1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines various helper methods and classes used by 11 // LLVMContextImpl for creating and managing constants. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CONSTANTSCONTEXT_H 16 #define LLVM_CONSTANTSCONTEXT_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/IR/InlineAsm.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Operator.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <map> 27 28 namespace llvm { 29 template<class ValType> 30 struct ConstantTraits; 31 32 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used 33 /// behind the scenes to implement unary constant exprs. 34 class UnaryConstantExpr : public ConstantExpr { 35 virtual void anchor(); 36 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 37 public: 38 // allocate space for exactly one operand 39 void *operator new(size_t s) { 40 return User::operator new(s, 1); 41 } 42 UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty) 43 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { 44 Op<0>() = C; 45 } 46 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 47 }; 48 49 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used 50 /// behind the scenes to implement binary constant exprs. 51 class BinaryConstantExpr : public ConstantExpr { 52 virtual void anchor(); 53 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 54 public: 55 // allocate space for exactly two operands 56 void *operator new(size_t s) { 57 return User::operator new(s, 2); 58 } 59 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2, 60 unsigned Flags) 61 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { 62 Op<0>() = C1; 63 Op<1>() = C2; 64 SubclassOptionalData = Flags; 65 } 66 /// Transparently provide more efficient getOperand methods. 67 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 68 }; 69 70 /// SelectConstantExpr - This class is private to Constants.cpp, and is used 71 /// behind the scenes to implement select constant exprs. 72 class SelectConstantExpr : public ConstantExpr { 73 virtual void anchor(); 74 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 75 public: 76 // allocate space for exactly three operands 77 void *operator new(size_t s) { 78 return User::operator new(s, 3); 79 } 80 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) 81 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { 82 Op<0>() = C1; 83 Op<1>() = C2; 84 Op<2>() = C3; 85 } 86 /// Transparently provide more efficient getOperand methods. 87 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 88 }; 89 90 /// ExtractElementConstantExpr - This class is private to 91 /// Constants.cpp, and is used behind the scenes to implement 92 /// extractelement constant exprs. 93 class ExtractElementConstantExpr : public ConstantExpr { 94 virtual void anchor(); 95 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 96 public: 97 // allocate space for exactly two operands 98 void *operator new(size_t s) { 99 return User::operator new(s, 2); 100 } 101 ExtractElementConstantExpr(Constant *C1, Constant *C2) 102 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 103 Instruction::ExtractElement, &Op<0>(), 2) { 104 Op<0>() = C1; 105 Op<1>() = C2; 106 } 107 /// Transparently provide more efficient getOperand methods. 108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 109 }; 110 111 /// InsertElementConstantExpr - This class is private to 112 /// Constants.cpp, and is used behind the scenes to implement 113 /// insertelement constant exprs. 114 class InsertElementConstantExpr : public ConstantExpr { 115 virtual void anchor(); 116 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 117 public: 118 // allocate space for exactly three operands 119 void *operator new(size_t s) { 120 return User::operator new(s, 3); 121 } 122 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) 123 : ConstantExpr(C1->getType(), Instruction::InsertElement, 124 &Op<0>(), 3) { 125 Op<0>() = C1; 126 Op<1>() = C2; 127 Op<2>() = C3; 128 } 129 /// Transparently provide more efficient getOperand methods. 130 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 131 }; 132 133 /// ShuffleVectorConstantExpr - This class is private to 134 /// Constants.cpp, and is used behind the scenes to implement 135 /// shufflevector constant exprs. 