1469 LiveInterval::const_iterator E = LI.end(); 1470 1471 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1472 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1473 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1474 if (++Gap == NumGaps) 1475 break; 1476 if (Gap == NumGaps) 1477 break; 1478 1479 for (; Gap != NumGaps; ++Gap) { 1480 GapWeight[Gap] = HUGE_VALF; 1481 if (Uses[Gap+1].getBaseIndex() >= I->end) 1482 break; 1483 } 1484 if (Gap == NumGaps) 1485 break; 1486 } 1487 } 1488 } 1489 1490 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1491 /// basic block. 1492 /// 1493 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1494 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1495 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1496 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1497 1498 // Note that it is possible to have an interval that is live-in or live-out 1499 // while only covering a single block - A phi-def can use undef values from 1500 // predecessors, and the block could be a single-block loop. 1501 // We don't bother doing anything clever about such a case, we simply assume 1502 // that the interval is continuous from FirstInstr to LastInstr. We should 1503 // make sure that we don't do anything illegal to such an interval, though. 1504 1505 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1506 if (Uses.size() <= 2) 1507 return 0; 1508 const unsigned NumGaps = Uses.size()-1; 1509 1510 DEBUG({ 1511 dbgs() << "tryLocalSplit: "; 1512 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1513 dbgs() << ' ' << Uses[i]; 1514 dbgs() << '\n'; 1515 }); 1516 1517 // If VirtReg is live across any register mask operands, compute a list of 1518 // gaps with register masks. 1519 SmallVector<unsigned, 8> RegMaskGaps; 1520 if (Matrix->checkRegMaskInterference(VirtReg)) { 1521 // Get regmask slots for the whole block. 1522 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1523 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1524 // Constrain to VirtReg's live range. 1525 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1526 Uses.front().getRegSlot()) - RMS.begin(); 1527 unsigned re = RMS.size(); 1528 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1529 // Look for Uses[i] <= RMS <= Uses[i+1]. 1530 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1531 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1532 continue; 1533 // Skip a regmask on the same instruction as the last use. It doesn't 1534 // overlap the live range. 1535 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1536 break; 1537 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1538 RegMaskGaps.push_back(i); 1539 // Advance ri to the next gap. A regmask on one of the uses counts in 1540 // both gaps. 1541 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1542 ++ri; 1543 } 1544 DEBUG(dbgs() << '\n'); 1545 } 1546 1547 // Since we allow local split results to be split again, there is a risk of 1548 // creating infinite loops. It is tempting to require that the new live 1549 // ranges have less instructions than the original. That would guarantee 1550 // convergence, but it is too strict. A live range with 3 instructions can be 1551 // split 2+3 (including the COPY), and we want to allow that. 1552 // 1553 // Instead we use these rules: 1554 // 1555 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1556 // noop split, of course). 1557 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1558 // the new ranges must have fewer instructions than before the split. 1559 // 3. New ranges with the same number of instructions are marked RS_Split2, 1560 // smaller ranges are marked RS_New. 1561 // 1562 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1563 // excessive splitting and infinite loops. 1564 // 1565 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1566 1567 // Best split candidate. 1568 unsigned BestBefore = NumGaps; 1569 unsigned BestAfter = 0; 1570 float BestDiff = 0; 1571 1572 const float blockFreq = 1573 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1574 (1.0f / BlockFrequency::getEntryFrequency()); 1575 SmallVector<float, 8> GapWeight; 1576 1577 Order.rewind(); 1578 while (unsigned PhysReg = Order.next()) { 1579 // Keep track of the largest spill weight that would need to be evicted in 1580 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1581 calcGapWeights(PhysReg, GapWeight); 1582 1583 // Remove any gaps with regmask clobbers. 1584 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1585 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1586 GapWeight[RegMaskGaps[i]] = HUGE_VALF; 1587 1588 // Try to find the best sequence of gaps to close. 1589 // The new spill weight must be larger than any gap interference. 