1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PHITransAddr class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/PHITransAddr.h" 15 #include "llvm/Analysis/Dominators.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 static bool CanPHITrans(Instruction *Inst) { 26 if (isa<PHINode>(Inst) || 27 isa<GetElementPtrInst>(Inst)) 28 return true; 29 30 if (isa<CastInst>(Inst) && 31 isSafeToSpeculativelyExecute(Inst)) 32 return true; 33 34 if (Inst->getOpcode() == Instruction::Add && 35 isa<ConstantInt>(Inst->getOperand(1))) 36 return true; 37 38 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 39 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 40 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 41 return false; 42 } 43 44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 45 void PHITransAddr::dump() const { 46 if (Addr == 0) { 47 dbgs() << "PHITransAddr: null\n"; 48 return; 49 } 50 dbgs() << "PHITransAddr: " << *Addr << "\n"; 51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 53 } 54 #endif 55 56 57 static bool VerifySubExpr(Value *Expr, 58 SmallVectorImpl<Instruction*> &InstInputs) { 59 // If this is a non-instruction value, there is nothing to do. 60 Instruction *I = dyn_cast<Instruction>(Expr); 61 if (I == 0) return true; 62 63 // If it's an instruction, it is either in Tmp or its operands recursively 64 // are. 65 SmallVectorImpl<Instruction*>::iterator Entry = 66 std::find(InstInputs.begin(), InstInputs.end(), I); 67 if (Entry != InstInputs.end()) { 68 InstInputs.erase(Entry); 69 return true; 70 } 71 72 // If it isn't in the InstInputs list it is a subexpr incorporated into the 73 // address. Sanity check that it is phi translatable. 74 if (!CanPHITrans(I)) { 75 errs() << "Non phi translatable instruction found in PHITransAddr:\n"; 76 errs() << *I << '\n'; 77 llvm_unreachable("Either something is missing from InstInputs or " 78 "CanPHITrans is wrong."); 79 } 80 81 // Validate the operands of the instruction. 82 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 83 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 84 return false; 85 86 return true; 87 } 88 89 /// Verify - Check internal consistency of this data structure. If the 90 /// structure is valid, it returns true. If invalid, it prints errors and 91 /// returns false. 92 bool PHITransAddr::Verify() const { 93 if (Addr == 0) return true; 94 95 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 96 97 if (!VerifySubExpr(Addr, Tmp)) 98 return false; 99 100 if (!Tmp.empty()) { 101 errs() << "PHITransAddr contains extra instructions:\n"; 102 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 103 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 104 llvm_unreachable("This is unexpected."); 105 } 106 107 // a-ok. 108 return true; 109 } 110 111 112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 113 /// if we have some hope of doing it. This should be used as a filter to 114 /// avoid calling PHITranslateValue in hopeless situations. 115 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 116 // If the input value is not an instruction, or if it is not defined in CurBB, 117 // then we don't need to phi translate it. 118 Instruction *Inst = dyn_cast<Instruction>(Addr); 119 return Inst == 0 || CanPHITrans(Inst); 120 } 121 122 123 static void RemoveInstInputs(Value *V, 124 SmallVectorImpl<Instruction*> &InstInputs) { 125 Instruction *I = dyn_cast<Instruction>(V); 126 if (I == 0) return; 127 128 // If the instruction is in the InstInputs list, remove it. 129 SmallVectorImpl<Instruction*>::iterator Entry = 130 std::find(InstInputs.begin(), InstInputs.end(), I); 131 if (Entry != InstInputs.end()) { 132 InstInputs.erase(Entry); 133 return; 134 } 135 136 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 137 138 // Otherwise, it must have instruction inputs itself. Zap them recursively. 139 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 140 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 141 RemoveInstInputs(Op, InstInputs); 142 } 143 } 144 145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 146 BasicBlock *PredBB, 147 const DominatorTree *DT) { 148 // If this is a non-instruction value, it can't require PHI translation. 149 Instruction *Inst = dyn_cast<Instruction>(V); 150 if (Inst == 0) return V; 151 152 // Determine whether 'Inst' is an input to our PHI translatable expression. 153 bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst); 154 155 // Handle inputs instructions if needed. 156 if (isInput) { 157 if (Inst->getParent() != CurBB) { 158 // If it is an input defined in a different block, then it remains an 159 // input. 160 return Inst; 161 } 162 163 // If 'Inst' is defined in this block and is an input that needs to be phi 164 // translated, we need to incorporate the value into the expression or fail. 165 166 // In either case, the instruction itself isn't an input any longer. 