136 class ShuffleVectorConstantExpr : public ConstantExpr { 137 virtual void anchor(); 138 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 139 public: 140 // allocate space for exactly three operands 141 void *operator new(size_t s) { 142 return User::operator new(s, 3); 143 } 144 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) 145 : ConstantExpr(VectorType::get( 146 cast<VectorType>(C1->getType())->getElementType(), 147 cast<VectorType>(C3->getType())->getNumElements()), 148 Instruction::ShuffleVector, 149 &Op<0>(), 3) { 150 Op<0>() = C1; 151 Op<1>() = C2; 152 Op<2>() = C3; 153 } 154 /// Transparently provide more efficient getOperand methods. 155 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 156 }; 157 158 /// ExtractValueConstantExpr - This class is private to 159 /// Constants.cpp, and is used behind the scenes to implement 160 /// extractvalue constant exprs. 161 class ExtractValueConstantExpr : public ConstantExpr { 162 virtual void anchor(); 163 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 164 public: 165 // allocate space for exactly one operand 166 void *operator new(size_t s) { 167 return User::operator new(s, 1); 168 } 169 ExtractValueConstantExpr(Constant *Agg, 170 const SmallVector<unsigned, 4> &IdxList, 171 Type *DestTy) 172 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), 173 Indices(IdxList) { 174 Op<0>() = Agg; 175 } 176 177 /// Indices - These identify which value to extract. 178 const SmallVector<unsigned, 4> Indices; 179 180 /// Transparently provide more efficient getOperand methods. 181 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 182 }; 183 184 /// InsertValueConstantExpr - This class is private to 185 /// Constants.cpp, and is used behind the scenes to implement 186 /// insertvalue constant exprs. 187 class InsertValueConstantExpr : public ConstantExpr { 188 virtual void anchor(); 189 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 190 public: 191 // allocate space for exactly one operand 192 void *operator new(size_t s) { 193 return User::operator new(s, 2); 194 } 195 InsertValueConstantExpr(Constant *Agg, Constant *Val, 196 const SmallVector<unsigned, 4> &IdxList, 197 Type *DestTy) 198 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), 199 Indices(IdxList) { 200 Op<0>() = Agg; 201 Op<1>() = Val; 202 } 203 204 /// Indices - These identify the position for the insertion. 205 const SmallVector<unsigned, 4> Indices; 206 207 /// Transparently provide more efficient getOperand methods. 208 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 209 }; 210 211 212 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is 213 /// used behind the scenes to implement getelementpr constant exprs. 214 class GetElementPtrConstantExpr : public ConstantExpr { 215 virtual void anchor(); 216 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, 217 Type *DestTy); 218 public: 219 static GetElementPtrConstantExpr *Create(Constant *C, 220 ArrayRef<Constant*> IdxList, 221 Type *DestTy, 222 unsigned Flags) { 223 GetElementPtrConstantExpr *Result = 224 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); 225 Result->SubclassOptionalData = Flags; 226 return Result; 227 } 228 /// Transparently provide more efficient getOperand methods. 229 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 230 }; 231 232 // CompareConstantExpr - This class is private to Constants.cpp, and is used 233 // behind the scenes to implement ICmp and FCmp constant expressions. This is 234 // needed in order to store the predicate value for these instructions. 235 class CompareConstantExpr : public ConstantExpr { 236 virtual void anchor(); 237 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 238 public: 239 // allocate space for exactly two operands 240 void *operator new(size_t s) { 241 return User::operator new(s, 2); 242 } 243 unsigned short predicate; 244 CompareConstantExpr(Type *ty, Instruction::OtherOps opc, 245 unsigned short pred, Constant* LHS, Constant* RHS) 246 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { 247 Op<0>() = LHS; 248 Op<1>() = RHS; 249 } 250 /// Transparently provide more efficient getOperand methods. 