Home | History | Annotate | Download | only in Analysis
      1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PHITransAddr class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/PHITransAddr.h"
     15 #include "llvm/Analysis/Dominators.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/ValueTracking.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Instructions.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 static bool CanPHITrans(Instruction *Inst) {
     26   if (isa<PHINode>(Inst) ||
     27       isa<GetElementPtrInst>(Inst))
     28     return true;
     29 
     30   if (isa<CastInst>(Inst) &&
     31       isSafeToSpeculativelyExecute(Inst))
     32     return true;
     33 
     34   if (Inst->getOpcode() == Instruction::Add &&
     35       isa<ConstantInt>(Inst->getOperand(1)))
     36     return true;
     37 
     38   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
     39   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
     40   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
     41   return false;
     42 }
     43 
     44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     45 void PHITransAddr::dump() const {
     46   if (Addr == 0) {
     47     dbgs() << "PHITransAddr: null\n";
     48     return;
     49   }
     50   dbgs() << "PHITransAddr: " << *Addr << "\n";
     51   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
     52     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
     53 }
     54 #endif
     55 
     56 
     57 static bool VerifySubExpr(Value *Expr,
     58                           SmallVectorImpl<Instruction*> &InstInputs) {
     59   // If this is a non-instruction value, there is nothing to do.
     60   Instruction *I = dyn_cast<Instruction>(Expr);
     61   if (I == 0) return true;
     62 
     63   // If it's an instruction, it is either in Tmp or its operands recursively
     64   // are.
     65   SmallVectorImpl<Instruction*>::iterator Entry =
     66     std::find(InstInputs.begin(), InstInputs.end(), I);
     67   if (Entry != InstInputs.end()) {
     68     InstInputs.erase(Entry);
     69     return true;
     70   }
     71 
     72   // If it isn't in the InstInputs list it is a subexpr incorporated into the
     73   // address.  Sanity check that it is phi translatable.
     74   if (!CanPHITrans(I)) {
     75     errs() << "Non phi translatable instruction found in PHITransAddr:\n";
     76     errs() << *I << '\n';
     77     llvm_unreachable("Either something is missing from InstInputs or "
     78                      "CanPHITrans is wrong.");
     79   }
     80 
     81   // Validate the operands of the instruction.
     82   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     83     if (!VerifySubExpr(I->getOperand(i), InstInputs))
     84       return false;
     85 
     86   return true;
     87 }
     88 
     89 /// Verify - Check internal consistency of this data structure.  If the
     90 /// structure is valid, it returns true.  If invalid, it prints errors and
     91 /// returns false.
     92 bool PHITransAddr::Verify() const {
     93   if (Addr == 0) return true;
     94 
     95   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
     96 
     97   if (!VerifySubExpr(Addr, Tmp))
     98     return false;
     99 
    100   if (!Tmp.empty()) {
    101     errs() << "PHITransAddr contains extra instructions:\n";
    102     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
    103       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
    104     llvm_unreachable("This is unexpected.");
    105   }
    106 
    107   // a-ok.
    108   return true;
    109 }
    110 
    111 
    112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
    113 /// if we have some hope of doing it.  This should be used as a filter to
    114 /// avoid calling PHITranslateValue in hopeless situations.
    115 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
    116   // If the input value is not an instruction, or if it is not defined in CurBB,
    117   // then we don't need to phi translate it.
    118   Instruction *Inst = dyn_cast<Instruction>(Addr);
    119   return Inst == 0 || CanPHITrans(Inst);
    120 }
    121 
    122 
    123 static void RemoveInstInputs(Value *V,
    124                              SmallVectorImpl<Instruction*> &InstInputs) {
    125   Instruction *I = dyn_cast<Instruction>(V);
    126   if (I == 0) return;
    127 
    128   // If the instruction is in the InstInputs list, remove it.
    129   SmallVectorImpl<Instruction*>::iterator Entry =
    130     std::find(InstInputs.begin(), InstInputs.end(), I);
    131   if (Entry != InstInputs.end()) {
    132     InstInputs.erase(Entry);
    133     return;
    134   }
    135 
    136   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
    137 
    138   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
    139   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    140     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
    141       RemoveInstInputs(Op, InstInputs);
    142   }
    143 }
    144 
    145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
    146                                          BasicBlock *PredBB,
    147                                          const DominatorTree *DT) {
    148   // If this is a non-instruction value, it can't require PHI translation.
    149   Instruction *Inst = dyn_cast<Instruction>(V);
    150   if (Inst == 0) return V;
    151 
    152   // Determine whether 'Inst' is an input to our PHI translatable expression.
    153   bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
    154 
    155   // Handle inputs instructions if needed.
    156   if (isInput) {
    157     if (Inst->getParent() != CurBB) {
    158       // If it is an input defined in a different block, then it remains an
    159       // input.
    160       return Inst;
    161     }
    162 
    163     // If 'Inst' is defined in this block and is an input that needs to be phi
    164     // translated, we need to incorporate the value into the expression or fail.
