Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some functions that are useful for math stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
     15 #define LLVM_SUPPORT_MATHEXTRAS_H
     16 
     17 #include "llvm/Support/Compiler.h"
     18 #include "llvm/Support/SwapByteOrder.h"
     19 #include "llvm/Support/type_traits.h"
     20 
     21 #include <cstring>
     22 
     23 #ifdef _MSC_VER
     24 # include <intrin.h>
     25 #endif
     26 
     27 namespace llvm {
     28 /// \brief The behavior an operation has on an input of 0.
     29 enum ZeroBehavior {
     30   /// \brief The returned value is undefined.
     31   ZB_Undefined,
     32   /// \brief The returned value is numeric_limits<T>::max()
     33   ZB_Max,
     34   /// \brief The returned value is numeric_limits<T>::digits
     35   ZB_Width
     36 };
     37 
     38 /// \brief Count number of 0's from the least significant bit to the most
     39 ///   stopping at the first 1.
     40 ///
     41 /// Only unsigned integral types are allowed.
     42 ///
     43 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
     44 ///   valid arguments.
     45 template <typename T>
     46 typename enable_if_c<std::numeric_limits<T>::is_integer &&
     47                      !std::numeric_limits<T>::is_signed, std::size_t>::type
     48 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
     49   (void)ZB;
     50 
     51   if (!Val)
     52     return std::numeric_limits<T>::digits;
     53   if (Val & 0x1)
     54     return 0;
     55 
     56   // Bisection method.
     57   std::size_t ZeroBits = 0;
     58   T Shift = std::numeric_limits<T>::digits >> 1;
     59   T Mask = std::numeric_limits<T>::max() >> Shift;
     60   while (Shift) {
     61     if ((Val & Mask) == 0) {
     62       Val >>= Shift;
     63       ZeroBits |= Shift;
     64     }
     65     Shift >>= 1;
     66     Mask >>= Shift;
     67   }
     68   return ZeroBits;
     69 }
     70 
     71 // Disable signed.
     72 template <typename T>
     73 typename enable_if_c<std::numeric_limits<T>::is_integer &&
     74                      std::numeric_limits<T>::is_signed, std::size_t>::type
     75 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
     76 
     77 #if __GNUC__ >= 4 || _MSC_VER
     78 template <>
     79 inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
     80   if (ZB != ZB_Undefined && Val == 0)
     81     return 32;
     82 
     83 #if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0)
     84   return __builtin_ctz(Val);
     85 #elif _MSC_VER
     86   unsigned long Index;
     87   _BitScanForward(&Index, Val);
     88   return Index;
     89 #endif
     90 }
     91 
     92 #if !defined(_MSC_VER) || defined(_M_X64)
     93 template <>
     94 inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
     95   if (ZB != ZB_Undefined && Val == 0)
     96     return 64;
     97 
     98 #if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0)
     99   return __builtin_ctzll(Val);
    100 #elif _MSC_VER
    101   unsigned long Index;
    102   _BitScanForward64(&Index, Val);
    103   return Index;
    104 #endif
    105 }
    106 #endif
    107 #endif
    108 
    109 /// \brief Count number of 0's from the most significant bit to the least
    110 ///   stopping at the first 1.
    111 ///
    112 /// Only unsigned integral types are allowed.
    113 ///
    114 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    115 ///   valid arguments.
    116 template <typename T>
    117 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    118                      !std::numeric_limits<T>::is_signed, std::size_t>::type
    119 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    120   (void)ZB;
    121 
    122   if (!Val)
    123     return std::numeric_limits<T>::digits;
    124 
    125   // Bisection method.
    126   std::size_t ZeroBits = 0;
    127   for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
    128     T Tmp = Val >> Shift;
    129     if (Tmp)
    130       Val = Tmp;
    131     else
    132       ZeroBits |= Shift;
    133   }
    134   return ZeroBits;
    135 }
    136 
    137 // Disable signed.
