1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext()) { 33 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 34 // FIXME: Eventually, we should only have one of V*TContexts available. 35 // Today we use both in the Microsoft ABI as MicrosoftVFTableContext 36 // is not completely supported in CodeGen yet. 37 VFTContext.reset(new MicrosoftVFTableContext(CGM.getContext())); 38 } 39 } 40 41 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 42 const ThunkInfo &Thunk) { 43 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 44 45 // Compute the mangled name. 46 SmallString<256> Name; 47 llvm::raw_svector_ostream Out(Name); 48 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 49 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 50 Thunk.This, Out); 51 else 52 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 53 Out.flush(); 54 55 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 56 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true); 57 } 58 59 static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF, 60 llvm::Value *Ptr, 61 int64_t NonVirtualAdjustment, 62 int64_t VirtualAdjustment, 63 bool IsReturnAdjustment) { 64 if (!NonVirtualAdjustment && !VirtualAdjustment) 65 return Ptr; 66 67 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 68 llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); 69 70 if (NonVirtualAdjustment && !IsReturnAdjustment) { 71 // Perform the non-virtual adjustment for a base-to-derived cast. 72 V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); 73 } 74 75 if (VirtualAdjustment) { 76 llvm::Type *PtrDiffTy = 77 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 78 79 // Perform the virtual adjustment. 80 llvm::Value *VTablePtrPtr = 81 CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo()); 82 83 llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); 84 85 llvm::Value *OffsetPtr = 86 CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); 87 88 OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); 89 90 // Load the adjustment offset from the vtable. 91 llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr); 92 93 // Adjust our pointer. 94 V = CGF.Builder.CreateInBoundsGEP(V, Offset); 95 } 96 97 if (NonVirtualAdjustment && IsReturnAdjustment) { 98 // Perform the non-virtual adjustment for a derived-to-base cast. 99 V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); 100 } 101 102 // Cast back to the original type. 103 return CGF.Builder.CreateBitCast(V, Ptr->getType()); 104 } 105 106 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 107 const ThunkInfo &Thunk, llvm::Function *Fn) { 108 CGM.setGlobalVisibility(Fn, MD); 109 110 if (!CGM.getCodeGenOpts().HiddenWeakVTables) 111 return; 112 113 // If the thunk has weak/linkonce linkage, but the function must be 114 // emitted in every translation unit that references it, then we can 115 // emit its thunks with hidden visibility, since its thunks must be 116 // emitted when the function is. 117 118 // This follows CodeGenModule::setTypeVisibility; see the comments 119 // there for explanation. 120 121 if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && 122 Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || 123 Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 124 return; 125 126 if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue)) 127 return; 128 129 switch (MD->getTemplateSpecializationKind()) { 130 case TSK_ExplicitInstantiationDefinition: 131 case TSK_ExplicitInstantiationDeclaration: 132 return; 133 134 case TSK_Undeclared: 135 break; 136 137 case TSK_ExplicitSpecialization: 138 case TSK_ImplicitInstantiation: 139 return; 140 break; 141 } 142 143 // If there's an explicit definition, and that definition is 144 // out-of-line, then we can't assume that all users will have a 145 // definition to emit. 146 const FunctionDecl *Def = 0; 147 if (MD->hasBody(Def) && Def->isOutOfLine()) 148 return; 149 150 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 151 } 152 153 #ifndef NDEBUG 154 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 155 const ABIArgInfo &infoR, CanQualType typeR) { 156 return (infoL.getKind() == infoR.getKind() && 157 (typeL == typeR || 158 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 159 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 160 } 161 #endif 162 163 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 164 QualType ResultType, RValue RV, 165 const ThunkInfo &Thunk) { 166 // Emit the return adjustment. 