251 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 252 }; 253 254 template <> 255 struct OperandTraits<UnaryConstantExpr> : 256 public FixedNumOperandTraits<UnaryConstantExpr, 1> { 257 }; 258 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) 259 260 template <> 261 struct OperandTraits<BinaryConstantExpr> : 262 public FixedNumOperandTraits<BinaryConstantExpr, 2> { 263 }; 264 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) 265 266 template <> 267 struct OperandTraits<SelectConstantExpr> : 268 public FixedNumOperandTraits<SelectConstantExpr, 3> { 269 }; 270 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) 271 272 template <> 273 struct OperandTraits<ExtractElementConstantExpr> : 274 public FixedNumOperandTraits<ExtractElementConstantExpr, 2> { 275 }; 276 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) 277 278 template <> 279 struct OperandTraits<InsertElementConstantExpr> : 280 public FixedNumOperandTraits<InsertElementConstantExpr, 3> { 281 }; 282 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) 283 284 template <> 285 struct OperandTraits<ShuffleVectorConstantExpr> : 286 public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> { 287 }; 288 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) 289 290 template <> 291 struct OperandTraits<ExtractValueConstantExpr> : 292 public FixedNumOperandTraits<ExtractValueConstantExpr, 1> { 293 }; 294 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) 295 296 template <> 297 struct OperandTraits<InsertValueConstantExpr> : 298 public FixedNumOperandTraits<InsertValueConstantExpr, 2> { 299 }; 300 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) 301 302 template <> 303 struct OperandTraits<GetElementPtrConstantExpr> : 304 public VariadicOperandTraits<GetElementPtrConstantExpr, 1> { 305 }; 306 307 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) 308 309 310 template <> 311 struct OperandTraits<CompareConstantExpr> : 312 public FixedNumOperandTraits<CompareConstantExpr, 2> { 313 }; 314 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) 315 316 struct ExprMapKeyType { 317 ExprMapKeyType(unsigned opc, 318 ArrayRef<Constant*> ops, 319 unsigned short flags = 0, 320 unsigned short optionalflags = 0, 321 ArrayRef<unsigned> inds = None) 322 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags), 323 operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {} 324 uint8_t opcode; 325 uint8_t subclassoptionaldata; 326 uint16_t subclassdata; 327 std::vector<Constant*> operands; 328 SmallVector<unsigned, 4> indices; 329 bool operator==(const ExprMapKeyType& that) const { 330 return this->opcode == that.opcode && 331 this->subclassdata == that.subclassdata && 332 this->subclassoptionaldata == that.subclassoptionaldata && 333 this->operands == that.operands && 334 this->indices == that.indices; 335 } 336 bool operator<(const ExprMapKeyType & that) const { 337 if (this->opcode != that.opcode) return this->opcode < that.opcode; 338 if (this->operands != that.operands) return this->operands < that.operands; 339 if (this->subclassdata != that.subclassdata) 340 return this->subclassdata < that.subclassdata; 341 if (this->subclassoptionaldata != that.subclassoptionaldata) 342 return this->subclassoptionaldata < that.subclassoptionaldata; 343 if (this->indices != that.indices) return this->indices < that.indices; 344 return false; 345 } 346 347 bool operator!=(const ExprMapKeyType& that) const { 348 return !(*this == that); 349 } 350 }; 351 352 struct InlineAsmKeyType { 353 InlineAsmKeyType(StringRef AsmString, 354 StringRef Constraints, bool hasSideEffects, 355 bool isAlignStack, InlineAsm::AsmDialect asmDialect) 356 : asm_string(AsmString), constraints(Constraints), 357 has_side_effects(hasSideEffects), is_align_stack(isAlignStack), 358 asm_dialect(asmDialect) {} 359 std::string asm_string; 360 std::string constraints; 361 bool has_side_effects; 362 bool is_align_stack; 363 InlineAsm::AsmDialect asm_dialect; 364 bool operator==(const InlineAsmKeyType& that) const { 365 return this->asm_string == that.asm_string && 366 this->constraints == that.constraints && 367 this->has_side_effects == that.has_side_effects && 368 this->is_align_stack == that.is_align_stack && 369 this->asm_dialect == that.asm_dialect; 370 } 371 bool operator<(const InlineAsmKeyType& that) const { 372 if (this->asm_string != that.asm_string) 373 return this->asm_string < that.asm_string; 374 if (this->constraints != that.constraints) 375 return this->constraints < that.constraints; 376 if (this->has_side_effects != that.has_side_effects) 377 return this->has_side_effects < that.has_side_effects; 378 if (this->is_align_stack != that.is_align_stack) 379 return this->is_align_stack < that.is_align_stack; 380 if (this->asm_dialect != that.asm_dialect) 381 return this->asm_dialect < that.asm_dialect; 382 return false; 383 } 384 385 bool operator!