Home | History | Annotate | Download | only in TableGen
      1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // It contains the tablegen backend that emits the decoder functions for
     11 // targets with fixed length instruction set.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "decoder-emitter"
     16 
     17 #include "CodeGenTarget.h"
     18 #include "llvm/ADT/APInt.h"
     19 #include "llvm/ADT/SmallString.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/ADT/Twine.h"
     23 #include "llvm/MC/MCFixedLenDisassembler.h"
     24 #include "llvm/Support/DataTypes.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/FormattedStream.h"
     27 #include "llvm/Support/LEB128.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/TableGen/Error.h"
     30 #include "llvm/TableGen/Record.h"
     31 #include "llvm/TableGen/TableGenBackend.h"
     32 #include <map>
     33 #include <string>
     34 #include <vector>
     35 
     36 using namespace llvm;
     37 
     38 namespace {
     39 struct EncodingField {
     40   unsigned Base, Width, Offset;
     41   EncodingField(unsigned B, unsigned W, unsigned O)
     42     : Base(B), Width(W), Offset(O) { }
     43 };
     44 
     45 struct OperandInfo {
     46   std::vector<EncodingField> Fields;
     47   std::string Decoder;
     48 
     49   OperandInfo(std::string D)
     50     : Decoder(D) { }
     51 
     52   void addField(unsigned Base, unsigned Width, unsigned Offset) {
     53     Fields.push_back(EncodingField(Base, Width, Offset));
     54   }
     55 
     56   unsigned numFields() const { return Fields.size(); }
     57 
     58   typedef std::vector<EncodingField>::const_iterator const_iterator;
     59 
     60   const_iterator begin() const { return Fields.begin(); }
     61   const_iterator end() const   { return Fields.end();   }
     62 };
     63 
     64 typedef std::vector<uint8_t> DecoderTable;
     65 typedef uint32_t DecoderFixup;
     66 typedef std::vector<DecoderFixup> FixupList;
     67 typedef std::vector<FixupList> FixupScopeList;
     68 typedef SetVector<std::string> PredicateSet;
     69 typedef SetVector<std::string> DecoderSet;
     70 struct DecoderTableInfo {
     71   DecoderTable Table;
     72   FixupScopeList FixupStack;
     73   PredicateSet Predicates;
     74   DecoderSet Decoders;
     75 };
     76 
     77 } // End anonymous namespace
     78 
     79 namespace {
     80 class FixedLenDecoderEmitter {
     81   const std::vector<const CodeGenInstruction*> *NumberedInstructions;
     82 public:
     83 
     84   // Defaults preserved here for documentation, even though they aren't
     85   // strictly necessary given the way that this is currently being called.
     86   FixedLenDecoderEmitter(RecordKeeper &R,
     87                          std::string PredicateNamespace,
     88                          std::string GPrefix  = "if (",
     89                          std::string GPostfix = " == MCDisassembler::Fail)"
     90                          " return MCDisassembler::Fail;",
     91                          std::string ROK      = "MCDisassembler::Success",
     92                          std::string RFail    = "MCDisassembler::Fail",
     93                          std::string L        = "") :
     94     Target(R),
     95     PredicateNamespace(PredicateNamespace),
     96     GuardPrefix(GPrefix), GuardPostfix(GPostfix),
     97     ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
     98 
     99   // Emit the decoder state machine table.
    100   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
    101                  unsigned Indentation, unsigned BitWidth,
    102                  StringRef Namespace) const;
    103   void emitPredicateFunction(formatted_raw_ostream &OS,
    104                              PredicateSet &Predicates,
    105                              unsigned Indentation) const;
    106   void emitDecoderFunction(formatted_raw_ostream &OS,
    107                            DecoderSet &Decoders,
    108                            unsigned Indentation) const;
    109 
    110   // run - Output the code emitter
    111   void run(raw_ostream &o);
    112 
    113 private:
    114   CodeGenTarget Target;
    115 public:
    116   std::string PredicateNamespace;
    117   std::string GuardPrefix, GuardPostfix;
    118   std::string ReturnOK, ReturnFail;
    119   std::string Locals;
    120 };
    121 } // End anonymous namespace
    122 
    123 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
    124 // for a bit value.
    125 //
    126 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
    127 // only for filter processings.
    128 typedef enum {
    129   BIT_TRUE,      // '1'
    130   BIT_FALSE,     // '0'
    131   BIT_UNSET,     // '?'
    132   BIT_UNFILTERED // unfiltered
    133 } bit_value_t;
    134 
    135 static bool ValueSet(bit_value_t V) {
    136   return (V == BIT_TRUE || V == BIT_FALSE);
    137 }
    138 static bool ValueNotSet(bit_value_t V) {
    139   return (V == BIT_UNSET);
    140 }
    141 static int Value(bit_value_t V) {
    142   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
    143 }
    144 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
    145   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
    146     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
    147 
    148   // The bit is uninitialized.
    149   return BIT_UNSET;
    150 }
    151 // Prints the bit value for each position.
    152 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
    153   for (unsigned index = bits.getNumBits(); index > 0; --index) {
    154     switch (bitFromBits(bits, index - 1)) {
    155     case BIT_TRUE:
    156       o << "1";
    157       break;
    158     case BIT_FALSE:
    159       o << "0";
    160       break;
    161     case BIT_UNSET:
    162       o << "_";
    163       break;
    164     default:
    165       llvm_unreachable("unexpected return value from bitFromBits");
    166     }
    167   }
    168 }
    169 
    170 static BitsInit &getBitsField(const Record &def, const char *str) {
    171   BitsInit *bits = def.getValueAsBitsInit(str);
    172   return *bits;
    173 }
    174 
    175 // Forward declaration.
    176 namespace {
    177 class FilterChooser;
    178 } // End anonymous namespace
    179 
    180 // Representation of the instruction to work on.
    181 typedef std::vector<bit_value_t> insn_t;
    182 
    183 /// Filter - Filter works with FilterChooser to produce the decoding tree for
    184 /// the ISA.
    185 ///
    186 /// It is useful to think of a Filter as governing the switch stmts of the
    187 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
    188 /// FilterChooser to decide what further decoding logic to employ, or in another
    189 /// words, what other remaining bits to look at.  The FilterChooser eventually
    190 /// chooses a best Filter to do its job.
    191 ///
    192 /// This recursive scheme ends when the number of Opcodes assigned to the
    193 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
    194 /// the Filter/FilterChooser combo does not know how to distinguish among the
    195 /// Opcodes assigned.
    196 ///
    197 /// An example of a conflict is
    198 ///
    199 /// Conflict:
    200 ///                     111101000.00........00010000....
    201 ///                     111101000.00........0001........
    202 ///                     1111010...00........0001........
    203 ///                     1111010...00....................
    204 ///                     1111010.........................
    205 ///                     1111............................
    206 ///                     ................................
    207 ///     VST4q8a         111101000_00________00010000____
    208 ///     VST4q8b         111101000_00________00010000____
    209 ///
    210 /// The Debug output shows the path that the decoding tree follows to reach the
    211 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
    212 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
    213 ///
    214 /// The encoding info in the .td files does not specify this meta information,
    215 /// which could have been used by the decoder to resolve the conflict.  The
    216 /// decoder could try to decode the even/odd register numbering and assign to
    217 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
    218 /// version and return the Opcode since the two have the same Asm format string.
    219 namespace {
    220 class Filter {
    221 protected:
    222   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
    223   unsigned StartBit; // the starting bit position
    224   unsigned NumBits; // number of bits to filter
    225   bool Mixed; // a mixed region contains both set and unset bits
    226 
    227   // Map of well-known segment value to the set of uid's with that value.
    228   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
    229 
    230   // Set of uid's with non-constant segment values.
    231   std::vector<unsigned> VariableInstructions;
    232 
    233   // Map of well-known segment value to its delegate.
    234   std::map<unsigned, const FilterChooser*> FilterChooserMap;
    235 
    236   // Number of instructions which fall under FilteredInstructions category.
    237   unsigned NumFiltered;
    238 
    239   // Keeps track of the last opcode in the filtered bucket.
    240   unsigned LastOpcFiltered;
    241 
    242 public:
    243   unsigned getNumFiltered() const { return NumFiltered; }
    244   unsigned getSingletonOpc() const {
    245     assert(NumFiltered == 1);
    246     return LastOpcFiltered;
    247   }
    248   // Return the filter chooser for the group of instructions without constant
    249   // segment values.
    250   const FilterChooser &getVariableFC() const {
    251     assert(NumFiltered == 1);
    252     assert(FilterChooserMap.size() == 1);
    253     return *(FilterChooserMap.find((unsigned)-1)->second);
    254   }
    255 
    256   Filter(const Filter &f);
    257   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
    258 
    259   ~Filter();
    260 
    261   // Divides the decoding task into sub tasks and delegates them to the
    262   // inferior FilterChooser's.
    263   //
    264   // A special case arises when there's only one entry in the filtered
    265   // instructions.  In order to unambiguously decode the singleton, we need to
    266   // match the remaining undecoded encoding bits against the singleton.
    267   void recurse();
    268 
    269   // Emit table entries to decode instructions given a segment or segments of
    270   // bits.
    271   void emitTableEntry(DecoderTableInfo &TableInfo) const;
    272 
    273   // Returns the number of fanout produced by the filter.  More fanout implies
    274   // the filter distinguishes more categories of instructions.