167 bool NullCheckValue = !ResultType->isReferenceType(); 168 169 llvm::BasicBlock *AdjustNull = 0; 170 llvm::BasicBlock *AdjustNotNull = 0; 171 llvm::BasicBlock *AdjustEnd = 0; 172 173 llvm::Value *ReturnValue = RV.getScalarVal(); 174 175 if (NullCheckValue) { 176 AdjustNull = CGF.createBasicBlock("adjust.null"); 177 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 178 AdjustEnd = CGF.createBasicBlock("adjust.end"); 179 180 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 181 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 182 CGF.EmitBlock(AdjustNotNull); 183 } 184 185 ReturnValue = PerformTypeAdjustment(CGF, ReturnValue, 186 Thunk.Return.NonVirtual, 187 Thunk.Return.VBaseOffsetOffset, 188 /*IsReturnAdjustment*/true); 189 190 if (NullCheckValue) { 191 CGF.Builder.CreateBr(AdjustEnd); 192 CGF.EmitBlock(AdjustNull); 193 CGF.Builder.CreateBr(AdjustEnd); 194 CGF.EmitBlock(AdjustEnd); 195 196 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 197 PHI->addIncoming(ReturnValue, AdjustNotNull); 198 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 199 AdjustNull); 200 ReturnValue = PHI; 201 } 202 203 return RValue::get(ReturnValue); 204 } 205 206 // This function does roughly the same thing as GenerateThunk, but in a 207 // very different way, so that va_start and va_end work correctly. 208 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 209 // a function, and that there is an alloca built in the entry block 210 // for all accesses to "this". 211 // FIXME: This function assumes there is only one "ret" statement per function. 212 // FIXME: Cloning isn't correct in the presence of indirect goto! 213 // FIXME: This implementation of thunks bloats codesize by duplicating the 214 // function definition. There are alternatives: 215 // 1. Add some sort of stub support to LLVM for cases where we can 216 // do a this adjustment, then a sibcall. 217 // 2. We could transform the definition to take a va_list instead of an 218 // actual variable argument list, then have the thunks (including a 219 // no-op thunk for the regular definition) call va_start/va_end. 220 // There's a bit of per-call overhead for this solution, but it's 221 // better for codesize if the definition is long. 222 void CodeGenFunction::GenerateVarArgsThunk( 223 llvm::Function *Fn, 224 const CGFunctionInfo &FnInfo, 225 GlobalDecl GD, const ThunkInfo &Thunk) { 226 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 227 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 228 QualType ResultType = FPT->getResultType(); 229 230 // Get the original function 231 assert(FnInfo.isVariadic()); 232 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 233 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 234 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 235 236 // Clone to thunk. 237 llvm::ValueToValueMapTy VMap; 238 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 239 /*ModuleLevelChanges=*/false); 240 CGM.getModule().getFunctionList().push_back(NewFn); 241 Fn->replaceAllUsesWith(NewFn); 242 NewFn->takeName(Fn); 243 Fn->eraseFromParent(); 244 Fn = NewFn; 245 246 // "Initialize" CGF (minimally). 247 CurFn = Fn; 248 249 // Get the "this" value 250 llvm::Function::arg_iterator AI = Fn->arg_begin(); 251 if (CGM.ReturnTypeUsesSRet(FnInfo)) 252 ++AI; 253 254 // Find the first store of "this", which will be to the alloca associated 255 // with "this". 256 llvm::Value *ThisPtr = &*AI; 257 llvm::BasicBlock *EntryBB = Fn->begin(); 258 llvm::Instruction *ThisStore = 0; 259 for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); 260 I != E; I++) { 261 if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { 262 ThisStore = cast<llvm::StoreInst>(I); 263 break; 264 } 265 } 266 assert(ThisStore && "Store of this should be in entry block?"); 267 // Adjust "this", if necessary. 268 Builder.SetInsertPoint(ThisStore); 269 llvm::Value *AdjustedThisPtr = 270 PerformTypeAdjustment(*this, ThisPtr, 271 Thunk.This.NonVirtual, 272 Thunk.This.VCallOffsetOffset, 273 /*IsReturnAdjustment*/false); 274 ThisStore->setOperand(0, AdjustedThisPtr); 275 276 if (!Thunk.Return.isEmpty()) { 277 // Fix up the returned value, if necessary. 