=(const InlineAsmKeyType& that) const { 386 return !(*this == that); 387 } 388 }; 389 390 // The number of operands for each ConstantCreator::create method is 391 // determined by the ConstantTraits template. 392 // ConstantCreator - A class that is used to create constants by 393 // ConstantUniqueMap*. This class should be partially specialized if there is 394 // something strange that needs to be done to interface to the ctor for the 395 // constant. 396 // 397 template<typename T, typename Alloc> 398 struct ConstantTraits< std::vector<T, Alloc> > { 399 static unsigned uses(const std::vector<T, Alloc>& v) { 400 return v.size(); 401 } 402 }; 403 404 template<> 405 struct ConstantTraits<Constant *> { 406 static unsigned uses(Constant * const & v) { 407 return 1; 408 } 409 }; 410 411 template<class ConstantClass, class TypeClass, class ValType> 412 struct ConstantCreator { 413 static ConstantClass *create(TypeClass *Ty, const ValType &V) { 414 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); 415 } 416 }; 417 418 template<class ConstantClass, class TypeClass> 419 struct ConstantArrayCreator { 420 static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) { 421 return new(V.size()) ConstantClass(Ty, V); 422 } 423 }; 424 425 template<class ConstantClass> 426 struct ConstantKeyData { 427 typedef void ValType; 428 static ValType getValType(ConstantClass *C) { 429 llvm_unreachable("Unknown Constant type!"); 430 } 431 }; 432 433 template<> 434 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { 435 static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V, 436 unsigned short pred = 0) { 437 if (Instruction::isCast(V.opcode)) 438 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); 439 if ((V.opcode >= Instruction::BinaryOpsBegin && 440 V.opcode < Instruction::BinaryOpsEnd)) 441 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1], 442 V.subclassoptionaldata); 443 if (V.opcode == Instruction::Select) 444 return new SelectConstantExpr(V.operands[0], V.operands[1], 445 V.operands[2]); 446 if (V.opcode == Instruction::ExtractElement) 447 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); 448 if (V.opcode == Instruction::InsertElement) 449 return new InsertElementConstantExpr(V.operands[0], V.operands[1], 450 V.operands[2]); 451 if (V.opcode == Instruction::ShuffleVector) 452 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], 453 V.operands[2]); 454 if (V.opcode == Instruction::InsertValue) 455 return new InsertValueConstantExpr(V.operands[0], V.operands[1], 456 V.indices, Ty); 457 if (V.opcode == Instruction::ExtractValue) 458 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); 459 if (V.opcode == Instruction::GetElementPtr) { 460 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); 461 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty, 462 V.subclassoptionaldata); 463 } 464 465 // The compare instructions are weird. We have to encode the predicate 466 // value and it is combined with the instruction opcode by multiplying 467 // the opcode by one hundred. We must decode this to get the predicate. 468 if (V.opcode == Instruction::ICmp) 469 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata, 470 V.operands[0], V.operands[1]); 471 if (V.opcode == Instruction::FCmp) 472 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata, 473 V.operands[0], V.operands[1]); 474 llvm_unreachable("Invalid ConstantExpr!"); 475 } 476 }; 477 478 template<> 479 struct ConstantKeyData<ConstantExpr> { 480 typedef ExprMapKeyType ValType; 481 static ValType getValType(ConstantExpr *CE) { 482 std::vector<Constant*> Operands; 483 Operands.reserve(CE->getNumOperands()); 484 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) 485 Operands.push_back(cast<Constant>(CE->getOperand(i))); 486 return ExprMapKeyType(CE->getOpcode(), Operands, 487 CE->isCompare() ? CE->getPredicate() : 0, 488 CE->getRawSubclassOptionalData(), 489 CE->hasIndices() ? 