    275   unsigned usefulness() const;
    276 }; // End of class Filter
    277 } // End anonymous namespace
    278 
    279 // These are states of our finite state machines used in FilterChooser's
    280 // filterProcessor() which produces the filter candidates to use.
    281 typedef enum {
    282   ATTR_NONE,
    283   ATTR_FILTERED,
    284   ATTR_ALL_SET,
    285   ATTR_ALL_UNSET,
    286   ATTR_MIXED
    287 } bitAttr_t;
    288 
    289 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
    290 /// in order to perform the decoding of instructions at the current level.
    291 ///
    292 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
    293 /// of instructions available, FilterChooser builds up the possible Filters that
    294 /// can further the task of decoding by distinguishing among the remaining
    295 /// candidate instructions.
    296 ///
    297 /// Once a filter has been chosen, it is called upon to divide the decoding task
    298 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
    299 /// processings.
    300 ///
    301 /// It is useful to think of a Filter as governing the switch stmts of the
    302 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
    303 /// decide what further remaining bits to look at.
    304 namespace {
    305 class FilterChooser {
    306 protected:
    307   friend class Filter;
    308 
    309   // Vector of codegen instructions to choose our filter.
    310   const std::vector<const CodeGenInstruction*> &AllInstructions;
    311 
    312   // Vector of uid's for this filter chooser to work on.
    313   const std::vector<unsigned> &Opcodes;
    314 
    315   // Lookup table for the operand decoding of instructions.
    316   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
    317 
    318   // Vector of candidate filters.
    319   std::vector<Filter> Filters;
    320 
    321   // Array of bit values passed down from our parent.
    322   // Set to all BIT_UNFILTERED's for Parent == NULL.
    323   std::vector<bit_value_t> FilterBitValues;
    324 
    325   // Links to the FilterChooser above us in the decoding tree.
    326   const FilterChooser *Parent;
    327 
    328   // Index of the best filter from Filters.
    329   int BestIndex;
    330 
    331   // Width of instructions
    332   unsigned BitWidth;
    333 
    334   // Parent emitter
    335   const FixedLenDecoderEmitter *Emitter;
    336 
    337 public:
    338   FilterChooser(const FilterChooser &FC)
    339     : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
    340       Operands(FC.Operands), Filters(FC.Filters),
    341       FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
    342       BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
    343       Emitter(FC.Emitter) { }
    344 
    345   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    346                 const std::vector<unsigned> &IDs,
    347                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    348                 unsigned BW,
    349                 const FixedLenDecoderEmitter *E)
    350     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
    351       Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
    352     for (unsigned i = 0; i < BitWidth; ++i)
    353       FilterBitValues.push_back(BIT_UNFILTERED);
    354 
    355     doFilter();
    356   }
    357 
    358   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    359                 const std::vector<unsigned> &IDs,
    360                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    361                 const std::vector<bit_value_t> &ParentFilterBitValues,
    362                 const FilterChooser &parent)
    363     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
    364       Filters(), FilterBitValues(ParentFilterBitValues),
    365       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
    366       Emitter(parent.Emitter) {
    367     doFilter();
    368   }
    369 
    370   unsigned getBitWidth() const { return BitWidth; }
    371 
    372 protected:
    373   // Populates the insn given the uid.
    374   void insnWithID(insn_t &Insn, unsigned Opcode) const {
    375     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
    376 
    377     // We may have a SoftFail bitmask, which specifies a mask where an encoding
    378     // may differ from the value in "Inst" and yet still be valid, but the
    379     // disassembler should return SoftFail instead of Success.
    380     //
    381     // This is used for marking UNPREDICTABLE instructions in the ARM world.
    382     BitsInit *SFBits =
    383       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
    384 
    385     for (unsigned i = 0; i < BitWidth; ++i) {
    386       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
    387         Insn.push_back(BIT_UNSET);
    388       else
    389         Insn.push_back(bitFromBits(Bits, i));
    390     }
    391   }
    392 
    393   // Returns the record name.
    394   const std::string &nameWithID(unsigned Opcode) const {
    395     return AllInstructions[Opcode]->TheDef->getName();
    396   }
    397 
    398   // Populates the field of the insn given the start position and the number of
    399   // consecutive bits to scan for.
    400   //
    401   // Returns false if there exists any uninitialized bit value in the range.
    402   // Returns true, otherwise.
    403   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
    404                      unsigned NumBits) const;
    405 
    406   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    407   /// filter array as a series of chars.
    408   void dumpFilterArray(raw_ostream &o,
    409                        const std::vector<bit_value_t> & filter) const;
    410 
    411   /// dumpStack - dumpStack traverses the filter chooser chain and calls
    412   /// dumpFilterArray on each filter chooser up to the top level one.
    413   void dumpStack(raw_ostream &o, const char *prefix) const;
    414 
    415   Filter &bestFilter() {
    416     assert(BestIndex != -1 && "BestIndex not set");
    417     return Filters[BestIndex];
    418   }
    419 
    420   // Called from Filter::recurse() when singleton exists.  For debug purpose.
    421   void SingletonExists(unsigned Opc) const;
    422 
    423   bool PositionFiltered(unsigned i) const {
    424     return ValueSet(FilterBitValues[i]);
    425   }
    426 
    427   // Calculates the island(s) needed to decode the instruction.
    428   // This returns a lit of undecoded bits of an instructions, for example,
    429   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
    430   // decoded bits in order to verify that the instruction matches the Opcode.
    431   unsigned getIslands(std::vector<unsigned> &StartBits,
    432                       std::vector<unsigned> &EndBits,
    433                       std::vector<uint64_t> &FieldVals,
    434                       const insn_t &Insn) const;
    435 
    436   // Emits code to check the Predicates member of an instruction are true.
    437   // Returns true if predicate matches were emitted, false otherwise.
    438   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
    439                           unsigned Opc) const;
    440 
    441   bool doesOpcodeNeedPredicate(unsigned Opc) const;
    442   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
    443   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
    444                                unsigned Opc) const;
    445 
    446   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
    447                               unsigned Opc) const;
    448 
    449   // Emits table entries to decode the singleton.
    450   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
    451                                unsigned Opc) const;
    452 
    453   // Emits code to decode the singleton, and then to decode the rest.
    454   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
    455                                const Filter &Best) const;
    456 
    457   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
    458                         const OperandInfo &OpInfo) const;
    459 
    460   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
    461   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
    462 
    463   // Assign a single filter and run with it.
    464   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
    465 
    466   // reportRegion is a helper function for filterProcessor to mark a region as
    467   // eligible for use as a filter region.
    468   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
    469                     bool AllowMixed);
    470 
    471   // FilterProcessor scans the well-known encoding bits of the instructions and
    472   // builds up a list of candidate filters.  It chooses the best filter and
    473   // recursively descends down the decoding tree.
    474   bool filterProcessor(bool AllowMixed, bool Greedy = true);
    475 
    476   // Decides on the best configuration of filter(s) to use in order to decode
    477   // the instructions.  A conflict of instructions may occur, in which case we
    478   // dump the conflict set to the standard error.
    479   void doFilter();
    480 
    481 public:
    482   // emitTableEntries - Emit state machine entries to decode our share of
    483   // instructions.
    484   void emitTableEntries(DecoderTableInfo &TableInfo) const;
    485 };
    486 } // End anonymous namespace
    487 
    488 ///////////////////////////
    489 //                       //
    490 // Filter Implementation //
    491 //                       //
    492 ///////////////////////////
    493 
    494 Filter::Filter(const Filter &f)
    495   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
    496     FilteredInstructions(f.FilteredInstructions),
    497     VariableInstructions(f.VariableInstructions),
    498     FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
    499     LastOpcFiltered(f.LastOpcFiltered) {
    500 }
    501 
    502 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
    503                bool mixed)
    504   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
    505   assert(StartBit + NumBits - 1 < Owner->BitWidth);
    506 
    507   NumFiltered = 0;
    508   LastOpcFiltered = 0;
    509 
    510   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
    511     insn_t Insn;
    512 
    513     // Populates the insn given the uid.
    514     Owner->insnWithID(Insn, Owner->Opcodes[i]);
    515 
    516     uint64_t Field;
    517     // Scans the segment for possibly well-specified encoding bits.
    518     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
    519 
    520     if (ok) {
    521       // The encoding bits are well-known.  Lets add the uid of the
    522       // instruction into the bucket keyed off the constant field value.
    523       LastOpcFiltered = Owner->Opcodes[i];
    524       FilteredInstructions[Field].push_back(LastOpcFiltered);
    525       ++NumFiltered;
    526     } else {
    527       // Some of the encoding bit(s) are unspecified.  This contributes to
    528       // one additional member of "Variable" instructions.
    529       VariableInstructions.push_back(Owner->Opcodes[i]);
    530     }
    531   }
    532 
    533   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
    534          && "Filter returns no instruction categories");
    535 }
    536 
    537 Filter::~Filter() {
    538   std::map<unsigned, const FilterChooser*>::iterator filterIterator;
    539   for (filterIterator = FilterChooserMap.begin();
    540        filterIterator != FilterChooserMap.end();
    541        filterIterator++) {
    542     delete filterIterator->second;
    543   }
    544 }
    545 
    546 // Divides the decoding task into sub tasks and delegates them to the
    547 // inferior FilterChooser's.
    548 //
    549 // A special case arises when there's only one entry in the filtered
    550 // instructions.  In order to unambiguously decode the singleton, we need to
    551 // match the remaining undecoded encoding bits against the singleton.