278 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 279 llvm::Instruction *T = I->getTerminator(); 280 if (isa<llvm::ReturnInst>(T)) { 281 RValue RV = RValue::get(T->getOperand(0)); 282 T->eraseFromParent(); 283 Builder.SetInsertPoint(&*I); 284 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 285 Builder.CreateRet(RV.getScalarVal()); 286 break; 287 } 288 } 289 } 290 } 291 292 void CodeGenFunction::GenerateThunk(llvm::Function *Fn, 293 const CGFunctionInfo &FnInfo, 294 GlobalDecl GD, const ThunkInfo &Thunk) { 295 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 296 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 297 QualType ThisType = MD->getThisType(getContext()); 298 QualType ResultType = 299 CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType(); 300 301 FunctionArgList FunctionArgs; 302 303 // FIXME: It would be nice if more of this code could be shared with 304 // CodeGenFunction::GenerateCode. 305 306 // Create the implicit 'this' parameter declaration. 307 CurGD = GD; 308 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); 309 310 // Add the rest of the parameters. 311 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 312 E = MD->param_end(); I != E; ++I) { 313 ParmVarDecl *Param = *I; 314 315 FunctionArgs.push_back(Param); 316 } 317 318 // Initialize debug info if needed. 319 maybeInitializeDebugInfo(); 320 321 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 322 SourceLocation()); 323 324 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 325 CXXThisValue = CXXABIThisValue; 326 327 // Adjust the 'this' pointer if necessary. 328 llvm::Value *AdjustedThisPtr = 329 PerformTypeAdjustment(*this, LoadCXXThis(), 330 Thunk.This.NonVirtual, 331 Thunk.This.VCallOffsetOffset, 332 /*IsReturnAdjustment*/false); 333 334 CallArgList CallArgs; 335 336 // Add our adjusted 'this' pointer. 337 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 338 339 // Add the rest of the parameters. 340 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 341 E = MD->param_end(); I != E; ++I) { 342 ParmVarDecl *param = *I; 343 EmitDelegateCallArg(CallArgs, param); 344 } 345 346 // Get our callee. 347 llvm::Type *Ty = 348 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 349 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 350 351 #ifndef NDEBUG 352 const CGFunctionInfo &CallFnInfo = 353 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 354 RequiredArgs::forPrototypePlus(FPT, 1)); 355 assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() && 356 CallFnInfo.isNoReturn() == FnInfo.isNoReturn() && 357 CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention()); 358 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 359 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 360 FnInfo.getReturnInfo(), FnInfo.getReturnType())); 361 assert(CallFnInfo.arg_size() == FnInfo.arg_size()); 362 for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i) 363 assert(similar(CallFnInfo.arg_begin()[i].info, 364 CallFnInfo.arg_begin()[i].type, 365 FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type)); 366 #endif 367 368 // Determine whether we have a return value slot to use. 369 ReturnValueSlot Slot; 370 if (!ResultType->isVoidType() && 371 FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 372 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 373 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 374 375 // Now emit our call. 376 RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD); 377 378 if (!Thunk.Return.isEmpty()) 379 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 380 381 if (!ResultType->isVoidType() && Slot.isNull()) 382 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 383 384 // Disable the final ARC autorelease. 385 AutoreleaseResult = false; 386 387 FinishFunction(); 388 389 // Set the right linkage. 390 CGM.setFunctionLinkage(GD, Fn); 391 392 // Set the right visibility. 393 setThunkVisibility(CGM, MD, Thunk, Fn); 394 } 395 396 void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 397 bool UseAvailableExternallyLinkage) 398 { 399 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 400 // Emission of thunks is not supported yet in Microsoft ABI. 401 return; 402 } 403 404 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 405 406 // FIXME: re-use FnInfo in this computation. 407 llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); 408 409 // Strip off a bitcast if we got one back. 410 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 411 assert(CE->getOpcode() == llvm::Instruction::BitCast); 412 Entry = CE->getOperand(0); 413 } 414 415 // There's already a declaration with the same name, check if it has the same 416 // type or if we need to replace it. 417 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != 418 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 419 llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry); 420 421 // If the types mismatch then we have to rewrite the definition. 