490 CE->getIndices() : ArrayRef<unsigned>()); 491 } 492 }; 493 494 template<> 495 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> { 496 static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) { 497 return new InlineAsm(Ty, Key.asm_string, Key.constraints, 498 Key.has_side_effects, Key.is_align_stack, 499 Key.asm_dialect); 500 } 501 }; 502 503 template<> 504 struct ConstantKeyData<InlineAsm> { 505 typedef InlineAsmKeyType ValType; 506 static ValType getValType(InlineAsm *Asm) { 507 return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(), 508 Asm->hasSideEffects(), Asm->isAlignStack(), 509 Asm->getDialect()); 510 } 511 }; 512 513 template<class ValType, class ValRefType, class TypeClass, class ConstantClass, 514 bool HasLargeKey = false /*true for arrays and structs*/ > 515 class ConstantUniqueMap { 516 public: 517 typedef std::pair<TypeClass*, ValType> MapKey; 518 typedef std::map<MapKey, ConstantClass *> MapTy; 519 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy; 520 private: 521 /// Map - This is the main map from the element descriptor to the Constants. 522 /// This is the primary way we avoid creating two of the same shape 523 /// constant. 524 MapTy Map; 525 526 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping 527 /// from the constants to their element in Map. This is important for 528 /// removal of constants from the array, which would otherwise have to scan 529 /// through the map with very large keys. 530 InverseMapTy InverseMap; 531 532 public: 533 typename MapTy::iterator map_begin() { return Map.begin(); } 534 typename MapTy::iterator map_end() { return Map.end(); } 535 536 void freeConstants() { 537 for (typename MapTy::iterator I=Map.begin(), E=Map.end(); 538 I != E; ++I) { 539 // Asserts that use_empty(). 540 delete I->second; 541 } 542 } 543 544 /// InsertOrGetItem - Return an iterator for the specified element. 545 /// If the element exists in the map, the returned iterator points to the 546 /// entry and Exists=true. If not, the iterator points to the newly 547 /// inserted entry and returns Exists=false. Newly inserted entries have 548 /// I->second == 0, and should be filled in. 549 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> 550 &InsertVal, 551 bool &Exists) { 552 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); 553 Exists = !IP.second; 554 return IP.first; 555 } 556 557 private: 558 typename MapTy::iterator FindExistingElement(ConstantClass *CP) { 559 if (HasLargeKey) { 560 typename InverseMapTy::iterator IMI = InverseMap.find(CP); 561 assert(IMI != InverseMap.end() && IMI->second != Map.end() && 562 IMI->second->second == CP && 563 "InverseMap corrupt!"); 564 return IMI->second; 565 } 566 567 typename MapTy::iterator I = 568 Map.find(MapKey(static_cast<TypeClass*>(CP->getType()), 569 ConstantKeyData<ConstantClass>::getValType(CP))); 570 if (I == Map.end() || I->second != CP) { 571 // FIXME: This should not use a linear scan. If this gets to be a 572 // performance problem, someone should look at this. 573 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) 574 /* empty */; 575 } 576 return I; 577 } 578 579 ConstantClass *Create(TypeClass *Ty, ValRefType V, 580 typename MapTy::iterator I) { 581 ConstantClass* Result = 582 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); 583 584 assert(Result->getType() == Ty && "Type specified is not correct!"); 585 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); 586 587 if (HasLargeKey) // Remember the reverse mapping if needed. 588 InverseMap.insert(std::make_pair(Result, I)); 589 590 return Result; 591 } 592 public: 593 594 /// getOrCreate - Return the specified constant from the map, creating it if 595 /// necessary. 596 ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) { 597 MapKey Lookup(Ty, V); 598 ConstantClass* Result = 0; 599 600 typename MapTy::iterator I = Map.find(Lookup); 601 // Is it in the map? 602 if (I != Map.end()) 603 Result = I->second; 604 605 if (!Result) { 606 // If no preexisting value, create one now... 607 Result = Create(Ty, V, I); 608 } 609 610 return Result; 611 } 612 613 void remove(ConstantClass *CP) { 614 typename MapTy::iterator I = FindExistingElement(CP); 615 assert(I != Map.end() && "Constant not found in constant table!"); 616 assert(I->second == CP && "Didn't find correct element?"); 617 618 if (HasLargeKey) // Remember the reverse mapping if needed. 