    552 void Filter::recurse() {
    553   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
    554 
    555   // Starts by inheriting our parent filter chooser's filter bit values.
    556   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
    557 
    558   if (VariableInstructions.size()) {
    559     // Conservatively marks each segment position as BIT_UNSET.
    560     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
    561       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
    562 
    563     // Delegates to an inferior filter chooser for further processing on this
    564     // group of instructions whose segment values are variable.
    565     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    566                               (unsigned)-1,
    567                               new FilterChooser(Owner->AllInstructions,
    568                                                 VariableInstructions,
    569                                                 Owner->Operands,
    570                                                 BitValueArray,
    571                                                 *Owner)
    572                               ));
    573   }
    574 
    575   // No need to recurse for a singleton filtered instruction.
    576   // See also Filter::emit*().
    577   if (getNumFiltered() == 1) {
    578     //Owner->SingletonExists(LastOpcFiltered);
    579     assert(FilterChooserMap.size() == 1);
    580     return;
    581   }
    582 
    583   // Otherwise, create sub choosers.
    584   for (mapIterator = FilteredInstructions.begin();
    585        mapIterator != FilteredInstructions.end();
    586        mapIterator++) {
    587 
    588     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
    589     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
    590       if (mapIterator->first & (1ULL << bitIndex))
    591         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
    592       else
    593         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
    594     }
    595 
    596     // Delegates to an inferior filter chooser for further processing on this
    597     // category of instructions.
    598     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    599                               mapIterator->first,
    600                               new FilterChooser(Owner->AllInstructions,
    601                                                 mapIterator->second,
    602                                                 Owner->Operands,
    603                                                 BitValueArray,
    604                                                 *Owner)
    605                               ));
    606   }
    607 }
    608 
    609 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
    610                                uint32_t DestIdx) {
    611   // Any NumToSkip fixups in the current scope can resolve to the
    612   // current location.
    613   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
    614                                          E = Fixups.rend();
    615        I != E; ++I) {
    616     // Calculate the distance from the byte following the fixup entry byte
    617     // to the destination. The Target is calculated from after the 16-bit
    618     // NumToSkip entry itself, so subtract two  from the displacement here
    619     // to account for that.
    620     uint32_t FixupIdx = *I;
    621     uint32_t Delta = DestIdx - FixupIdx - 2;
    622     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
    623     // big.
    624     assert(Delta < 65536U && "disassembler decoding table too large!");
    625     Table[FixupIdx] = (uint8_t)Delta;
    626     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
    627   }
    628 }
    629 
    630 // Emit table entries to decode instructions given a segment or segments
    631 // of bits.
    632 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
    633   TableInfo.Table.push_back(MCD::OPC_ExtractField);
    634   TableInfo.Table.push_back(StartBit);
    635   TableInfo.Table.push_back(NumBits);
    636 
    637   // A new filter entry begins a new scope for fixup resolution.
    638   TableInfo.FixupStack.push_back(FixupList());
    639 
    640   std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
    641 
    642   DecoderTable &Table = TableInfo.Table;
    643 
    644   size_t PrevFilter = 0;
    645   bool HasFallthrough = false;
    646   for (filterIterator = FilterChooserMap.begin();
    647        filterIterator != FilterChooserMap.end();
    648        filterIterator++) {
    649     // Field value -1 implies a non-empty set of variable instructions.
    650     // See also recurse().
    651     if (filterIterator->first == (unsigned)-1) {
    652       HasFallthrough = true;
    653 
    654       // Each scope should always have at least one filter value to check
    655       // for.
    656       assert(PrevFilter != 0 && "empty filter set!");
    657       FixupList &CurScope = TableInfo.FixupStack.back();
    658       // Resolve any NumToSkip fixups in the current scope.
    659       resolveTableFixups(Table, CurScope, Table.size());
    660       CurScope.clear();
    661       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
    662     } else {
    663       Table.push_back(MCD::OPC_FilterValue);
    664       // Encode and emit the value to filter against.
    665       uint8_t Buffer[8];
    666       unsigned Len = encodeULEB128(filterIterator->first, Buffer);
    667       Table.insert(Table.end(), Buffer, Buffer + Len);
    668       // Reserve space for the NumToSkip entry. We'll backpatch the value
    669       // later.
    670       PrevFilter = Table.size();
    671       Table.push_back(0);
    672       Table.push_back(0);
    673     }
    674 
    675     // We arrive at a category of instructions with the same segment value.
    676     // Now delegate to the sub filter chooser for further decodings.
    677     // The case may fallthrough, which happens if the remaining well-known
    678     // encoding bits do not match exactly.
    679     filterIterator->second->emitTableEntries(TableInfo);
    680 
    681     // Now that we've emitted the body of the handler, update the NumToSkip
    682     // of the filter itself to be able to skip forward when false. Subtract
    683     // two as to account for the width of the NumToSkip field itself.
    684     if (PrevFilter) {
    685       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
    686       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
    687       Table[PrevFilter] = (uint8_t)NumToSkip;
    688       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
    689     }
    690   }
    691 
    692   // Any remaining unresolved fixups bubble up to the parent fixup scope.
    693   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
    694   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
    695   FixupScopeList::iterator Dest = Source - 1;
    696   Dest->insert(Dest->end(), Source->begin(), Source->end());
    697   TableInfo.FixupStack.pop_back();
    698 
    699   // If there is no fallthrough, then the final filter should get fixed
    700   // up according to the enclosing scope rather than the current position.
    701   if (!HasFallthrough)
    702     TableInfo.FixupStack.back().push_back(PrevFilter);
    703 }
    704 
    705 // Returns the number of fanout produced by the filter.  More fanout implies
    706 // the filter distinguishes more categories of instructions.
    707 unsigned Filter::usefulness() const {
    708   if (VariableInstructions.size())
    709     return FilteredInstructions.size();
    710   else
    711     return FilteredInstructions.size() + 1;
    712 }
    713 
    714 //////////////////////////////////
    715 //                              //
    716 // Filterchooser Implementation //
    717 //                              //
    718 //////////////////////////////////
    719 
    720 // Emit the decoder state machine table.
    721 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
    722                                        DecoderTable &Table,
    723                                        unsigned Indentation,
    724                                        unsigned BitWidth,
    725                                        StringRef Namespace) const {
    726   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
    727     << BitWidth << "[] = {\n";
    728 
    729   Indentation += 2;
    730 
    731   // FIXME: We may be able to use the NumToSkip values to recover
    732   // appropriate indentation levels.
    733   DecoderTable::const_iterator I = Table.begin();
    734   DecoderTable::const_iterator E = Table.end();
    735   while (I != E) {
    736     assert (I < E && "incomplete decode table entry!");
    737 
    738     uint64_t Pos = I - Table.begin();
    739     OS << "/* " << Pos << " */";
    740     OS.PadToColumn(12);
    741 
    742     switch (*I) {
    743     default:
    744       PrintFatalError("invalid decode table opcode");
    745     case MCD::OPC_ExtractField: {
    746       ++I;
    747       unsigned Start = *I++;
    748       unsigned Len = *I++;
    749       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
    750         << Len << ",  // Inst{";
    751       if (Len > 1)
    752         OS << (Start + Len - 1) << "-";
    753       OS << Start << "} ...\n";
    754       break;
    755     }
    756     case MCD::OPC_FilterValue: {
    757       ++I;
    758       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
    759       // The filter value is ULEB128 encoded.
    760       while (*I >= 128)
    761         OS << utostr(*I++) << ", ";
    762       OS << utostr(*I++) << ", ";
    763 
    764       // 16-bit numtoskip value.
    765       uint8_t Byte = *I++;
    766       uint32_t NumToSkip = Byte;
    767       OS << utostr(Byte) << ", ";
    768       Byte = *I++;
    769       OS << utostr(Byte) << ", ";
    770       NumToSkip |= Byte << 8;
    771       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    772       break;
    773     }
    774     case MCD::OPC_CheckField: {
    775       ++I;
    776       unsigned Start = *I++;
    777       unsigned Len = *I++;
    778       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
    779         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
    780       // ULEB128 encoded field value.
    781       for (; *I >= 128; ++I)
    782         OS << utostr(*I) << ", ";
    783       OS << utostr(*I++) << ", ";
    784       // 16-bit numtoskip value.
    785       uint8_t Byte = *I++;
    786       uint32_t NumToSkip = Byte;
    787       OS << utostr(Byte) << ", ";
    788       Byte = *I++;
    789       OS << utostr(Byte) << ", ";
    790       NumToSkip |= Byte << 8;
    791       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    792       break;
    793     }
    794     case MCD::OPC_CheckPredicate: {
    795       ++I;
    796       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
    797       for (; *I >= 128; ++I)
    798         OS << utostr(*I) << ", ";
    799       OS << utostr(*I++) << ", ";
    800 
    801       // 16-bit numtoskip value.
    802       uint8_t Byte = *I++;
    803       uint32_t NumToSkip = Byte;
    804       OS << utostr(Byte) << ", ";
    805       Byte = *I++;
    806       OS << utostr(Byte) << ", ";
    807       NumToSkip |= Byte << 8;
    808       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    809       break;
    810     }
    811     case MCD::OPC_Decode: {
    812       ++I;
    813       // Extract the ULEB128 encoded Opcode to a buffer.
    814       uint8_t Buffer[8], *p = Buffer;
    815       while ((*p++ = *I++) >= 128)
    816         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
    817                && "ULEB128 value too large!");
    818       // Decode the Opcode value.