422 assert(OldThunkFn->isDeclaration() && 423 "Shouldn't replace non-declaration"); 424 425 // Remove the name from the old thunk function and get a new thunk. 426 OldThunkFn->setName(StringRef()); 427 Entry = CGM.GetAddrOfThunk(GD, Thunk); 428 429 // If needed, replace the old thunk with a bitcast. 430 if (!OldThunkFn->use_empty()) { 431 llvm::Constant *NewPtrForOldDecl = 432 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 433 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 434 } 435 436 // Remove the old thunk. 437 OldThunkFn->eraseFromParent(); 438 } 439 440 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 441 442 if (!ThunkFn->isDeclaration()) { 443 if (UseAvailableExternallyLinkage) { 444 // There is already a thunk emitted for this function, do nothing. 445 return; 446 } 447 448 // If a function has a body, it should have available_externally linkage. 449 assert(ThunkFn->hasAvailableExternallyLinkage() && 450 "Function should have available_externally linkage!"); 451 452 // Change the linkage. 453 CGM.setFunctionLinkage(GD, ThunkFn); 454 return; 455 } 456 457 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 458 459 if (ThunkFn->isVarArg()) { 460 // Varargs thunks are special; we can't just generate a call because 461 // we can't copy the varargs. Our implementation is rather 462 // expensive/sucky at the moment, so don't generate the thunk unless 463 // we have to. 464 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 465 if (!UseAvailableExternallyLinkage) 466 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 467 } else { 468 // Normal thunk body generation. 469 CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); 470 } 471 472 if (UseAvailableExternallyLinkage) 473 ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 474 } 475 476 void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD, 477 const ThunkInfo &Thunk) { 478 // We only want to do this when building with optimizations. 479 if (!CGM.getCodeGenOpts().OptimizationLevel) 480 return; 481 482 // We can't emit thunks for member functions with incomplete types. 483 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 484 if (!CGM.getTypes().isFuncTypeConvertible( 485 cast<FunctionType>(MD->getType().getTypePtr()))) 486 return; 487 488 EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true); 489 } 490 491 void CodeGenVTables::EmitThunks(GlobalDecl GD) 492 { 493 const CXXMethodDecl *MD = 494 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 495 496 // We don't need to generate thunks for the base destructor. 497 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 498 return; 499 500 if (VFTContext.isValid()) { 501 // FIXME: This is a temporary solution to force generation of vftables in 502 // Microsoft ABI. Remove when we thread VFTableContext through CodeGen. 503 VFTContext->getVFPtrOffsets(MD->getParent()); 504 } 505 506 const VTableContext::ThunkInfoVectorTy *ThunkInfoVector = 507 VTContext.getThunkInfo(MD); 508 if (!ThunkInfoVector) 509 return; 510 511 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 512 EmitThunk(GD, (*ThunkInfoVector)[I], 513 /*UseAvailableExternallyLinkage=*/false); 514 } 515 516 llvm::Constant * 517 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, 518 const VTableComponent *Components, 519 unsigned NumComponents, 520 const VTableLayout::VTableThunkTy *VTableThunks, 521 unsigned NumVTableThunks) { 522 SmallVector<llvm::Constant *, 64> Inits; 523 524 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 525 526 llvm::Type *PtrDiffTy = 527 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 528 529 QualType ClassType = CGM.getContext().getTagDeclType(RD); 530 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); 531 532 unsigned NextVTableThunkIndex = 0; 533 534 llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0; 535 536 for (unsigned I = 0; I != NumComponents; ++I) { 537 VTableComponent Component = Components[I]; 538 539 llvm::Constant *Init = 0; 540 541 switch (Component.getKind()) { 542 case VTableComponent::CK_VCallOffset: 543 Init = llvm::ConstantInt::get(PtrDiffTy, 544 Component.getVCallOffset().getQuantity()); 545 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 546 break; 547 case VTableComponent::CK_VBaseOffset: 548 Init = llvm::ConstantInt::get(PtrDiffTy, 549 Component.getVBaseOffset().getQuantity()); 550 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 551 break; 552 case VTableComponent::CK_OffsetToTop: 553 Init = llvm::ConstantInt::get(PtrDiffTy, 554 Component.getOffsetToTop().getQuantity()); 555 