    138 template <typename T>
    139 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    140                      std::numeric_limits<T>::is_signed, std::size_t>::type
    141 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
    142 
    143 #if __GNUC__ >= 4 || _MSC_VER
    144 template <>
    145 inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
    146   if (ZB != ZB_Undefined && Val == 0)
    147     return 32;
    148 
    149 #if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0)
    150   return __builtin_clz(Val);
    151 #elif _MSC_VER
    152   unsigned long Index;
    153   _BitScanReverse(&Index, Val);
    154   return Index ^ 31;
    155 #endif
    156 }
    157 
    158 #if !defined(_MSC_VER) || defined(_M_X64)
    159 template <>
    160 inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
    161   if (ZB != ZB_Undefined && Val == 0)
    162     return 64;
    163 
    164 #if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0)
    165   return __builtin_clzll(Val);
    166 #elif _MSC_VER
    167   unsigned long Index;
    168   _BitScanReverse64(&Index, Val);
    169   return Index ^ 63;
    170 #endif
    171 }
    172 #endif
    173 #endif
    174 
    175 /// \brief Get the index of the first set bit starting from the least
    176 ///   significant bit.
    177 ///
    178 /// Only unsigned integral types are allowed.
    179 ///
    180 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    181 ///   valid arguments.
    182 template <typename T>
    183 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    184                      !std::numeric_limits<T>::is_signed, T>::type
    185 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
    186   if (ZB == ZB_Max && Val == 0)
    187     return std::numeric_limits<T>::max();
    188 
    189   return countTrailingZeros(Val, ZB_Undefined);
    190 }
    191 
    192 // Disable signed.
    193 template <typename T>
    194 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    195                      std::numeric_limits<T>::is_signed, T>::type
    196 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
    197 
    198 /// \brief Get the index of the last set bit starting from the least
    199 ///   significant bit.
    200 ///
    201 /// Only unsigned integral types are allowed.
    202 ///
    203 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    204 ///   valid arguments.
    205 template <typename T>
    206 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    207                      !std::numeric_limits<T>::is_signed, T>::type
    208 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
    209   if (ZB == ZB_Max && Val == 0)
    210     return std::numeric_limits<T>::max();
    211 
    212   // Use ^ instead of - because both gcc and llvm can remove the associated ^
    213   // in the __builtin_clz intrinsic on x86.
    214   return countLeadingZeros(Val, ZB_Undefined) ^
    215          (std::numeric_limits<T>::digits - 1);
    216 }
    217 
    218 // Disable signed.
    219 template <typename T>
    220 typename enable_if_c<std::numeric_limits<T>::is_integer &&
    221                      std::numeric_limits<T>::is_signed, T>::type
    222 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
    223 
    224 /// \brief Macro compressed bit reversal table for 256 bits.
    225 ///
    226 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
    227 static const unsigned char BitReverseTable256[256] = {
    228 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
    229 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
    230 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
    231   R6(0), R6(2), R6(1), R6(3)
    232 };
    233 
    234 /// \brief Reverse the bits in \p Val.
    235 template <typename T>
    236 T reverseBits(T Val) {
    237   unsigned char in[sizeof(Val)];
    238   unsigned char out[sizeof(Val)];
    239   std::memcpy(in, &Val, sizeof(Val));
    240   for (unsigned i = 0; i < sizeof(Val); ++i)
    241     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
    242   std::memcpy(&Val, out, sizeof(Val));
    243   return Val;
    244 }
    245 
    246 // NOTE: The following support functions use the _32/_64 extensions instead of
    247 // type overloading so that signed and unsigned integers can be used without
    248 // ambiguity.
    249 
    250 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
    251 inline uint32_t Hi_32(uint64_t Value) {
    252   return static_cast<uint32_t>(Value >> 32);
    253 }
    254 
    255 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
    256 inline uint32_t Lo_32(uint64_t Value) {
    257   return static_cast<uint32_t>(Value);
    258 }
    259 
    260 /// isInt - Checks if an integer fits into the given bit width.
    261 template<unsigned N>
    262 inline bool isInt(int64_t x) {
    263   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    264 }
    265 // Template specializations to get better code for common cases.
    266 template<>
    267 inline bool isInt<8>(int64_t x) {
    268   return static_cast<int8_t>(x) == x;
    269 }
    270 template<>
    271 inline bool isInt<16>(int64_t x) {
    272   return static_cast<int16_t>(x) == x;
    273 }
    274 template<>
    275 inline bool isInt<32>(int64_t x) {
    276   return static_cast<int32_t>(x) == x;
    277 }
    278 
    279 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
    280 ///                     left by S.