    819       unsigned Opc = decodeULEB128(Buffer);
    820       OS.indent(Indentation) << "MCD::OPC_Decode, ";
    821       for (p = Buffer; *p >= 128; ++p)
    822         OS << utostr(*p) << ", ";
    823       OS << utostr(*p) << ", ";
    824 
    825       // Decoder index.
    826       for (; *I >= 128; ++I)
    827         OS << utostr(*I) << ", ";
    828       OS << utostr(*I++) << ", ";
    829 
    830       OS << "// Opcode: "
    831          << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
    832       break;
    833     }
    834     case MCD::OPC_SoftFail: {
    835       ++I;
    836       OS.indent(Indentation) << "MCD::OPC_SoftFail";
    837       // Positive mask
    838       uint64_t Value = 0;
    839       unsigned Shift = 0;
    840       do {
    841         OS << ", " << utostr(*I);
    842         Value += (*I & 0x7f) << Shift;
    843         Shift += 7;
    844       } while (*I++ >= 128);
    845       if (Value > 127)
    846         OS << " /* 0x" << utohexstr(Value) << " */";
    847       // Negative mask
    848       Value = 0;
    849       Shift = 0;
    850       do {
    851         OS << ", " << utostr(*I);
    852         Value += (*I & 0x7f) << Shift;
    853         Shift += 7;
    854       } while (*I++ >= 128);
    855       if (Value > 127)
    856         OS << " /* 0x" << utohexstr(Value) << " */";
    857       OS << ",\n";
    858       break;
    859     }
    860     case MCD::OPC_Fail: {
    861       ++I;
    862       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
    863       break;
    864     }
    865     }
    866   }
    867   OS.indent(Indentation) << "0\n";
    868 
    869   Indentation -= 2;
    870 
    871   OS.indent(Indentation) << "};\n\n";
    872 }
    873 
    874 void FixedLenDecoderEmitter::
    875 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
    876                       unsigned Indentation) const {
    877   // The predicate function is just a big switch statement based on the
    878   // input predicate index.
    879   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
    880     << "uint64_t Bits) {\n";
    881   Indentation += 2;
    882   if (!Predicates.empty()) {
    883     OS.indent(Indentation) << "switch (Idx) {\n";
    884     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    885     unsigned Index = 0;
    886     for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end();
    887          I != E; ++I, ++Index) {
    888       OS.indent(Indentation) << "case " << Index << ":\n";
    889       OS.indent(Indentation+2) << "return (" << *I << ");\n";
    890     }
    891     OS.indent(Indentation) << "}\n";
    892   } else {
    893     // No case statement to emit
    894     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
    895   }
    896   Indentation -= 2;
    897   OS.indent(Indentation) << "}\n\n";
    898 }
    899 
    900 void FixedLenDecoderEmitter::
    901 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
    902                     unsigned Indentation) const {
    903   // The decoder function is just a big switch statement based on the
    904   // input decoder index.
    905   OS.indent(Indentation) << "template<typename InsnType>\n";
    906   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
    907     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
    908   OS.indent(Indentation) << "                                   uint64_t "
    909     << "Address, const void *Decoder) {\n";
    910   Indentation += 2;
    911   OS.indent(Indentation) << "InsnType tmp;\n";
    912   OS.indent(Indentation) << "switch (Idx) {\n";
    913   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    914   unsigned Index = 0;
    915   for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end();
    916        I != E; ++I, ++Index) {
    917     OS.indent(Indentation) << "case " << Index << ":\n";
    918     OS << *I;
    919     OS.indent(Indentation+2) << "return S;\n";
    920   }
    921   OS.indent(Indentation) << "}\n";
    922   Indentation -= 2;
    923   OS.indent(Indentation) << "}\n\n";
    924 }
    925 
    926 // Populates the field of the insn given the start position and the number of
    927 // consecutive bits to scan for.
    928 //
    929 // Returns false if and on the first uninitialized bit value encountered.
    930 // Returns true, otherwise.
    931 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
    932                                   unsigned StartBit, unsigned NumBits) const {
    933   Field = 0;
    934 
    935   for (unsigned i = 0; i < NumBits; ++i) {
    936     if (Insn[StartBit + i] == BIT_UNSET)
    937       return false;
    938 
    939     if (Insn[StartBit + i] == BIT_TRUE)
    940       Field = Field | (1ULL << i);
    941   }
    942 
    943   return true;
    944 }
    945 
    946 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    947 /// filter array as a series of chars.
    948 void FilterChooser::dumpFilterArray(raw_ostream &o,
    949                                  const std::vector<bit_value_t> &filter) const {
    950   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
    951     switch (filter[bitIndex - 1]) {
    952     case BIT_UNFILTERED:
    953       o << ".";
    954       break;
    955     case BIT_UNSET:
    956       o << "_";
    957       break;
    958     case BIT_TRUE:
    959       o << "1";
    960       break;
    961     case BIT_FALSE:
    962       o << "0";
    963       break;
    964     }
    965   }
    966 }
    967 
    968 /// dumpStack - dumpStack traverses the filter chooser chain and calls
    969 /// dumpFilterArray on each filter chooser up to the top level one.
    970 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
    971   const FilterChooser *current = this;
    972 
    973   while (current) {
    974     o << prefix;
    975     dumpFilterArray(o, current->FilterBitValues);
    976     o << '\n';
    977     current = current->Parent;
    978   }
    979 }
    980 
    981 // Called from Filter::recurse() when singleton exists.  For debug purpose.
    982 void FilterChooser::SingletonExists(unsigned Opc) const {
    983   insn_t Insn0;
    984   insnWithID(Insn0, Opc);
    985 
    986   errs() << "Singleton exists: " << nameWithID(Opc)
    987          << " with its decoding dominating ";
    988   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    989     if (Opcodes[i] == Opc) continue;
    990     errs() << nameWithID(Opcodes[i]) << ' ';
    991   }
    992   errs() << '\n';
    993 
    994   dumpStack(errs(), "\t\t");
    995   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    996     const std::string &Name = nameWithID(Opcodes[i]);
    997 
    998     errs() << '\t' << Name << " ";
    999     dumpBits(errs(),
   1000              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
   1001     errs() << '\n';
   1002   }
   1003 }
   1004 
   1005 // Calculates the island(s) needed to decode the instruction.
   1006 // This returns a list of undecoded bits of an instructions, for example,
   1007 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
   1008 // decoded bits in order to verify that the instruction matches the Opcode.
   1009 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
   1010                                    std::vector<unsigned> &EndBits,
   1011                                    std::vector<uint64_t> &FieldVals,
   1012                                    const insn_t &Insn) const {
   1013   unsigned Num, BitNo;
   1014   Num = BitNo = 0;
   1015 
   1016   uint64_t FieldVal = 0;
   1017 
   1018   // 0: Init
   1019   // 1: Water (the bit value does not affect decoding)
   1020   // 2: Island (well-known bit value needed for decoding)
   1021   int State = 0;
   1022   int Val = -1;
   1023 
   1024   for (unsigned i = 0; i < BitWidth; ++i) {
   1025     Val = Value(Insn[i]);
   1026     bool Filtered = PositionFiltered(i);
   1027     switch (State) {
   1028     default: llvm_unreachable("Unreachable code!");
   1029     case 0:
   1030     case 1:
   1031       if (Filtered || Val == -1)
   1032         State = 1; // Still in Water
   1033       else {
   1034         State = 2; // Into the Island
   1035         BitNo = 0;
   1036         StartBits.push_back(i);
   1037         FieldVal = Val;
   1038       }
   1039       break;
   1040     case 2:
   1041       if (Filtered || Val == -1) {
   1042         State = 1; // Into the Water
   1043         EndBits.push_back(i - 1);
   1044         FieldVals.push_back(FieldVal);
   1045         ++Num;
   1046       } else {
   1047         State = 2; // Still in Island
   1048         ++BitNo;
   1049         FieldVal = FieldVal | Val << BitNo;
   1050       }
   1051       break;
   1052     }
   1053   }
   1054   // If we are still in Island after the loop, do some housekeeping.
   1055   if (State == 2) {
   1056     EndBits.push_back(BitWidth - 1);
   1057     FieldVals.push_back(FieldVal);
   1058     ++Num;
   1059   }
   1060 
   1061   assert(StartBits.size() == Num && EndBits.size() == Num &&
   1062          FieldVals.size() == Num);
   1063   return Num;
   1064 }
   1065 
   1066 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
   1067                                      const OperandInfo &OpInfo) const {
   1068   const std::string &Decoder = OpInfo.Decoder;
   1069 
   1070   if (OpInfo.numFields() == 1) {
   1071     OperandInfo::const_iterator OI = OpInfo.begin();
   1072     o.indent(Indentation) << "tmp = fieldFromInstruction"
   1073                           << "(insn, " << OI->Base << ", " << OI->Width
   1074                           << ");\n";
   1075   } else {
   1076     o.indent(Indentation) << "tmp = 0;\n";
   1077     for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
   1078          OI != OE; ++OI) {
   1079       o.indent(Indentation) << "tmp |= (fieldFromInstruction"
   1080                             << "(insn, " << OI->Base << ", " << OI->Width
   1081                             << ") << " << OI->Offset << ");\n";
   1082     }
   1083   }
   1084 
   1085   if (Decoder != "")
   1086     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
   1087                           << "(MI, tmp, Address, Decoder)"
   1088                           << Emitter->GuardPostfix << "\n";
   1089   else
   1090     o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
   1091 
   1092 }
   1093 
   1094 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
   1095                                 unsigned Opc) const {
   1096   std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
   1097     Operands.find(Opc);
   1098   const std::vector<OperandInfo>& InsnOperands = OpIter->second;
   1099   for (std::vector<OperandInfo>::const_iterator
   1100        I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
   1101     // If a custom instruction decoder was specified, use that.