    165 
    166     // In either case, the instruction itself isn't an input any longer.
    167     InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
    168 
    169     // If this is a PHI, go ahead and translate it.
    170     if (PHINode *PN = dyn_cast<PHINode>(Inst))
    171       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
    172 
    173     // If this is a non-phi value, and it is analyzable, we can incorporate it
    174     // into the expression by making all instruction operands be inputs.
    175     if (!CanPHITrans(Inst))
    176       return 0;
    177 
    178     // All instruction operands are now inputs (and of course, they may also be
    179     // defined in this block, so they may need to be phi translated themselves.
    180     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
    181       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
    182         InstInputs.push_back(Op);
    183   }
    184 
    185   // Ok, it must be an intermediate result (either because it started that way
    186   // or because we just incorporated it into the expression).  See if its
    187   // operands need to be phi translated, and if so, reconstruct it.
    188 
    189   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    190     if (!isSafeToSpeculativelyExecute(Cast)) return 0;
    191     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
    192     if (PHIIn == 0) return 0;
    193     if (PHIIn == Cast->getOperand(0))
    194       return Cast;
    195 
    196     // Find an available version of this cast.
    197 
    198     // Constants are trivial to find.
    199     if (Constant *C = dyn_cast<Constant>(PHIIn))
    200       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
    201                                               C, Cast->getType()));
    202 
    203     // Otherwise we have to see if a casted version of the incoming pointer
    204     // is available.  If so, we can use it, otherwise we have to fail.
    205     for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
    206          UI != E; ++UI) {
    207       if (CastInst *CastI = dyn_cast<CastInst>(*UI))
    208         if (CastI->getOpcode() == Cast->getOpcode() &&
    209             CastI->getType() == Cast->getType() &&
    210             (!DT || DT->dominates(CastI->getParent(), PredBB)))
    211           return CastI;
    212     }
    213     return 0;
    214   }
    215 
    216   // Handle getelementptr with at least one PHI translatable operand.
    217   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    218     SmallVector<Value*, 8> GEPOps;
    219     bool AnyChanged = false;
    220     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    221       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
    222       if (GEPOp == 0) return 0;
    223 
    224       AnyChanged |= GEPOp != GEP->getOperand(i);
    225       GEPOps.push_back(GEPOp);
    226     }
    227 
    228     if (!AnyChanged)
    229       return GEP;
    230 
    231     // Simplify the GEP to handle 'gep x, 0' -> x etc.
    232     if (Value *V = SimplifyGEPInst(GEPOps, TD, TLI, DT)) {
    233       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
    234         RemoveInstInputs(GEPOps[i], InstInputs);
    235 
    236       return AddAsInput(V);
    237     }
    238 
    239     // Scan to see if we have this GEP available.
    240     Value *APHIOp = GEPOps[0];
    241     for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
    242          UI != E; ++UI) {
    243       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
    244         if (GEPI->getType() == GEP->getType() &&
    245             GEPI->getNumOperands() == GEPOps.size() &&
    246             GEPI->getParent()->getParent() == CurBB->getParent() &&
    247             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
    248           bool Mismatch = false;
    249           for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
    250             if (GEPI->getOperand(i) != GEPOps[i]) {
    251               Mismatch = true;
    252               break;
    253             }
    254           if (!Mismatch)
    255             return GEPI;
    256         }
    257     }
    258     return 0;
    259   }
    260 
    261   // Handle add with a constant RHS.
    262   if (Inst->getOpcode() == Instruction::Add &&
    263       isa<ConstantInt>(Inst->getOperand(1))) {
    264     // PHI translate the LHS.
    265     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
    266     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
    267     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
    268 
    269     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
    270     if (LHS == 0) return 0;
    271 
    272     // If the PHI translated LHS is an add of a constant, fold the immediates.
    273     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
    274       if (BOp->getOpcode() == Instruction::Add)
    275         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    276           LHS = BOp->getOperand(0);
    277           RHS = ConstantExpr::getAdd(RHS, CI);
    278           isNSW = isNUW = false;
    279 
    280           // If the old 'LHS' was an input, add the new 'LHS' as an input.
    281           if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
    282             RemoveInstInputs(BOp, InstInputs);
    283             AddAsInput(LHS);
    284           }
    285         }
    286 
    287     // See if the add simplifies away.
    288     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, TLI, DT)) {
    289       // If we simplified the operands, the LHS is no longer an input, but Res
    290       // is.
    291       RemoveInstInputs(LHS, InstInputs);
    292       return AddAsInput(Res);
    293     }
    294 
    295     // If we didn't modify the add, just return it.
    296     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
    297       return Inst;
    298 
    299     // Otherwise, see if we have this add available somewhere.