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 556 break; 557 case VTableComponent::CK_RTTI: 558 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 559 break; 560 case VTableComponent::CK_FunctionPointer: 561 case VTableComponent::CK_CompleteDtorPointer: 562 case VTableComponent::CK_DeletingDtorPointer: { 563 GlobalDecl GD; 564 565 // Get the right global decl. 566 switch (Component.getKind()) { 567 default: 568 llvm_unreachable("Unexpected vtable component kind"); 569 case VTableComponent::CK_FunctionPointer: 570 GD = Component.getFunctionDecl(); 571 break; 572 case VTableComponent::CK_CompleteDtorPointer: 573 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 574 break; 575 case VTableComponent::CK_DeletingDtorPointer: 576 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 577 break; 578 } 579 580 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 581 // We have a pure virtual member function. 582 if (!PureVirtualFn) { 583 llvm::FunctionType *Ty = 584 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 585 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 586 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 587 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 588 CGM.Int8PtrTy); 589 } 590 Init = PureVirtualFn; 591 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 592 if (!DeletedVirtualFn) { 593 llvm::FunctionType *Ty = 594 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 595 StringRef DeletedCallName = 596 CGM.getCXXABI().GetDeletedVirtualCallName(); 597 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 598 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 599 CGM.Int8PtrTy); 600 } 601 Init = DeletedVirtualFn; 602 } else { 603 // Check if we should use a thunk. 604 if (NextVTableThunkIndex < NumVTableThunks && 605 VTableThunks[NextVTableThunkIndex].first == I) { 606 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 607 608 MaybeEmitThunkAvailableExternally(GD, Thunk); 609 Init = CGM.GetAddrOfThunk(GD, Thunk); 610 611 NextVTableThunkIndex++; 612 } else { 613 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 614 615 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 616 } 617 618 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 619 } 620 break; 621 } 622 623 case VTableComponent::CK_UnusedFunctionPointer: 624 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 625 break; 626 }; 627 628 Inits.push_back(Init); 629 } 630 631 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 632 return llvm::ConstantArray::get(ArrayType, Inits); 633 } 634 635 llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) { 636 llvm::GlobalVariable *&VTable = VTables[RD]; 637 if (VTable) 638 return VTable; 639 640 // Queue up this v-table for possible deferred emission. 641 CGM.addDeferredVTable(RD); 642 643 SmallString<256> OutName; 644 llvm::raw_svector_ostream Out(OutName); 645 CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out); 646 Out.flush(); 647 StringRef Name = OutName.str(); 648 649 llvm::ArrayType *ArrayType = 650 llvm::ArrayType::get(CGM.Int8PtrTy, 651 VTContext.getVTableLayout(RD).getNumVTableComponents()); 652 653 VTable = 654 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, 655 llvm::GlobalValue::ExternalLinkage); 656 VTable->setUnnamedAddr(true); 657 return VTable; 658 } 659 660 void 661 CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable, 662 llvm::GlobalVariable::LinkageTypes Linkage, 663 const CXXRecordDecl *RD) { 664 const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); 665 666 // Create and set the initializer. 667 llvm::Constant *Init = 668 CreateVTableInitializer(RD, 669 VTLayout.vtable_component_begin(), 670 VTLayout.getNumVTableComponents(), 671 VTLayout.vtable_thunk_begin(), 672 VTLayout.getNumVTableThunks()); 673 VTable->setInitializer(Init); 674 675 // Set the correct linkage. 676 VTable->setLinkage(Linkage); 677 678 // Set the right visibility. 679 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable); 680 } 681 682 llvm::GlobalVariable * 683 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 684 const BaseSubobject &Base, 685 bool BaseIsVirtual, 686 llvm::GlobalVariable::LinkageTypes Linkage, 687 VTableAddressPointsMapTy& AddressPoints) { 688 OwningPtr<VTableLayout> VTLayout( 689 VTContext.createConstructionVTableLayout(Base.getBase(), 690 Base.getBaseOffset(), 691 BaseIsVirtual, RD)); 692 693 // Add the address points. 694 AddressPoints = VTLayout->getAddressPoints(); 695 696 // Get the mangled construction vtable name. 697 SmallString<256> OutName; 698 llvm::raw_svector_ostream Out(OutName); 699 CGM.getCXXABI().getMangleContext(). 