1590 1591 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1592 unsigned SplitBefore = 0, SplitAfter = 1; 1593 1594 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1595 // It is the spill weight that needs to be evicted. 1596 float MaxGap = GapWeight[0]; 1597 1598 for (;;) { 1599 // Live before/after split? 1600 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1601 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1602 1603 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1604 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1605 << " i=" << MaxGap); 1606 1607 // Stop before the interval gets so big we wouldn't be making progress. 1608 if (!LiveBefore && !LiveAfter) { 1609 DEBUG(dbgs() << " all\n"); 1610 break; 1611 } 1612 // Should the interval be extended or shrunk? 1613 bool Shrink = true; 1614 1615 // How many gaps would the new range have? 1616 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1617 1618 // Legally, without causing looping? 1619 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1620 1621 if (Legal && MaxGap < HUGE_VALF) { 1622 // Estimate the new spill weight. Each instruction reads or writes the 1623 // register. Conservatively assume there are no read-modify-write 1624 // instructions. 1625 // 1626 // Try to guess the size of the new interval. 1627 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1628 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1629 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1630 // Would this split be possible to allocate? 1631 // Never allocate all gaps, we wouldn't be making progress. 1632 DEBUG(dbgs() << " w=" << EstWeight); 1633 if (EstWeight * Hysteresis >= MaxGap) { 1634 Shrink = false; 1635 float Diff = EstWeight - MaxGap; 1636 if (Diff > BestDiff) { 1637 DEBUG(dbgs() << " (best)"); 1638 BestDiff = Hysteresis * Diff; 1639 BestBefore = SplitBefore; 1640 BestAfter = SplitAfter; 1641 } 1642 } 1643 } 1644 1645 // Try to shrink. 1646 if (Shrink) { 1647 if (++SplitBefore < SplitAfter) { 1648 DEBUG(dbgs() << " shrink\n"); 1649 // Recompute the max when necessary. 1650 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1651 MaxGap = GapWeight[SplitBefore]; 1652 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1653 MaxGap = std::max(MaxGap, GapWeight[i]); 1654 } 1655 continue; 1656 } 1657 MaxGap = 0; 1658 } 1659 1660 // Try to extend the interval. 1661 if (SplitAfter >= NumGaps) { 1662 DEBUG(dbgs() << " end\n"); 1663 break; 1664 } 1665 1666 DEBUG(dbgs() << " extend\n"); 1667 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1668 } 1669 } 1670 1671 // Didn't find any candidates? 1672 if (BestBefore == NumGaps) 1673 return 0; 1674 1675 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1676 << '-' << Uses[BestAfter] << ", " << BestDiff 1677 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1678 1679 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1680 SE->reset(LREdit); 1681 1682 SE->openIntv(); 1683 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1684 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1685 SE->useIntv(SegStart, SegStop); 1686 SmallVector<unsigned, 8> IntvMap; 1687 SE->finish(&IntvMap); 1688 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1689 1690 // If the new range has the same number of instructions as before, mark it as 1691 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1692 // leave the new intervals as RS_New so they can compete. 1693 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1694 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1695 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1696 if (NewGaps >= NumGaps) { 1697 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1698 assert(!ProgressRequired && "Didn't make progress when it was required."); 1699 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1700 if (IntvMap[i] == 1) { 1701 setStage(*LREdit.get(i), RS_Split2); 1702 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1703 } 1704 DEBUG(dbgs() << '\n'); 1705 } 1706 ++NumLocalSplits; 1707 1708 return 0; 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 // Live Range Splitting 1713 //===----------------------------------------------------------------------===// 1714 1715 /// trySplit - Try to split VirtReg or one of its interferences, making it 1716 /// assignable. 1717 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1718 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1719 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1720 // Ranges must be Split2 or less. 1721 if (getStage(VirtReg) >= RS_Spill) 1722 return 0; 1723 1724 // Local intervals are handled separately. 