    300     for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
    301          UI != E; ++UI) {
    302       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
    303         if (BO->getOpcode() == Instruction::Add &&
    304             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
    305             BO->getParent()->getParent() == CurBB->getParent() &&
    306             (!DT || DT->dominates(BO->getParent(), PredBB)))
    307           return BO;
    308     }
    309 
    310     return 0;
    311   }
    312 
    313   // Otherwise, we failed.
    314   return 0;
    315 }
    316 
    317 
    318 /// PHITranslateValue - PHI translate the current address up the CFG from
    319 /// CurBB to Pred, updating our state to reflect any needed changes.  If the
    320 /// dominator tree DT is non-null, the translated value must dominate
    321 /// PredBB.  This returns true on failure and sets Addr to null.
    322 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
    323                                      const DominatorTree *DT) {
    324   assert(Verify() && "Invalid PHITransAddr!");
    325   Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
    326   assert(Verify() && "Invalid PHITransAddr!");
    327 
    328   if (DT) {
    329     // Make sure the value is live in the predecessor.
    330     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
    331       if (!DT->dominates(Inst->getParent(), PredBB))
    332         Addr = 0;
    333   }
    334 
    335   return Addr == 0;
    336 }
    337 
    338 /// PHITranslateWithInsertion - PHI translate this value into the specified
    339 /// predecessor block, inserting a computation of the value if it is
    340 /// unavailable.
    341 ///
    342 /// All newly created instructions are added to the NewInsts list.  This
    343 /// returns null on failure.
    344 ///
    345 Value *PHITransAddr::
    346 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
    347                           const DominatorTree &DT,
    348                           SmallVectorImpl<Instruction*> &NewInsts) {
    349   unsigned NISize = NewInsts.size();
    350 
    351   // Attempt to PHI translate with insertion.
    352   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
    353 
    354   // If successful, return the new value.
    355   if (Addr) return Addr;
    356 
    357   // If not, destroy any intermediate instructions inserted.
    358   while (NewInsts.size() != NISize)
    359     NewInsts.pop_back_val()->eraseFromParent();
    360   return 0;
    361 }
    362 
    363 
    364 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
    365 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
    366 /// block.  All newly created instructions are added to the NewInsts list.
    367 /// This returns null on failure.
    368 ///
    369 Value *PHITransAddr::
    370 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
    371                            BasicBlock *PredBB, const DominatorTree &DT,
    372                            SmallVectorImpl<Instruction*> &NewInsts) {
    373   // See if we have a version of this value already available and dominating
    374   // PredBB.  If so, there is no need to insert a new instance of it.
    375   PHITransAddr Tmp(InVal, TD);
    376   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
    377     return Tmp.getAddr();
    378 
    379   // If we don't have an available version of this value, it must be an
    380   // instruction.
    381   Instruction *Inst = cast<Instruction>(InVal);
    382 
    383   // Handle cast of PHI translatable value.
    384   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    385     if (!isSafeToSpeculativelyExecute(Cast)) return 0;
    386     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
    387                                               CurBB, PredBB, DT, NewInsts);
    388     if (OpVal == 0) return 0;
    389 
    390     // Otherwise insert a cast at the end of PredBB.
    391     CastInst *New = CastInst::Create(Cast->getOpcode(),
    392                                      OpVal, InVal->getType(),
    393                                      InVal->getName()+".phi.trans.insert",
    394                                      PredBB->getTerminator());
    395     NewInsts.push_back(New);
    396     return New;
    397   }
    398 
    399   // Handle getelementptr with at least one PHI operand.
    400   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    401     SmallVector<Value*, 8> GEPOps;
    402     BasicBlock *CurBB = GEP->getParent();
    403     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    404       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
    405                                                 CurBB, PredBB, DT, NewInsts);
    406       if (OpVal == 0) return 0;
    407       GEPOps.push_back(OpVal);
    408     }
    409 
    410     GetElementPtrInst *Result =
    411       GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1),
    412                                 InVal->getName()+".phi.trans.insert",
    413                                 PredBB->getTerminator());
    414     Result->setIsInBounds(GEP->isInBounds());
    415     NewInsts.push_back(Result);
    416     return Result;
    417   }
    418 
    419 #if 0
    420   // FIXME: This code works, but it is unclear that we actually want to insert
    421   // a big chain of computation in order to make a value available in a block.
    422   // This needs to be evaluated carefully to consider its cost trade offs.
    423 
    424   // Handle add with a constant RHS.
    425   if (Inst->getOpcode() == Instruction::Add &&
    426       isa<ConstantInt>(Inst->getOperand(1))) {
    427     // PHI translate the LHS.
    428     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
    429                                               CurBB, PredBB, DT, NewInsts);
    430     if (OpVal == 0) return 0;
    431 
    432     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
    433                                            InVal->getName()+".phi.trans.insert",
    434                                                     PredBB->getTerminator());
    435     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
    436     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
    437     NewInsts.push_back(Res);
    438     return Res;
    439   }
    440 #endif
    441 
    442   return 0;
    443 }
    444