    281 template<unsigned N, unsigned S>
    282 inline bool isShiftedInt(int64_t x) {
    283   return isInt<N+S>(x) && (x % (1<<S) == 0);
    284 }
    285 
    286 /// isUInt - Checks if an unsigned integer fits into the given bit width.
    287 template<unsigned N>
    288 inline bool isUInt(uint64_t x) {
    289   return N >= 64 || x < (UINT64_C(1)<<(N));
    290 }
    291 // Template specializations to get better code for common cases.
    292 template<>
    293 inline bool isUInt<8>(uint64_t x) {
    294   return static_cast<uint8_t>(x) == x;
    295 }
    296 template<>
    297 inline bool isUInt<16>(uint64_t x) {
    298   return static_cast<uint16_t>(x) == x;
    299 }
    300 template<>
    301 inline bool isUInt<32>(uint64_t x) {
    302   return static_cast<uint32_t>(x) == x;
    303 }
    304 
    305 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
    306 ///                     left by S.
    307 template<unsigned N, unsigned S>
    308 inline bool isShiftedUInt(uint64_t x) {
    309   return isUInt<N+S>(x) && (x % (1<<S) == 0);
    310 }
    311 
    312 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
    313 /// bit width.
    314 inline bool isUIntN(unsigned N, uint64_t x) {
    315   return x == (x & (~0ULL >> (64 - N)));
    316 }
    317 
    318 /// isIntN - Checks if an signed integer fits into the given (dynamic)
    319 /// bit width.
    320 inline bool isIntN(unsigned N, int64_t x) {
    321   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    322 }
    323 
    324 /// isMask_32 - This function returns true if the argument is a sequence of ones
    325 /// starting at the least significant bit with the remainder zero (32 bit
    326 /// version).   Ex. isMask_32(0x0000FFFFU) == true.
    327 inline bool isMask_32(uint32_t Value) {
    328   return Value && ((Value + 1) & Value) == 0;
    329 }
    330 
    331 /// isMask_64 - This function returns true if the argument is a sequence of ones
    332 /// starting at the least significant bit with the remainder zero (64 bit
    333 /// version).
    334 inline bool isMask_64(uint64_t Value) {
    335   return Value && ((Value + 1) & Value) == 0;
    336 }
    337 
    338 /// isShiftedMask_32 - This function returns true if the argument contains a
    339 /// sequence of ones with the remainder zero (32 bit version.)
    340 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
    341 inline bool isShiftedMask_32(uint32_t Value) {
    342   return isMask_32((Value - 1) | Value);
    343 }
    344 
    345 /// isShiftedMask_64 - This function returns true if the argument contains a
    346 /// sequence of ones with the remainder zero (64 bit version.)
    347 inline bool isShiftedMask_64(uint64_t Value) {
    348   return isMask_64((Value - 1) | Value);
    349 }
    350 
    351 /// isPowerOf2_32 - This function returns true if the argument is a power of
    352 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
    353 inline bool isPowerOf2_32(uint32_t Value) {
    354   return Value && !(Value & (Value - 1));
    355 }
    356 
    357 /// isPowerOf2_64 - This function returns true if the argument is a power of two
    358 /// > 0 (64 bit edition.)
    359 inline bool isPowerOf2_64(uint64_t Value) {
    360   return Value && !(Value & (Value - int64_t(1L)));
    361 }
    362 
    363 /// ByteSwap_16 - This function returns a byte-swapped representation of the
    364 /// 16-bit argument, Value.
    365 inline uint16_t ByteSwap_16(uint16_t Value) {
    366   return sys::SwapByteOrder_16(Value);
    367 }
    368 
    369 /// ByteSwap_32 - This function returns a byte-swapped representation of the
    370 /// 32-bit argument, Value.
    371 inline uint32_t ByteSwap_32(uint32_t Value) {
    372   return sys::SwapByteOrder_32(Value);
    373 }
    374 
    375 /// ByteSwap_64 - This function returns a byte-swapped representation of the
    376 /// 64-bit argument, Value.
