1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "ui/gfx/quad_f.h" 6 7 #include <limits> 8 9 #include "base/strings/stringprintf.h" 10 11 namespace gfx { 12 13 void QuadF::operator=(const RectF& rect) { 14 p1_ = PointF(rect.x(), rect.y()); 15 p2_ = PointF(rect.right(), rect.y()); 16 p3_ = PointF(rect.right(), rect.bottom()); 17 p4_ = PointF(rect.x(), rect.bottom()); 18 } 19 20 std::string QuadF::ToString() const { 21 return base::StringPrintf("%s;%s;%s;%s", 22 p1_.ToString().c_str(), 23 p2_.ToString().c_str(), 24 p3_.ToString().c_str(), 25 p4_.ToString().c_str()); 26 } 27 28 static inline bool WithinEpsilon(float a, float b) { 29 return std::abs(a - b) < std::numeric_limits<float>::epsilon(); 30 } 31 32 bool QuadF::IsRectilinear() const { 33 return 34 (WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) && 35 WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) || 36 (WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) && 37 WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x())); 38 } 39 40 bool QuadF::IsCounterClockwise() const { 41 // This math computes the signed area of the quad. Positive area 42 // indicates the quad is clockwise; negative area indicates the quad is 43 // counter-clockwise. Note carefully: this is backwards from conventional 44 // math because our geometric space uses screen coordiantes with y-axis 45 // pointing downards. 46 // Reference: http://mathworld.wolfram.com/PolygonArea.html 47 48 // Up-cast to double so this cannot overflow. 49 double determinant1 = static_cast<double>(p1_.x()) * p2_.y() 50 - static_cast<double>(p2_.x()) * p1_.y(); 51 double determinant2 = static_cast<double>(p2_.x()) * p3_.y() 52 - static_cast<double>(p3_.x()) * p2_.y(); 53 double determinant3 = static_cast<double>(p3_.x()) * p4_.y() 54 - static_cast<double>(p4_.x()) * p3_.y(); 55 double determinant4 = static_cast<double>(p4_.x()) * p1_.y() 56 - static_cast<double>(p1_.x()) * p4_.y(); 57 58 return determinant1 + determinant2 + determinant3 + determinant4 < 0; 59 } 60 61 static inline bool PointIsInTriangle(const PointF& point, 62 const PointF& r1, 63 const PointF& r2, 64 const PointF& r3) { 65 // Compute the barycentric coordinates of |point| relative to the triangle 66 // (r1, r2, r3). This algorithm comes from Christer Ericson's Real-Time 67 // Collision Detection. 68 Vector2dF v0 = r2 - r1; 69 Vector2dF v1 = r3 - r1; 70 Vector2dF v2 = point - r1; 71 72 double dot00 = DotProduct(v0, v0); 73 double dot01 = DotProduct(v0, v1); 74 double dot11 = DotProduct(v1, v1); 75 double dot20 = DotProduct(v2, v0); 76 double dot21 = DotProduct(v2, v1); 77 78 double denom = dot00 * dot11 - dot01 * dot01; 79 80 double v = (dot11 * dot20 - dot01 * dot21) / denom; 81 double w = (dot00 * dot21 - dot01 * dot20) / denom; 82 double u = 1 - v - w; 83 84 // Use the barycentric coordinates to test if |point| is inside the 85 // triangle (r1, r2, r2). 86 return (v >= 0) && (w >= 0) && (u >= 0); 87 } 88 89 bool QuadF::Contains(const PointF& point) const { 90 return PointIsInTriangle(point, p1_, p2_, p3_) 91 || PointIsInTriangle(point, p1_, p3_, p4_); 92 } 93 94 void QuadF::Scale(float x_scale, float y_scale) { 95 p1_.Scale(x_scale, y_scale); 96 p2_.Scale(x_scale, y_scale); 97 p3_.Scale(x_scale, y_scale); 98 p4_.Scale(x_scale, y_scale); 99 } 100 101 void QuadF::operator+=(const Vector2dF& rhs) { 102 p1_ += rhs; 103 p2_ += rhs; 104 p3_ += rhs; 105 p4_ += rhs; 106 } 107 108 void QuadF::operator-=(const Vector2dF& rhs) { 109 p1_ -= rhs; 110 p2_ -= rhs; 111 p3_ -= rhs; 112 p4_ -= rhs; 113 } 114 115 QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) { 116 QuadF result = lhs; 117 result += rhs; 118 return result; 119 } 120 121 QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) { 122 QuadF result = lhs; 123 result -= rhs; 124 return result; 125 } 126 127 } // namespace gfx 128