167 InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); 168 169 // If this is a PHI, go ahead and translate it. 170 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 171 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 172 173 // If this is a non-phi value, and it is analyzable, we can incorporate it 174 // into the expression by making all instruction operands be inputs. 175 if (!CanPHITrans(Inst)) 176 return 0; 177 178 // All instruction operands are now inputs (and of course, they may also be 179 // defined in this block, so they may need to be phi translated themselves. 180 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 181 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 182 InstInputs.push_back(Op); 183 } 184 185 // Ok, it must be an intermediate result (either because it started that way 186 // or because we just incorporated it into the expression). See if its 187 // operands need to be phi translated, and if so, reconstruct it. 188 189 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 190 if (!isSafeToSpeculativelyExecute(Cast)) return 0; 191 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 192 if (PHIIn == 0) return 0; 193 if (PHIIn == Cast->getOperand(0)) 194 return Cast; 195 196 // Find an available version of this cast. 197 198 // Constants are trivial to find. 199 if (Constant *C = dyn_cast<Constant>(PHIIn)) 200 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 201 C, Cast->getType())); 202 203 // Otherwise we have to see if a casted version of the incoming pointer 204 // is available. If so, we can use it, otherwise we have to fail. 205 for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end(); 206 UI != E; ++UI) { 207 if (CastInst *CastI = dyn_cast<CastInst>(*UI)) 208 if (CastI->getOpcode() == Cast->getOpcode() && 209 CastI->getType() == Cast->getType() && 210 (!DT || DT->dominates(CastI->getParent(), PredBB))) 211 return CastI; 212 } 213 return 0; 214 } 215 216 // Handle getelementptr with at least one PHI translatable operand. 217 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 218 SmallVector<Value*, 8> GEPOps; 219 bool AnyChanged = false; 220 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 221 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 222 if (GEPOp == 0) return 0; 223 224 AnyChanged |= GEPOp != GEP->getOperand(i); 225 GEPOps.push_back(GEPOp); 226 } 227 228 if (!AnyChanged) 229 return GEP; 230 231 // Simplify the GEP to handle 'gep x, 0' -> x etc. 232 if (Value *V = SimplifyGEPInst(GEPOps, TD, TLI, DT)) { 233 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 234 RemoveInstInputs(GEPOps[i], InstInputs); 235 236 return AddAsInput(V); 237 } 238 239 // Scan to see if we have this GEP available. 240 Value *APHIOp = GEPOps[0]; 241 for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end(); 242 UI != E; ++UI) { 243 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) 244 if (GEPI->getType() == GEP->getType() && 245 GEPI->getNumOperands() == GEPOps.size() && 246 GEPI->getParent()->getParent() == CurBB->getParent() && 247 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 248 bool Mismatch = false; 249 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 250 if (GEPI->getOperand(i) != GEPOps[i]) { 251 Mismatch = true; 252 break; 253 } 254 if (!Mismatch) 255 return GEPI; 256 } 257 } 258 return 0; 259 } 260 261 // Handle add with a constant RHS. 262 if (Inst->getOpcode() == Instruction::Add && 263 isa<ConstantInt>(Inst->getOperand(1))) { 264 // PHI translate the LHS. 265 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 266 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 267 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 268 269 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 270 if (LHS == 0) return 0; 271 272 // If the PHI translated LHS is an add of a constant, fold the immediates. 273 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 274 if (BOp->getOpcode() == Instruction::Add) 275 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 276 LHS = BOp->getOperand(0); 277 RHS = ConstantExpr::getAdd(RHS, CI); 278 isNSW = isNUW = false; 279 280 // If the old 'LHS' was an input, add the new 'LHS' as an input. 281 if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) { 282 RemoveInstInputs(BOp, InstInputs); 283 AddAsInput(LHS); 284 } 285 } 286 287 // See if the add simplifies away. 288 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, TLI, DT)) { 289 // If we simplified the operands, the LHS is no longer an input, but Res 290 // is. 291 RemoveInstInputs(LHS, InstInputs); 292 return AddAsInput(Res); 293 } 294 295 // If we didn't modify the add, just return it. 296 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 297 return Inst; 298 299 // Otherwise, see if we have this add available somewhere. 