    377 inline uint64_t ByteSwap_64(uint64_t Value) {
    378   return sys::SwapByteOrder_64(Value);
    379 }
    380 
    381 /// CountLeadingOnes_32 - this function performs the operation of
    382 /// counting the number of ones from the most significant bit to the first zero
    383 /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
    384 /// Returns 32 if the word is all ones.
    385 inline unsigned CountLeadingOnes_32(uint32_t Value) {
    386   return countLeadingZeros(~Value);
    387 }
    388 
    389 /// CountLeadingOnes_64 - This function performs the operation
    390 /// of counting the number of ones from the most significant bit to the first
    391 /// zero bit (64 bit edition.)
    392 /// Returns 64 if the word is all ones.
    393 inline unsigned CountLeadingOnes_64(uint64_t Value) {
    394   return countLeadingZeros(~Value);
    395 }
    396 
    397 /// CountTrailingOnes_32 - this function performs the operation of
    398 /// counting the number of ones from the least significant bit to the first zero
    399 /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
    400 /// Returns 32 if the word is all ones.
    401 inline unsigned CountTrailingOnes_32(uint32_t Value) {
    402   return countTrailingZeros(~Value);
    403 }
    404 
    405 /// CountTrailingOnes_64 - This function performs the operation
    406 /// of counting the number of ones from the least significant bit to the first
    407 /// zero bit (64 bit edition.)
    408 /// Returns 64 if the word is all ones.
    409 inline unsigned CountTrailingOnes_64(uint64_t Value) {
    410   return countTrailingZeros(~Value);
    411 }
    412 
    413 /// CountPopulation_32 - this function counts the number of set bits in a value.
    414 /// Ex. CountPopulation(0xF000F000) = 8
    415 /// Returns 0 if the word is zero.
    416 inline unsigned CountPopulation_32(uint32_t Value) {
    417 #if __GNUC__ >= 4
    418   return __builtin_popcount(Value);
    419 #else
    420   uint32_t v = Value - ((Value >> 1) & 0x55555555);
    421   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
    422   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    423 #endif
    424 }
    425 
    426 /// CountPopulation_64 - this function counts the number of set bits in a value,
    427 /// (64 bit edition.)
    428 inline unsigned CountPopulation_64(uint64_t Value) {
    429 #if __GNUC__ >= 4
    430   return __builtin_popcountll(Value);
    431 #else
    432   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
    433   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
    434   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    435   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
    436 #endif
    437 }
    438 
    439 /// Log2_32 - This function returns the floor log base 2 of the specified value,
    440 /// -1 if the value is zero. (32 bit edition.)
    441 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
    442 inline unsigned Log2_32(uint32_t Value) {
    443   return 31 - countLeadingZeros(Value);
    444 }
    445 
    446 /// Log2_64 - This function returns the floor log base 2 of the specified value,
    447 /// -1 if the value is zero. (64 bit edition.)
    448 inline unsigned Log2_64(uint64_t Value) {
    449   return 63 - countLeadingZeros(Value);
    450 }
    451 
    452 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
    453 /// value, 32 if the value is zero. (32 bit edition).
    454 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
    455 inline unsigned Log2_32_Ceil(uint32_t Value) {
    456   return 32 - countLeadingZeros(Value - 1);
    457 }
    458 
    459 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
    460 /// value, 64 if the value is zero. (64 bit edition.)
    461 inline unsigned Log2_64_Ceil(uint64_t Value) {
    462   return 64 - countLeadingZeros(Value - 1);
    463 }
    464 
    465 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
    466 /// values using Euclid's algorithm.
    467 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
    468   while (B) {
    469     uint64_t T = B;
    470     B = A % B;
    471     A = T;
    472   }
    473   return A;
    474 }
    475 
    476 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
    477 /// equivalent double.
    478 inline double BitsToDouble(uint64_t Bits) {
    479   union {
    480     uint64_t L;
    481     double D;
    482   } T;
    483   T.L = Bits;
    484   return T.D;
    485 }
    486 
    487 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
    488 /// equivalent float.