   1102     if (I->numFields() == 0 && I->Decoder.size()) {
   1103       OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder
   1104         << "(MI, insn, Address, Decoder)"
   1105         << Emitter->GuardPostfix << "\n";
   1106       break;
   1107     }
   1108 
   1109     emitBinaryParser(OS, Indentation, *I);
   1110   }
   1111 }
   1112 
   1113 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
   1114                                         unsigned Opc) const {
   1115   // Build up the predicate string.
   1116   SmallString<256> Decoder;
   1117   // FIXME: emitDecoder() function can take a buffer directly rather than
   1118   // a stream.
   1119   raw_svector_ostream S(Decoder);
   1120   unsigned I = 4;
   1121   emitDecoder(S, I, Opc);
   1122   S.flush();
   1123 
   1124   // Using the full decoder string as the key value here is a bit
   1125   // heavyweight, but is effective. If the string comparisons become a
   1126   // performance concern, we can implement a mangling of the predicate
   1127   // data easilly enough with a map back to the actual string. That's
   1128   // overkill for now, though.
   1129 
   1130   // Make sure the predicate is in the table.
   1131   Decoders.insert(Decoder.str());
   1132   // Now figure out the index for when we write out the table.
   1133   DecoderSet::const_iterator P = std::find(Decoders.begin(),
   1134                                            Decoders.end(),
   1135                                            Decoder.str());
   1136   return (unsigned)(P - Decoders.begin());
   1137 }
   1138 
   1139 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
   1140                                      const std::string &PredicateNamespace) {
   1141   if (str[0] == '!')
   1142     o << "!(Bits & " << PredicateNamespace << "::"
   1143       << str.slice(1,str.size()) << ")";
   1144   else
   1145     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
   1146 }
   1147 
   1148 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
   1149                                        unsigned Opc) const {
   1150   ListInit *Predicates =
   1151     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
   1152   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
   1153     Record *Pred = Predicates->getElementAsRecord(i);
   1154     if (!Pred->getValue("AssemblerMatcherPredicate"))
   1155       continue;
   1156 
   1157     std::string P = Pred->getValueAsString("AssemblerCondString");
   1158 
   1159     if (!P.length())
   1160       continue;
   1161 
   1162     if (i != 0)
   1163       o << " && ";
   1164 
   1165     StringRef SR(P);
   1166     std::pair<StringRef, StringRef> pairs = SR.split(',');
   1167     while (pairs.second.size()) {
   1168       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
   1169       o << " && ";
   1170       pairs = pairs.second.split(',');
   1171     }
   1172     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
   1173   }
   1174   return Predicates->getSize() > 0;
   1175 }
   1176 
   1177 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
   1178   ListInit *Predicates =
   1179     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
   1180   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
   1181     Record *Pred = Predicates->getElementAsRecord(i);
   1182     if (!Pred->getValue("AssemblerMatcherPredicate"))
   1183       continue;
   1184 
   1185     std::string P = Pred->getValueAsString("AssemblerCondString");
   1186 
   1187     if (!P.length())
   1188       continue;
   1189 
   1190     return true;
   1191   }
   1192   return false;
   1193 }
   1194 
   1195 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
   1196                                           StringRef Predicate) const {
   1197   // Using the full predicate string as the key value here is a bit
   1198   // heavyweight, but is effective. If the string comparisons become a
   1199   // performance concern, we can implement a mangling of the predicate
   1200   // data easilly enough with a map back to the actual string. That's
   1201   // overkill for now, though.
   1202 
   1203   // Make sure the predicate is in the table.
   1204   TableInfo.Predicates.insert(Predicate.str());
   1205   // Now figure out the index for when we write out the table.
   1206   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
   1207                                              TableInfo.Predicates.end(),
   1208                                              Predicate.str());
   1209   return (unsigned)(P - TableInfo.Predicates.begin());
   1210 }
   1211 
   1212 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
   1213                                             unsigned Opc) const {
   1214   if (!doesOpcodeNeedPredicate(Opc))
   1215     return;
   1216 
   1217   // Build up the predicate string.
   1218   SmallString<256> Predicate;
   1219   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
   1220   // than a stream.
   1221   raw_svector_ostream PS(Predicate);
   1222   unsigned I = 0;
   1223   emitPredicateMatch(PS, I, Opc);
   1224 
   1225   // Figure out the index into the predicate table for the predicate just
   1226   // computed.
   1227   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
   1228   SmallString<16> PBytes;
   1229   raw_svector_ostream S(PBytes);
   1230   encodeULEB128(PIdx, S);
   1231   S.flush();
   1232 
   1233   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
   1234   // Predicate index
   1235   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
   1236     TableInfo.Table.push_back(PBytes[i]);
   1237   // Push location for NumToSkip backpatching.
   1238   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
   1239   TableInfo.Table.push_back(0);
   1240   TableInfo.Table.push_back(0);
   1241 }
   1242 
   1243 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
   1244                                            unsigned Opc) const {
   1245   BitsInit *SFBits =
   1246     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
   1247   if (!SFBits) return;
   1248   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
   1249 
   1250   APInt PositiveMask(BitWidth, 0ULL);
   1251   APInt NegativeMask(BitWidth, 0ULL);
   1252   for (unsigned i = 0; i < BitWidth; ++i) {
   1253     bit_value_t B = bitFromBits(*SFBits, i);
   1254     bit_value_t IB = bitFromBits(*InstBits, i);
   1255 
   1256     if (B != BIT_TRUE) continue;
   1257 
   1258     switch (IB) {
   1259     case BIT_FALSE:
   1260       // The bit is meant to be false, so emit a check to see if it is true.
   1261       PositiveMask.setBit(i);
   1262       break;
   1263     case BIT_TRUE:
   1264       // The bit is meant to be true, so emit a check to see if it is false.
   1265       NegativeMask.setBit(i);
   1266       break;
   1267     default:
   1268       // The bit is not set; this must be an error!
   1269       StringRef Name = AllInstructions[Opc]->TheDef->getName();
   1270       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
   1271              << " is set but Inst{" << i << "} is unset!\n"
   1272              << "  - You can only mark a bit as SoftFail if it is fully defined"
   1273              << " (1/0 - not '?') in Inst\n";
   1274       return;
   1275     }
   1276   }
   1277 
   1278   bool NeedPositiveMask = PositiveMask.getBoolValue();
   1279   bool NeedNegativeMask = NegativeMask.getBoolValue();
   1280 
   1281   if (!NeedPositiveMask && !NeedNegativeMask)
   1282     return;
   1283 
   1284   TableInfo.Table.push_back(MCD::OPC_SoftFail);
   1285 
   1286   SmallString<16> MaskBytes;
   1287   raw_svector_ostream S(MaskBytes);
   1288   if (NeedPositiveMask) {
   1289     encodeULEB128(PositiveMask.getZExtValue(), S);
   1290     S.flush();
   1291     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
   1292       TableInfo.Table.push_back(MaskBytes[i]);
   1293   } else
   1294     TableInfo.Table.push_back(0);
   1295   if (NeedNegativeMask) {
   1296     MaskBytes.clear();
   1297     S.resync();
   1298     encodeULEB128(NegativeMask.getZExtValue(), S);
   1299     S.flush();
   1300     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
   1301       TableInfo.Table.push_back(MaskBytes[i]);
   1302   } else
   1303     TableInfo.Table.push_back(0);
   1304 }
   1305 
   1306 // Emits table entries to decode the singleton.
   1307 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
   1308                                             unsigned Opc) const {
   1309   std::vector<unsigned> StartBits;
   1310   std::vector<unsigned> EndBits;
   1311   std::vector<uint64_t> FieldVals;
   1312   insn_t Insn;
   1313   insnWithID(Insn, Opc);
   1314 
   1315   // Look for islands of undecoded bits of the singleton.
   1316   getIslands(StartBits, EndBits, FieldVals, Insn);
   1317 
   1318   unsigned Size = StartBits.size();
   1319 
   1320   // Emit the predicate table entry if one is needed.
   1321   emitPredicateTableEntry(TableInfo, Opc);
   1322 
   1323   // Check any additional encoding fields needed.
   1324   for (unsigned I = Size; I != 0; --I) {
   1325     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
   1326     TableInfo.Table.push_back(MCD::OPC_CheckField);
   1327     TableInfo.Table.push_back(StartBits[I-1]);
   1328     TableInfo.Table.push_back(NumBits);
   1329     uint8_t Buffer[8], *p;
   1330     encodeULEB128(FieldVals[I-1], Buffer);
   1331     for (p = Buffer; *p >= 128 ; ++p)
   1332       TableInfo.Table.push_back(*p);
   1333     TableInfo.Table.push_back(*p);
   1334     // Push location for NumToSkip backpatching.
   1335     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
   1336     // The fixup is always 16-bits, so go ahead and allocate the space
   1337     // in the table so all our relative position calculations work OK even
   1338     // before we fully resolve the real value here.