619 InverseMap.erase(CP); 620 621 Map.erase(I); 622 } 623 624 /// MoveConstantToNewSlot - If we are about to change C to be the element 625 /// specified by I, update our internal data structures to reflect this 626 /// fact. 627 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { 628 // First, remove the old location of the specified constant in the map. 629 typename MapTy::iterator OldI = FindExistingElement(C); 630 assert(OldI != Map.end() && "Constant not found in constant table!"); 631 assert(OldI->second == C && "Didn't find correct element?"); 632 633 // Remove the old entry from the map. 634 Map.erase(OldI); 635 636 // Update the inverse map so that we know that this constant is now 637 // located at descriptor I. 638 if (HasLargeKey) { 639 assert(I->second == C && "Bad inversemap entry!"); 640 InverseMap[C] = I; 641 } 642 } 643 644 void dump() const { 645 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); 646 } 647 }; 648 649 // Unique map for aggregate constants 650 template<class TypeClass, class ConstantClass> 651 class ConstantAggrUniqueMap { 652 public: 653 typedef ArrayRef<Constant*> Operands; 654 typedef std::pair<TypeClass*, Operands> LookupKey; 655 private: 656 struct MapInfo { 657 typedef DenseMapInfo<ConstantClass*> ConstantClassInfo; 658 typedef DenseMapInfo<Constant*> ConstantInfo; 659 typedef DenseMapInfo<TypeClass*> TypeClassInfo; 660 static inline ConstantClass* getEmptyKey() { 661 return ConstantClassInfo::getEmptyKey(); 662 } 663 static inline ConstantClass* getTombstoneKey() { 664 return ConstantClassInfo::getTombstoneKey(); 665 } 666 static unsigned getHashValue(const ConstantClass *CP) { 667 SmallVector<Constant*, 8> CPOperands; 668 CPOperands.reserve(CP->getNumOperands()); 669 for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I) 670 CPOperands.push_back(CP->getOperand(I)); 671 return getHashValue(LookupKey(CP->getType(), CPOperands)); 672 } 673 static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) { 674 return LHS == RHS; 675 } 676 static unsigned getHashValue(const LookupKey &Val) { 677 return hash_combine(Val.first, hash_combine_range(Val.second.begin(), 678 Val.second.end())); 679 } 680 static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) { 681 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 682 return false; 683 if (LHS.first != RHS->getType() 684 || LHS.second.size() != RHS->getNumOperands()) 685 return false; 686 for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) { 687 if (LHS.second[I] != RHS->getOperand(I)) 688 return false; 689 } 690 return true; 691 } 692 }; 693 public: 694 typedef DenseMap<ConstantClass *, char, MapInfo> MapTy; 695 696 private: 697 /// Map - This is the main map from the element descriptor to the Constants. 698 /// This is the primary way we avoid creating two of the same shape 699 /// constant. 700 MapTy Map; 701 702 public: 703 typename MapTy::iterator map_begin() { return Map.begin(); } 704 typename MapTy::iterator map_end() { return Map.end(); } 705 706 void freeConstants() { 707 for (typename MapTy::iterator I=Map.begin(), E=Map.end(); 708 I != E; ++I) { 709 // Asserts that use_empty(). 710 delete I->first; 711 } 712 } 713 714 private: 715 typename MapTy::iterator findExistingElement(ConstantClass *CP) { 716 return Map.find(CP); 717 } 718 719 ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) { 720 ConstantClass* Result = 721 ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V); 722 723 assert(Result->getType() == Ty && "Type specified is not correct!"); 724 Map[Result] = '\0'; 725 726 return Result; 727 } 728 public: 729 730 /// getOrCreate - Return the specified constant from the map, creating it if 731 /// necessary. 732 ConstantClass *getOrCreate(TypeClass *Ty, Operands V) { 733 LookupKey Lookup(Ty, V); 734 ConstantClass* Result = 0; 735 736 typename MapTy::iterator I = Map.find_as(Lookup); 737 // Is it in the map? 738 if (I != Map.end()) 739 Result = I->first; 740 741 if (!Result) { 742 // If no preexisting value, create one now... 743 Result = Create(Ty, V, I); 744 } 745 746 return Result; 747 } 748 749 /// Find the constant by lookup key. 750 typename MapTy::iterator find(LookupKey Lookup) { 751 return Map.find_as(Lookup); 752 } 753 754 /// Insert the constant into its proper slot. 755 void insert(ConstantClass *CP) { 756 Map[CP] = '\0'; 757 } 758 759 /// Remove this constant from the map 760 void remove(ConstantClass *CP) { 761 typename MapTy::iterator I = findExistingElement(CP); 762 assert(I != Map.end() && "Constant not found in constant table!"); 763 assert(I->first == CP && "Didn't find correct element?"); 764 Map.erase(I); 765 } 766 767 void dump() const { 768 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); 769 } 770 }; 771 772 } 773 774 #endif 775