    489 inline float BitsToFloat(uint32_t Bits) {
    490   union {
    491     uint32_t I;
    492     float F;
    493   } T;
    494   T.I = Bits;
    495   return T.F;
    496 }
    497 
    498 /// DoubleToBits - This function takes a double and returns the bit
    499 /// equivalent 64-bit integer.  Note that copying doubles around
    500 /// changes the bits of NaNs on some hosts, notably x86, so this
    501 /// routine cannot be used if these bits are needed.
    502 inline uint64_t DoubleToBits(double Double) {
    503   union {
    504     uint64_t L;
    505     double D;
    506   } T;
    507   T.D = Double;
    508   return T.L;
    509 }
    510 
    511 /// FloatToBits - This function takes a float and returns the bit
    512 /// equivalent 32-bit integer.  Note that copying floats around
    513 /// changes the bits of NaNs on some hosts, notably x86, so this
    514 /// routine cannot be used if these bits are needed.
    515 inline uint32_t FloatToBits(float Float) {
    516   union {
    517     uint32_t I;
    518     float F;
    519   } T;
    520   T.F = Float;
    521   return T.I;
    522 }
    523 
    524 /// Platform-independent wrappers for the C99 isnan() function.
    525 int IsNAN(float f);
    526 int IsNAN(double d);
    527 
    528 /// Platform-independent wrappers for the C99 isinf() function.
    529 int IsInf(float f);
    530 int IsInf(double d);
    531 
    532 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
    533 /// alignment that may be assumed after adding the two together.
    534 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
    535   // The largest power of 2 that divides both A and B.
    536   //
    537   // Replace "-Value" by "1+~Value" in the following commented code to avoid
    538   // MSVC warning C4146
    539   //    return (A | B) & -(A | B);
    540   return (A | B) & (1 + ~(A | B));
    541 }
    542 
    543 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
    544 /// that is strictly greater than A.  Returns zero on overflow.
    545 inline uint64_t NextPowerOf2(uint64_t A) {
    546   A |= (A >> 1);
    547   A |= (A >> 2);
    548   A |= (A >> 4);
    549   A |= (A >> 8);
    550   A |= (A >> 16);
    551   A |= (A >> 32);
    552   return A + 1;
    553 }
    554 
    555 /// Returns the next integer (mod 2**64) that is greater than or equal to
    556 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
    557 ///
    558 /// Examples:
    559 /// \code
    560 ///   RoundUpToAlignment(5, 8) = 8
    561 ///   RoundUpToAlignment(17, 8) = 24
    562 ///   RoundUpToAlignment(~0LL, 8) = 0
    563 /// \endcode
    564 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
    565   return ((Value + Align - 1) / Align) * Align;
    566 }
    567 
    568 /// Returns the offset to the next integer (mod 2**64) that is greater than
    569 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
    570 /// non-zero.
    571 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
    572   return RoundUpToAlignment(Value, Align) - Value;
    573 }
    574 
    575 /// abs64 - absolute value of a 64-bit int.  Not all environments support
    576 /// "abs" on whatever their name for the 64-bit int type is.  The absolute
    577 /// value of the largest negative number is undefined, as with "abs".
    578 inline int64_t abs64(int64_t x) {
    579   return (x < 0) ? -x : x;
    580 }
    581 
    582 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
    583 /// Usage int32_t r = SignExtend32<5>(x);
    584 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
    585   return int32_t(x << (32 - B)) >> (32 - B);
    586 }
    587 
    588 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
    589 /// Requires 0 < B <= 32.
    590 inline int32_t SignExtend32(uint32_t X, unsigned B) {
    591   return int32_t(X << (32 - B)) >> (32 - B);
    592 }
    593 
    594 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
    595 /// Usage int64_t r = SignExtend64<5>(x);
    596 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
    597   return int64_t(x << (64 - B)) >> (64 - B);
    598 }
    599 
    600 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
    601 /// Requires 0 < B <= 64.
    602 inline int64_t SignExtend64(uint64_t X, unsigned B) {
    603   return int64_t(X << (64 - B)) >> (64 - B);
    604 }
    605 
    606 } // End llvm namespace
    607 
    608 #endif
    609