   1339     TableInfo.Table.push_back(0);
   1340     TableInfo.Table.push_back(0);
   1341   }
   1342 
   1343   // Check for soft failure of the match.
   1344   emitSoftFailTableEntry(TableInfo, Opc);
   1345 
   1346   TableInfo.Table.push_back(MCD::OPC_Decode);
   1347   uint8_t Buffer[8], *p;
   1348   encodeULEB128(Opc, Buffer);
   1349   for (p = Buffer; *p >= 128 ; ++p)
   1350     TableInfo.Table.push_back(*p);
   1351   TableInfo.Table.push_back(*p);
   1352 
   1353   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
   1354   SmallString<16> Bytes;
   1355   raw_svector_ostream S(Bytes);
   1356   encodeULEB128(DIdx, S);
   1357   S.flush();
   1358 
   1359   // Decoder index
   1360   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
   1361     TableInfo.Table.push_back(Bytes[i]);
   1362 }
   1363 
   1364 // Emits table entries to decode the singleton, and then to decode the rest.
   1365 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
   1366                                             const Filter &Best) const {
   1367   unsigned Opc = Best.getSingletonOpc();
   1368 
   1369   // complex singletons need predicate checks from the first singleton
   1370   // to refer forward to the variable filterchooser that follows.
   1371   TableInfo.FixupStack.push_back(FixupList());
   1372 
   1373   emitSingletonTableEntry(TableInfo, Opc);
   1374 
   1375   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
   1376                      TableInfo.Table.size());
   1377   TableInfo.FixupStack.pop_back();
   1378 
   1379   Best.getVariableFC().emitTableEntries(TableInfo);
   1380 }
   1381 
   1382 
   1383 // Assign a single filter and run with it.  Top level API client can initialize
   1384 // with a single filter to start the filtering process.
   1385 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
   1386                                     bool mixed) {
   1387   Filters.clear();
   1388   Filter F(*this, startBit, numBit, true);
   1389   Filters.push_back(F);
   1390   BestIndex = 0; // Sole Filter instance to choose from.
   1391   bestFilter().recurse();
   1392 }
   1393 
   1394 // reportRegion is a helper function for filterProcessor to mark a region as
   1395 // eligible for use as a filter region.
   1396 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
   1397                                  unsigned BitIndex, bool AllowMixed) {
   1398   if (RA == ATTR_MIXED && AllowMixed)
   1399     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
   1400   else if (RA == ATTR_ALL_SET && !AllowMixed)
   1401     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
   1402 }
   1403 
   1404 // FilterProcessor scans the well-known encoding bits of the instructions and
   1405 // builds up a list of candidate filters.  It chooses the best filter and
   1406 // recursively descends down the decoding tree.
   1407 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
   1408   Filters.clear();
   1409   BestIndex = -1;
   1410   unsigned numInstructions = Opcodes.size();
   1411 
   1412   assert(numInstructions && "Filter created with no instructions");
   1413 
   1414   // No further filtering is necessary.
   1415   if (numInstructions == 1)
   1416     return true;
   1417 
   1418   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
   1419   // instructions is 3.
   1420   if (AllowMixed && !Greedy) {
   1421     assert(numInstructions == 3);
   1422 
   1423     for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1424       std::vector<unsigned> StartBits;
   1425       std::vector<unsigned> EndBits;
   1426       std::vector<uint64_t> FieldVals;
   1427       insn_t Insn;
   1428 
   1429       insnWithID(Insn, Opcodes[i]);
   1430 
   1431       // Look for islands of undecoded bits of any instruction.
   1432       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
   1433         // Found an instruction with island(s).  Now just assign a filter.
   1434         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
   1435         return true;
   1436       }
   1437     }
   1438   }
   1439 
   1440   unsigned BitIndex;
   1441 
   1442   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
   1443   // The automaton consumes the corresponding bit from each
   1444   // instruction.
   1445   //
   1446   //   Input symbols: 0, 1, and _ (unset).
   1447   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
   1448   //   Initial state: NONE.
   1449   //
   1450   // (NONE) ------- [01] -> (ALL_SET)
   1451   // (NONE) ------- _ ----> (ALL_UNSET)
   1452   // (ALL_SET) ---- [01] -> (ALL_SET)
   1453   // (ALL_SET) ---- _ ----> (MIXED)
   1454   // (ALL_UNSET) -- [01] -> (MIXED)
   1455   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
   1456   // (MIXED) ------ . ----> (MIXED)
   1457   // (FILTERED)---- . ----> (FILTERED)
   1458 
   1459   std::vector<bitAttr_t> bitAttrs;
   1460 
   1461   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
   1462   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
   1463   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
   1464     if (FilterBitValues[BitIndex] == BIT_TRUE ||
   1465         FilterBitValues[BitIndex] == BIT_FALSE)
   1466       bitAttrs.push_back(ATTR_FILTERED);
   1467     else
   1468       bitAttrs.push_back(ATTR_NONE);
   1469 
   1470   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
   1471     insn_t insn;
   1472 
   1473     insnWithID(insn, Opcodes[InsnIndex]);
   1474 
   1475     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
   1476       switch (bitAttrs[BitIndex]) {
   1477       case ATTR_NONE:
   1478         if (insn[BitIndex] == BIT_UNSET)
   1479           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
   1480         else
   1481           bitAttrs[BitIndex] = ATTR_ALL_SET;
   1482         break;
   1483       case ATTR_ALL_SET:
   1484         if (insn[BitIndex] == BIT_UNSET)
   1485           bitAttrs[BitIndex] = ATTR_MIXED;
   1486         break;
   1487       case ATTR_ALL_UNSET:
   1488         if (insn[BitIndex] != BIT_UNSET)
   1489           bitAttrs[BitIndex] = ATTR_MIXED;
   1490         break;
   1491       case ATTR_MIXED:
   1492       case ATTR_FILTERED:
   1493         break;
   1494       }
   1495     }
   1496   }
   1497 
   1498   // The regionAttr automaton consumes the bitAttrs automatons' state,
   1499   // lowest-to-highest.
   1500   //
   1501   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
   1502   //   States:        NONE, ALL_SET, MIXED
   1503   //   Initial state: NONE
   1504   //
   1505   // (NONE) ----- F --> (NONE)
   1506   // (NONE) ----- S --> (ALL_SET)     ; and set region start
   1507   // (NONE) ----- U --> (NONE)
   1508   // (NONE) ----- M --> (MIXED)       ; and set region start
   1509   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
   1510   // (ALL_SET) -- S --> (ALL_SET)
   1511   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
   1512   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
   1513   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
   1514   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
   1515   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
   1516   // (MIXED) ---- M --> (MIXED)
   1517 
   1518   bitAttr_t RA = ATTR_NONE;
   1519   unsigned StartBit = 0;
   1520 
   1521   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
   1522     bitAttr_t bitAttr = bitAttrs[BitIndex];
   1523 
   1524     assert(bitAttr != ATTR_NONE && "Bit without attributes");
   1525 
   1526     switch (RA) {
   1527     case ATTR_NONE:
   1528       switch (bitAttr) {
   1529       case ATTR_FILTERED:
   1530         break;
   1531       case ATTR_ALL_SET:
   1532         StartBit = BitIndex;
   1533         RA = ATTR_ALL_SET;
   1534         break;
   1535       case ATTR_ALL_UNSET:
   1536         break;
   1537       case ATTR_MIXED:
   1538         StartBit = BitIndex;
   1539         RA = ATTR_MIXED;
   1540         break;
   1541       default:
   1542         llvm_unreachable("Unexpected bitAttr!");
   1543       }
   1544       break;
   1545     case ATTR_ALL_SET:
   1546       switch (bitAttr) {
   1547       case ATTR_FILTERED:
   1548         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1549         RA = ATTR_NONE;
   1550         break;
   1551       case ATTR_ALL_SET:
   1552         break;
   1553       case ATTR_ALL_UNSET:
   1554         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1555         RA = ATTR_NONE;
   1556         break;
   1557       case ATTR_MIXED:
   1558         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1559         StartBit = BitIndex;
   1560         RA = ATTR_MIXED;
   1561         break;
   1562       default:
   1563         llvm_unreachable("Unexpected bitAttr!");
   1564       }
   1565       break;
   1566     case ATTR_MIXED:
   1567       switch (bitAttr) {
   1568       case ATTR_FILTERED:
   1569         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1570         StartBit = BitIndex;
   1571         RA = ATTR_NONE;
   1572         break;
   1573       case ATTR_ALL_SET:
   1574         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1575         StartBit = BitIndex;
   1576         RA = ATTR_ALL_SET;
   1577         break;
   1578       case ATTR_ALL_UNSET:
   1579         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1580         RA = ATTR_NONE;
   1581         break;
   1582       case ATTR_MIXED:
   1583         break;
   1584       default:
   1585         llvm_unreachable("Unexpected bitAttr!");
   1586       }
   1587       break;
   1588     case ATTR_ALL_UNSET:
   1589       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
   1590     case ATTR_FILTERED:
   1591       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
   1592     }
   1593   }
   1594 
   1595   // At the end, if we're still in ALL_SET or MIXED states, report a region
   1596   switch (RA) {
   1597   case ATTR_NONE:
   1598     break;
   1599   case ATTR_FILTERED:
   1600     break;
   1601   case ATTR_ALL_SET:
   1602     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1603     break;
   1604   case ATTR_ALL_UNSET:
   1605     break;
   1606   case ATTR_MIXED:
   1607     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1608     break;
   1609   }
   1610 
   1611   // We have finished with the filter processings.  Now it's time to choose
   1612   // the best performing filter.