700 mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), 701 Out); 702 Out.flush(); 703 StringRef Name = OutName.str(); 704 705 llvm::ArrayType *ArrayType = 706 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 707 708 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 709 // guarantee that they actually will be available externally. Instead, when 710 // emitting an available_externally VTT, we provide references to an internal 711 // linkage construction vtable. The ABI only requires complete-object vtables 712 // to be the same for all instances of a type, not construction vtables. 713 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 714 Linkage = llvm::GlobalVariable::InternalLinkage; 715 716 // Create the variable that will hold the construction vtable. 717 llvm::GlobalVariable *VTable = 718 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 719 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); 720 721 // V-tables are always unnamed_addr. 722 VTable->setUnnamedAddr(true); 723 724 // Create and set the initializer. 725 llvm::Constant *Init = 726 CreateVTableInitializer(Base.getBase(), 727 VTLayout->vtable_component_begin(), 728 VTLayout->getNumVTableComponents(), 729 VTLayout->vtable_thunk_begin(), 730 VTLayout->getNumVTableThunks()); 731 VTable->setInitializer(Init); 732 733 return VTable; 734 } 735 736 /// Compute the required linkage of the v-table for the given class. 737 /// 738 /// Note that we only call this at the end of the translation unit. 739 llvm::GlobalVariable::LinkageTypes 740 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 741 if (!RD->isExternallyVisible()) 742 return llvm::GlobalVariable::InternalLinkage; 743 744 // We're at the end of the translation unit, so the current key 745 // function is fully correct. 746 if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) { 747 // If this class has a key function, use that to determine the 748 // linkage of the vtable. 749 const FunctionDecl *def = 0; 750 if (keyFunction->hasBody(def)) 751 keyFunction = cast<CXXMethodDecl>(def); 752 753 switch (keyFunction->getTemplateSpecializationKind()) { 754 case TSK_Undeclared: 755 case TSK_ExplicitSpecialization: 756 // When compiling with optimizations turned on, we emit all vtables, 757 // even if the key function is not defined in the current translation 758 // unit. If this is the case, use available_externally linkage. 759 if (!def && CodeGenOpts.OptimizationLevel) 760 return llvm::GlobalVariable::AvailableExternallyLinkage; 761 762 if (keyFunction->isInlined()) 763 return !Context.getLangOpts().AppleKext ? 764 llvm::GlobalVariable::LinkOnceODRLinkage : 765 llvm::Function::InternalLinkage; 766 767 return llvm::GlobalVariable::ExternalLinkage; 768 769 case TSK_ImplicitInstantiation: 770 return !Context.getLangOpts().AppleKext ? 771 llvm::GlobalVariable::LinkOnceODRLinkage : 772 llvm::Function::InternalLinkage; 773 774 case TSK_ExplicitInstantiationDefinition: 775 return !Context.getLangOpts().AppleKext ? 776 llvm::GlobalVariable::WeakODRLinkage : 777 llvm::Function::InternalLinkage; 778 779 case TSK_ExplicitInstantiationDeclaration: 780 return !Context.getLangOpts().AppleKext ? 781 llvm::GlobalVariable::AvailableExternallyLinkage : 782 llvm::Function::InternalLinkage; 783 } 784 } 785 786 // -fapple-kext mode does not support weak linkage, so we must use 787 // internal linkage. 788 if (Context.getLangOpts().AppleKext) 789 return llvm::Function::InternalLinkage; 790 791 switch (RD->getTemplateSpecializationKind()) { 792 case TSK_Undeclared: 793 case TSK_ExplicitSpecialization: 794 case TSK_ImplicitInstantiation: 795 return llvm::GlobalVariable::LinkOnceODRLinkage; 796 797 case TSK_ExplicitInstantiationDeclaration: 798 return llvm::GlobalVariable::AvailableExternallyLinkage; 799 800 case TSK_ExplicitInstantiationDefinition: 801 return llvm::GlobalVariable::WeakODRLinkage; 802 } 803 804 llvm_unreachable("Invalid TemplateSpecializationKind!"); 805 } 806 807 /// This is a callback from Sema to tell us that it believes that a 808 /// particular v-table is required to be emitted in this translation 809 /// unit. 810 /// 811 /// The reason we don't simply trust this callback is because Sema 812 /// will happily report that something is used even when it's used 813 /// only in code that we don't actually have to emit. 814 /// 815 /// \param isRequired - if true, the v-table is mandatory, e.g. 816 /// because the translation unit defines the key function 817 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) { 818 if (!isRequired) return; 819 820 VTables.GenerateClassData(theClass); 821 } 822 823 void 824 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 825 if (VFTContext.isValid()) { 826 // FIXME: This is a temporary solution to force generation of vftables in 827 // Microsoft ABI. Remove when we thread VFTableContext through CodeGen. 