1725 if (LIS->intervalIsInOneMBB(VirtReg)) { 1726 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1727 SA->analyze(&VirtReg); 1728 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1729 if (PhysReg || !NewVRegs.empty()) 1730 return PhysReg; 1731 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1732 } 1733 1734 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1735 1736 SA->analyze(&VirtReg); 1737 1738 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1739 // coalescer. That may cause the range to become allocatable which means that 1740 // tryRegionSplit won't be making progress. This check should be replaced with 1741 // an assertion when the coalescer is fixed. 1742 if (SA->didRepairRange()) { 1743 // VirtReg has changed, so all cached queries are invalid. 1744 Matrix->invalidateVirtRegs(); 1745 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1746 return PhysReg; 1747 } 1748 1749 // First try to split around a region spanning multiple blocks. RS_Split2 1750 // ranges already made dubious progress with region splitting, so they go 1751 // straight to single block splitting. 1752 if (getStage(VirtReg) < RS_Split2) { 1753 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1754 if (PhysReg || !NewVRegs.empty()) 1755 return PhysReg; 1756 } 1757 1758 // Then isolate blocks. 1759 return tryBlockSplit(VirtReg, Order, NewVRegs); 1760 } 1761 1762 1763 //===----------------------------------------------------------------------===// 1764 // Main Entry Point 1765 //===----------------------------------------------------------------------===// 1766 1767 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1768 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1769 // First try assigning a free register. 1770 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1771 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1772 return PhysReg; 1773 1774 LiveRangeStage Stage = getStage(VirtReg); 1775 DEBUG(dbgs() << StageName[Stage] 1776 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1777 1778 // Try to evict a less worthy live range, but only for ranges from the primary 1779 // queue. The RS_Split ranges already failed to do this, and they should not 1780 // get a second chance until they have been split. 1781 if (Stage != RS_Split) 1782 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1783 return PhysReg; 1784 1785 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1786 1787 // The first time we see a live range, don't try to split or spill. 1788 // Wait until the second time, when all smaller ranges have been allocated. 1789 // This gives a better picture of the interference to split around. 1790 if (Stage < RS_Split) { 1791 setStage(VirtReg, RS_Split); 1792 DEBUG(dbgs() << "wait for second round\n"); 1793 NewVRegs.push_back(&VirtReg); 1794 return 0; 1795 } 1796 1797 // If we couldn't allocate a register from spilling, there is probably some 1798 // invalid inline assembly. The base class wil report it. 1799 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1800 return ~0u; 1801 1802 // Try splitting VirtReg or interferences. 1803 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1804 if (PhysReg || !NewVRegs.empty()) 1805 return PhysReg; 1806 1807 // Finally spill VirtReg itself. 1808 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1809 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1810 spiller().spill(LRE); 1811 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1812 1813 if (VerifyEnabled) 1814 MF->verify(this, "After spilling"); 1815 1816 // The live virtual register requesting allocation was spilled, so tell 1817 // the caller not to allocate anything during this round. 1818 return 0; 1819 } 1820 1821 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1822 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1823 << "********** Function: " << mf.getName() << '\n'); 1824 1825 MF = &mf; 1826 if (VerifyEnabled) 1827 MF->verify(this, "Before greedy register allocator"); 1828 1829 RegAllocBase::init(getAnalysis<VirtRegMap>(), 1830 getAnalysis<LiveIntervals>(), 1831 getAnalysis<LiveRegMatrix>()); 1832 Indexes = &getAnalysis<SlotIndexes>(); 1833 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1834 DomTree = &getAnalysis<MachineDominatorTree>(); 1835 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1836 Loops = &getAnalysis<MachineLoopInfo>(); 1837 Bundles = &getAnalysis<EdgeBundles>(); 1838 SpillPlacer = &getAnalysis<SpillPlacement>(); 1839 DebugVars = &getAnalysis<LiveDebugVariables>(); 1840 1841 DEBUG(LIS->dump()); 1842 1843 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1844 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI)); 1845 ExtraRegInfo.clear(); 1846 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1847 NextCascade = 1; 1848 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 1849 GlobalCand.resize(32); // This will grow as needed. 1850 1851 allocatePhysRegs(); 1852 releaseMemory(); 1853 return true; 1854 } 1855