   1613   BestIndex = 0;
   1614   bool AllUseless = true;
   1615   unsigned BestScore = 0;
   1616 
   1617   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
   1618     unsigned Usefulness = Filters[i].usefulness();
   1619 
   1620     if (Usefulness)
   1621       AllUseless = false;
   1622 
   1623     if (Usefulness > BestScore) {
   1624       BestIndex = i;
   1625       BestScore = Usefulness;
   1626     }
   1627   }
   1628 
   1629   if (!AllUseless)
   1630     bestFilter().recurse();
   1631 
   1632   return !AllUseless;
   1633 } // end of FilterChooser::filterProcessor(bool)
   1634 
   1635 // Decides on the best configuration of filter(s) to use in order to decode
   1636 // the instructions.  A conflict of instructions may occur, in which case we
   1637 // dump the conflict set to the standard error.
   1638 void FilterChooser::doFilter() {
   1639   unsigned Num = Opcodes.size();
   1640   assert(Num && "FilterChooser created with no instructions");
   1641 
   1642   // Try regions of consecutive known bit values first.
   1643   if (filterProcessor(false))
   1644     return;
   1645 
   1646   // Then regions of mixed bits (both known and unitialized bit values allowed).
   1647   if (filterProcessor(true))
   1648     return;
   1649 
   1650   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
   1651   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
   1652   // well-known encoding pattern.  In such case, we backtrack and scan for the
   1653   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
   1654   if (Num == 3 && filterProcessor(true, false))
   1655     return;
   1656 
   1657   // If we come to here, the instruction decoding has failed.
   1658   // Set the BestIndex to -1 to indicate so.
   1659   BestIndex = -1;
   1660 }
   1661 
   1662 // emitTableEntries - Emit state machine entries to decode our share of
   1663 // instructions.
   1664 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
   1665   if (Opcodes.size() == 1) {
   1666     // There is only one instruction in the set, which is great!
   1667     // Call emitSingletonDecoder() to see whether there are any remaining
   1668     // encodings bits.
   1669     emitSingletonTableEntry(TableInfo, Opcodes[0]);
   1670     return;
   1671   }
   1672 
   1673   // Choose the best filter to do the decodings!
   1674   if (BestIndex != -1) {
   1675     const Filter &Best = Filters[BestIndex];
   1676     if (Best.getNumFiltered() == 1)
   1677       emitSingletonTableEntry(TableInfo, Best);
   1678     else
   1679       Best.emitTableEntry(TableInfo);
   1680     return;
   1681   }
   1682 
   1683   // We don't know how to decode these instructions!  Dump the
   1684   // conflict set and bail.
   1685 
   1686   // Print out useful conflict information for postmortem analysis.
   1687   errs() << "Decoding Conflict:\n";
   1688 
   1689   dumpStack(errs(), "\t\t");
   1690 
   1691   for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1692     const std::string &Name = nameWithID(Opcodes[i]);
   1693 
   1694     errs() << '\t' << Name << " ";
   1695     dumpBits(errs(),
   1696              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
   1697     errs() << '\n';
   1698   }
   1699 }
   1700 
   1701 static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc,
   1702                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
   1703   const Record &Def = *CGI.TheDef;
   1704   // If all the bit positions are not specified; do not decode this instruction.
   1705   // We are bound to fail!  For proper disassembly, the well-known encoding bits
   1706   // of the instruction must be fully specified.
   1707   //
   1708   // This also removes pseudo instructions from considerations of disassembly,
   1709   // which is a better design and less fragile than the name matchings.
   1710   // Ignore "asm parser only" instructions.
   1711   if (Def.getValueAsBit("isAsmParserOnly") ||
   1712       Def.getValueAsBit("isCodeGenOnly"))
   1713     return false;
   1714 
   1715   BitsInit &Bits = getBitsField(Def, "Inst");
   1716   if (Bits.allInComplete()) return false;
   1717 
   1718   std::vector<OperandInfo> InsnOperands;
   1719 
   1720   // If the instruction has specified a custom decoding hook, use that instead
   1721   // of trying to auto-generate the decoder.
   1722   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
   1723   if (InstDecoder != "") {
   1724     InsnOperands.push_back(OperandInfo(InstDecoder));
   1725     Operands[Opc] = InsnOperands;
   1726     return true;
   1727   }
   1728 
   1729   // Generate a description of the operand of the instruction that we know
   1730   // how to decode automatically.
   1731   // FIXME: We'll need to have a way to manually override this as needed.
   1732 
   1733   // Gather the outputs/inputs of the instruction, so we can find their
   1734   // positions in the encoding.  This assumes for now that they appear in the
   1735   // MCInst in the order that they're listed.
   1736   std::vector<std::pair<Init*, std::string> > InOutOperands;
   1737   DagInit *Out  = Def.getValueAsDag("OutOperandList");
   1738   DagInit *In  = Def.getValueAsDag("InOperandList");
   1739   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
   1740     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
   1741   for (unsigned i = 0; i < In->getNumArgs(); ++i)
   1742     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
   1743 
   1744   // Search for tied operands, so that we can correctly instantiate
   1745   // operands that are not explicitly represented in the encoding.
   1746   std::map<std::string, std::string> TiedNames;
   1747   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
   1748     int tiedTo = CGI.Operands[i].getTiedRegister();
   1749     if (tiedTo != -1) {
   1750       TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
   1751       TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
   1752     }
   1753   }
   1754 
   1755   // For each operand, see if we can figure out where it is encoded.
   1756   for (std::vector<std::pair<Init*, std::string> >::const_iterator
   1757        NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
   1758     std::string Decoder = "";
   1759 
   1760     // At this point, we can locate the field, but we need to know how to
   1761     // interpret it.  As a first step, require the target to provide callbacks
   1762     // for decoding register classes.
   1763     // FIXME: This need to be extended to handle instructions with custom
   1764     // decoder methods, and operands with (simple) MIOperandInfo's.
   1765     TypedInit *TI = cast<TypedInit>(NI->first);
   1766     RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
   1767     Record *TypeRecord = Type->getRecord();
   1768     bool isReg = false;
   1769     if (TypeRecord->isSubClassOf("RegisterOperand"))
   1770       TypeRecord = TypeRecord->getValueAsDef("RegClass");
   1771     if (TypeRecord->isSubClassOf("RegisterClass")) {
   1772       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
   1773       isReg = true;
   1774     }
   1775 
   1776     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
   1777     StringInit *String = DecoderString ?
   1778       dyn_cast<StringInit>(DecoderString->getValue()) : 0;
   1779     if (!isReg && String && String->getValue() != "")
   1780       Decoder = String->getValue();
   1781 
   1782     OperandInfo OpInfo(Decoder);
   1783     unsigned Base = ~0U;
   1784     unsigned Width = 0;
   1785     unsigned Offset = 0;
   1786 
   1787     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
   1788       VarInit *Var = 0;
   1789       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
   1790       if (BI)
   1791         Var = dyn_cast<VarInit>(BI->getBitVar());
   1792       else
   1793         Var = dyn_cast<VarInit>(Bits.getBit(bi));
   1794 
   1795       if (!Var) {
   1796         if (Base != ~0U) {
   1797           OpInfo.addField(Base, Width, Offset);
   1798           Base = ~0U;
   1799           Width = 0;
   1800           Offset = 0;
   1801         }
   1802         continue;
   1803       }
   1804 
   1805       if (Var->getName() != NI->second &&
   1806           Var->getName() != TiedNames[NI->second]) {
   1807         if (Base != ~0U) {
   1808           OpInfo.addField(Base, Width, Offset);
   1809           Base = ~0U;
   1810           Width = 0;
   1811           Offset = 0;
   1812         }
   1813         continue;
   1814       }
   1815 
   1816       if (Base == ~0U) {
   1817         Base = bi;
   1818         Width = 1;
   1819         Offset = BI ? BI->getBitNum() : 0;
   1820       } else if (BI && BI->getBitNum() != Offset + Width) {
   1821         OpInfo.addField(Base, Width, Offset);
   1822         Base = bi;
   1823         Width = 1;
   1824         Offset = BI->getBitNum();
   1825       } else {
   1826         ++Width;
   1827       }
   1828     }
   1829 
   1830     if (Base != ~0U)
   1831       OpInfo.addField(Base, Width, Offset);
   1832 
   1833     if (OpInfo.numFields() > 0)
   1834       InsnOperands.push_back(OpInfo);
   1835   }
   1836 
   1837   Operands[Opc] = InsnOperands;
   1838 
   1839 
   1840 #if 0
   1841   DEBUG({
   1842       // Dumps the instruction encoding bits.
   1843       dumpBits(errs(), Bits);
   1844 
   1845       errs() << '\n';
   1846 
   1847       // Dumps the list of operand info.
   1848       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
   1849         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
   1850         const std::string &OperandName = Info.Name;
   1851         const Record &OperandDef = *Info.Rec;
   1852 
   1853         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
   1854       }
   1855     });
   1856 #endif
   1857 
   1858   return true;
   1859 }
   1860 
   1861 // emitFieldFromInstruction - Emit the templated helper function
   1862 // fieldFromInstruction().