300 for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end(); 301 UI != E; ++UI) { 302 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI)) 303 if (BO->getOpcode() == Instruction::Add && 304 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 305 BO->getParent()->getParent() == CurBB->getParent() && 306 (!DT || DT->dominates(BO->getParent(), PredBB))) 307 return BO; 308 } 309 310 return 0; 311 } 312 313 // Otherwise, we failed. 314 return 0; 315 } 316 317 318 /// PHITranslateValue - PHI translate the current address up the CFG from 319 /// CurBB to Pred, updating our state to reflect any needed changes. If the 320 /// dominator tree DT is non-null, the translated value must dominate 321 /// PredBB. This returns true on failure and sets Addr to null. 322 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 323 const DominatorTree *DT) { 324 assert(Verify() && "Invalid PHITransAddr!"); 325 Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT); 326 assert(Verify() && "Invalid PHITransAddr!"); 327 328 if (DT) { 329 // Make sure the value is live in the predecessor. 330 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 331 if (!DT->dominates(Inst->getParent(), PredBB)) 332 Addr = 0; 333 } 334 335 return Addr == 0; 336 } 337 338 /// PHITranslateWithInsertion - PHI translate this value into the specified 339 /// predecessor block, inserting a computation of the value if it is 340 /// unavailable. 341 /// 342 /// All newly created instructions are added to the NewInsts list. This 343 /// returns null on failure. 344 /// 345 Value *PHITransAddr:: 346 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 347 const DominatorTree &DT, 348 SmallVectorImpl<Instruction*> &NewInsts) { 349 unsigned NISize = NewInsts.size(); 350 351 // Attempt to PHI translate with insertion. 352 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 353 354 // If successful, return the new value. 355 if (Addr) return Addr; 356 357 // If not, destroy any intermediate instructions inserted. 358 while (NewInsts.size() != NISize) 359 NewInsts.pop_back_val()->eraseFromParent(); 360 return 0; 361 } 362 363 364 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 365 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 366 /// block. All newly created instructions are added to the NewInsts list. 367 /// This returns null on failure. 368 /// 369 Value *PHITransAddr:: 370 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 371 BasicBlock *PredBB, const DominatorTree &DT, 372 SmallVectorImpl<Instruction*> &NewInsts) { 373 // See if we have a version of this value already available and dominating 374 // PredBB. If so, there is no need to insert a new instance of it. 375 PHITransAddr Tmp(InVal, TD); 376 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT)) 377 return Tmp.getAddr(); 378 379 // If we don't have an available version of this value, it must be an 380 // instruction. 381 Instruction *Inst = cast<Instruction>(InVal); 382 383 // Handle cast of PHI translatable value. 384 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 385 if (!isSafeToSpeculativelyExecute(Cast)) return 0; 386 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 387 CurBB, PredBB, DT, NewInsts); 388 if (OpVal == 0) return 0; 389 390 // Otherwise insert a cast at the end of PredBB. 391 CastInst *New = CastInst::Create(Cast->getOpcode(), 392 OpVal, InVal->getType(), 393 InVal->getName()+".phi.trans.insert", 394 PredBB->getTerminator()); 395 NewInsts.push_back(New); 396 return New; 397 } 398 399 // Handle getelementptr with at least one PHI operand. 400 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 401 SmallVector<Value*, 8> GEPOps; 402 BasicBlock *CurBB = GEP->getParent(); 403 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 404 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 405 CurBB, PredBB, DT, NewInsts); 406 if (OpVal == 0) return 0; 407 GEPOps.push_back(OpVal); 408 } 409 410 GetElementPtrInst *Result = 411 GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1), 412 InVal->getName()+".phi.trans.insert", 413 PredBB->getTerminator()); 414 Result->setIsInBounds(GEP->isInBounds()); 415 NewInsts.push_back(Result); 416 return Result; 417 } 418 419 #if 0 420 // FIXME: This code works, but it is unclear that we actually want to insert 421 // a big chain of computation in order to make a value available in a block. 422 // This needs to be evaluated carefully to consider its cost trade offs. 423 424 // Handle add with a constant RHS. 425 if (Inst->getOpcode() == Instruction::Add && 426 isa<ConstantInt>(Inst->getOperand(1))) { 427 // PHI translate the LHS. 428 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 429 CurBB, PredBB, DT, NewInsts); 430 if (OpVal == 0) return 0; 431 432 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 433 InVal->getName()+".phi.trans.insert", 434 PredBB->getTerminator()); 435 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 436 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 437 NewInsts.push_back(Res); 438 return Res; 439 } 440 #endif 441 442 return 0; 443 } 444