828 VFTContext->getVFPtrOffsets(RD); 829 } 830 831 // First off, check whether we've already emitted the v-table and 832 // associated stuff. 833 llvm::GlobalVariable *VTable = GetAddrOfVTable(RD); 834 if (VTable->hasInitializer()) 835 return; 836 837 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 838 EmitVTableDefinition(VTable, Linkage, RD); 839 840 if (RD->getNumVBases()) 841 CGM.getCXXABI().EmitVirtualInheritanceTables(Linkage, RD); 842 843 // If this is the magic class __cxxabiv1::__fundamental_type_info, 844 // we will emit the typeinfo for the fundamental types. This is the 845 // same behaviour as GCC. 846 const DeclContext *DC = RD->getDeclContext(); 847 if (RD->getIdentifier() && 848 RD->getIdentifier()->isStr("__fundamental_type_info") && 849 isa<NamespaceDecl>(DC) && 850 cast<NamespaceDecl>(DC)->getIdentifier() && 851 cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && 852 DC->getParent()->isTranslationUnit()) 853 CGM.EmitFundamentalRTTIDescriptors(); 854 } 855 856 /// At this point in the translation unit, does it appear that can we 857 /// rely on the vtable being defined elsewhere in the program? 858 /// 859 /// The response is really only definitive when called at the end of 860 /// the translation unit. 861 /// 862 /// The only semantic restriction here is that the object file should 863 /// not contain a v-table definition when that v-table is defined 864 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 865 /// v-tables when unnecessary. 866 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 867 assert(RD->isDynamicClass() && "Non dynamic classes have no VTable."); 868 869 // If we have an explicit instantiation declaration (and not a 870 // definition), the v-table is defined elsewhere. 871 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 872 if (TSK == TSK_ExplicitInstantiationDeclaration) 873 return true; 874 875 // Otherwise, if the class is an instantiated template, the 876 // v-table must be defined here. 877 if (TSK == TSK_ImplicitInstantiation || 878 TSK == TSK_ExplicitInstantiationDefinition) 879 return false; 880 881 // Otherwise, if the class doesn't have a key function (possibly 882 // anymore), the v-table must be defined here. 883 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 884 if (!keyFunction) 885 return false; 886 887 // Otherwise, if we don't have a definition of the key function, the 888 // v-table must be defined somewhere else. 889 return !keyFunction->hasBody(); 890 } 891 892 /// Given that we're currently at the end of the translation unit, and 893 /// we've emitted a reference to the v-table for this class, should 894 /// we define that v-table? 895 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 896 const CXXRecordDecl *RD) { 897 // If we're building with optimization, we always emit v-tables 898 // since that allows for virtual function calls to be devirtualized. 899 // If the v-table is defined strongly elsewhere, this definition 900 // will be emitted available_externally. 901 // 902 // However, we don't want to do this in -fapple-kext mode, because 903 // kext mode does not permit devirtualization. 904 if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOpts().AppleKext) 905 return true; 906 907 return !CGM.getVTables().isVTableExternal(RD); 908 } 909 910 /// Given that at some point we emitted a reference to one or more 911 /// v-tables, and that we are now at the end of the translation unit, 912 /// decide whether we should emit them. 913 void CodeGenModule::EmitDeferredVTables() { 914 #ifndef NDEBUG 915 // Remember the size of DeferredVTables, because we're going to assume 916 // that this entire operation doesn't modify it. 917 size_t savedSize = DeferredVTables.size(); 918 #endif 919 920 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 921 for (const_iterator i = DeferredVTables.begin(), 922 e = DeferredVTables.end(); i != e; ++i) { 923 const CXXRecordDecl *RD = *i; 924 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 925 VTables.GenerateClassData(RD); 926 } 927 928 assert(savedSize == DeferredVTables.size() && 929 "deferred extra v-tables during v-table emission?"); 930 DeferredVTables.clear(); 931 } 932