   1863 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
   1864   OS << "// Helper function for extracting fields from encoded instructions.\n"
   1865      << "template<typename InsnType>\n"
   1866    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
   1867      << "                                     unsigned numBits) {\n"
   1868      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
   1869      << "           \"Instruction field out of bounds!\");\n"
   1870      << "    InsnType fieldMask;\n"
   1871      << "    if (numBits == sizeof(InsnType)*8)\n"
   1872      << "      fieldMask = (InsnType)(-1LL);\n"
   1873      << "    else\n"
   1874      << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
   1875      << "    return (insn & fieldMask) >> startBit;\n"
   1876      << "}\n\n";
   1877 }
   1878 
   1879 // emitDecodeInstruction - Emit the templated helper function
   1880 // decodeInstruction().
   1881 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
   1882   OS << "template<typename InsnType>\n"
   1883      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
   1884      << "                                      InsnType insn, uint64_t Address,\n"
   1885      << "                                      const void *DisAsm,\n"
   1886      << "                                      const MCSubtargetInfo &STI) {\n"
   1887      << "  uint64_t Bits = STI.getFeatureBits();\n"
   1888      << "\n"
   1889      << "  const uint8_t *Ptr = DecodeTable;\n"
   1890      << "  uint32_t CurFieldValue = 0;\n"
   1891      << "  DecodeStatus S = MCDisassembler::Success;\n"
   1892      << "  for (;;) {\n"
   1893      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
   1894      << "    switch (*Ptr) {\n"
   1895      << "    default:\n"
   1896      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
   1897      << "      return MCDisassembler::Fail;\n"
   1898      << "    case MCD::OPC_ExtractField: {\n"
   1899      << "      unsigned Start = *++Ptr;\n"
   1900      << "      unsigned Len = *++Ptr;\n"
   1901      << "      ++Ptr;\n"
   1902      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
   1903      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
   1904      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
   1905      << "      break;\n"
   1906      << "    }\n"
   1907      << "    case MCD::OPC_FilterValue: {\n"
   1908      << "      // Decode the field value.\n"
   1909      << "      unsigned Len;\n"
   1910      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
   1911      << "      Ptr += Len;\n"
   1912      << "      // NumToSkip is a plain 16-bit integer.\n"
   1913      << "      unsigned NumToSkip = *Ptr++;\n"
   1914      << "      NumToSkip |= (*Ptr++) << 8;\n"
   1915      << "\n"
   1916      << "      // Perform the filter operation.\n"
   1917      << "      if (Val != CurFieldValue)\n"
   1918      << "        Ptr += NumToSkip;\n"
   1919      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
   1920      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
   1921      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
   1922      << "\n"
   1923      << "      break;\n"
   1924      << "    }\n"
   1925      << "    case MCD::OPC_CheckField: {\n"
   1926      << "      unsigned Start = *++Ptr;\n"
   1927      << "      unsigned Len = *++Ptr;\n"
   1928      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
   1929      << "      // Decode the field value.\n"
   1930      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
   1931      << "      Ptr += Len;\n"
   1932      << "      // NumToSkip is a plain 16-bit integer.\n"
   1933      << "      unsigned NumToSkip = *Ptr++;\n"
   1934      << "      NumToSkip |= (*Ptr++) << 8;\n"
   1935      << "\n"
   1936      << "      // If the actual and expected values don't match, skip.\n"
   1937      << "      if (ExpectedValue != FieldValue)\n"
   1938      << "        Ptr += NumToSkip;\n"
   1939      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
   1940      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
   1941      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
   1942      << "                   << ExpectedValue << \": \"\n"
   1943      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
   1944      << "      break;\n"
   1945      << "    }\n"
   1946      << "    case MCD::OPC_CheckPredicate: {\n"
   1947      << "      unsigned Len;\n"
   1948      << "      // Decode the Predicate Index value.\n"
   1949      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
   1950      << "      Ptr += Len;\n"
   1951      << "      // NumToSkip is a plain 16-bit integer.\n"
   1952      << "      unsigned NumToSkip = *Ptr++;\n"
   1953      << "      NumToSkip |= (*Ptr++) << 8;\n"
   1954      << "      // Check the predicate.\n"
   1955      << "      bool Pred;\n"
   1956      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
   1957      << "        Ptr += NumToSkip;\n"
   1958      << "      (void)Pred;\n"
   1959      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
   1960      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
   1961      << "\n"
   1962      << "      break;\n"
   1963      << "    }\n"
   1964      << "    case MCD::OPC_Decode: {\n"
   1965      << "      unsigned Len;\n"
   1966      << "      // Decode the Opcode value.\n"
   1967      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
   1968      << "      Ptr += Len;\n"
   1969      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
   1970      << "      Ptr += Len;\n"
   1971      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
   1972      << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
   1973      << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
   1974      << "\n"
   1975      << "      MI.setOpcode(Opc);\n"
   1976      << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
   1977      << "    }\n"
   1978      << "    case MCD::OPC_SoftFail: {\n"
   1979      << "      // Decode the mask values.\n"
   1980      << "      unsigned Len;\n"
   1981      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
   1982      << "      Ptr += Len;\n"
   1983      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
   1984      << "      Ptr += Len;\n"
   1985      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
   1986      << "      if (Fail)\n"
   1987      << "        S = MCDisassembler::SoftFail;\n"
   1988      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
   1989      << "      break;\n"
   1990      << "    }\n"
   1991      << "    case MCD::OPC_Fail: {\n"
   1992      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
   1993      << "      return MCDisassembler::Fail;\n"
   1994      << "    }\n"
   1995      << "    }\n"
   1996      << "  }\n"
   1997      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
   1998      << "}\n\n";
   1999 }
   2000 
   2001 // Emits disassembler code for instruction decoding.
   2002 void FixedLenDecoderEmitter::run(raw_ostream &o) {
   2003   formatted_raw_ostream OS(o);
   2004   OS << "#include \"llvm/MC/MCInst.h\"\n";
   2005   OS << "#include \"llvm/Support/Debug.h\"\n";
   2006   OS << "#include \"llvm/Support/DataTypes.h\"\n";
   2007   OS << "#include \"llvm/Support/LEB128.h\"\n";
   2008   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
   2009   OS << "#include <assert.h>\n";
   2010   OS << '\n';
   2011   OS << "namespace llvm {\n\n";
   2012 
   2013   emitFieldFromInstruction(OS);
   2014 
   2015   // Parameterize the decoders based on namespace and instruction width.
   2016   NumberedInstructions = &Target.getInstructionsByEnumValue();
   2017   std::map<std::pair<std::string, unsigned>,
   2018            std::vector<unsigned> > OpcMap;
   2019   std::map<unsigned, std::vector<OperandInfo> > Operands;
   2020 
   2021   for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
   2022     const CodeGenInstruction *Inst = NumberedInstructions->at(i);
   2023     const Record *Def = Inst->TheDef;
   2024     unsigned Size = Def->getValueAsInt("Size");
   2025     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
   2026         Def->getValueAsBit("isPseudo") ||
   2027         Def->getValueAsBit("isAsmParserOnly") ||
   2028         Def->getValueAsBit("isCodeGenOnly"))
   2029       continue;
   2030 
   2031     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
   2032 
   2033     if (Size) {
   2034       if (populateInstruction(*Inst, i, Operands)) {
   2035         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
   2036       }
   2037     }
   2038   }
   2039 
   2040   DecoderTableInfo TableInfo;
   2041   std::set<unsigned> Sizes;
   2042   for (std::map<std::pair<std::string, unsigned>,
   2043                 std::vector<unsigned> >::const_iterator
   2044        I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
   2045     // Emit the decoder for this namespace+width combination.
   2046     FilterChooser FC(*NumberedInstructions, I->second, Operands,
   2047                      8*I->first.second, this);
   2048 
   2049     // The decode table is cleared for each top level decoder function. The
   2050     // predicates and decoders themselves, however, are shared across all
   2051     // decoders to give more opportunities for uniqueing.
   2052     TableInfo.Table.clear();
   2053     TableInfo.FixupStack.clear();
   2054     TableInfo.Table.reserve(16384);
   2055     TableInfo.FixupStack.push_back(FixupList());
   2056     FC.emitTableEntries(TableInfo);
   2057     // Any NumToSkip fixups in the top level scope can resolve to the
   2058     // OPC_Fail at the end of the table.
   2059     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
   2060     // Resolve any NumToSkip fixups in the current scope.
   2061     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
   2062                        TableInfo.Table.size());
   2063     TableInfo.FixupStack.clear();
   2064 
   2065     TableInfo.Table.push_back(MCD::OPC_Fail);
   2066 
   2067     // Print the table to the output stream.
   2068     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first);
   2069     OS.flush();
   2070   }
   2071 
   2072   // Emit the predicate function.
   2073   emitPredicateFunction(OS, TableInfo.Predicates, 0);
   2074 
   2075   // Emit the decoder function.
   2076   emitDecoderFunction(OS, TableInfo.Decoders, 0);
   2077 
   2078   // Emit the main entry point for the decoder, decodeInstruction().
   2079   emitDecodeInstruction(OS);
   2080 
   2081   OS << "\n} // End llvm namespace\n";
   2082 }
   2083 
   2084 namespace llvm {
   2085 
   2086 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
   2087                          std::string PredicateNamespace,
   2088                          std::string GPrefix,
   2089                          std::string GPostfix,
   2090                          std::string ROK,
   2091                          std::string RFail,
   2092                          std::string L) {
   2093   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
   2094                          ROK, RFail, L).run(OS);
   2095 }
   2096 
   2097 } // End llvm namespace
   2098