1 // Copyright 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/scheduler/delay_based_time_source.h" 6 7 #include <algorithm> 8 #include <cmath> 9 10 #include "base/bind.h" 11 #include "base/debug/trace_event.h" 12 #include "base/location.h" 13 #include "base/logging.h" 14 #include "base/single_thread_task_runner.h" 15 16 namespace cc { 17 18 namespace { 19 20 // kDoubleTickDivisor prevents ticks from running within the specified 21 // fraction of an interval. This helps account for jitter in the timebase as 22 // well as quick timer reactivation. 23 static const int kDoubleTickDivisor = 2; 24 25 // kIntervalChangeThreshold is the fraction of the interval that will trigger an 26 // immediate interval change. kPhaseChangeThreshold is the fraction of the 27 // interval that will trigger an immediate phase change. If the changes are 28 // within the thresholds, the change will take place on the next tick. If 29 // either change is outside the thresholds, the next tick will be canceled and 30 // reissued immediately. 31 static const double kIntervalChangeThreshold = 0.25; 32 static const double kPhaseChangeThreshold = 0.25; 33 34 } // namespace 35 36 // The following methods correspond to the DelayBasedTimeSource that uses 37 // the base::TimeTicks::HighResNow as the timebase. 38 scoped_refptr<DelayBasedTimeSourceHighRes> DelayBasedTimeSourceHighRes::Create( 39 base::TimeDelta interval, 40 base::SingleThreadTaskRunner* task_runner) { 41 return make_scoped_refptr( 42 new DelayBasedTimeSourceHighRes(interval, task_runner)); 43 } 44 45 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes( 46 base::TimeDelta interval, base::SingleThreadTaskRunner* task_runner) 47 : DelayBasedTimeSource(interval, task_runner) {} 48 49 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {} 50 51 base::TimeTicks DelayBasedTimeSourceHighRes::Now() const { 52 return base::TimeTicks::HighResNow(); 53 } 54 55 // The following methods correspond to the DelayBasedTimeSource that uses 56 // the base::TimeTicks::Now as the timebase. 57 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create( 58 base::TimeDelta interval, 59 base::SingleThreadTaskRunner* task_runner) { 60 return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner)); 61 } 62 63 DelayBasedTimeSource::DelayBasedTimeSource( 64 base::TimeDelta interval, base::SingleThreadTaskRunner* task_runner) 65 : client_(NULL), 66 last_tick_time_(base::TimeTicks() - interval), 67 current_parameters_(interval, base::TimeTicks()), 68 next_parameters_(interval, base::TimeTicks()), 69 active_(false), 70 task_runner_(task_runner), 71 weak_factory_(this) {} 72 73 DelayBasedTimeSource::~DelayBasedTimeSource() {} 74 75 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) { 76 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active); 77 if (active == active_) 78 return base::TimeTicks(); 79 active_ = active; 80 81 if (!active_) { 82 weak_factory_.InvalidateWeakPtrs(); 83 return base::TimeTicks(); 84 } 85 86 PostNextTickTask(Now()); 87 88 // Determine if there was a tick that was missed while not active. 89 base::TimeTicks last_tick_time_if_always_active = 90 current_parameters_.tick_target - current_parameters_.interval; 91 base::TimeTicks new_tick_time_threshold = 92 last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor; 93 if (last_tick_time_if_always_active > new_tick_time_threshold) { 94 last_tick_time_ = last_tick_time_if_always_active; 95 return last_tick_time_; 96 } 97 98 return base::TimeTicks(); 99 } 100 101 bool DelayBasedTimeSource::Active() const { return active_; } 102 103 base::TimeTicks DelayBasedTimeSource::LastTickTime() { return last_tick_time_; } 104 105 base::TimeTicks DelayBasedTimeSource::NextTickTime() { 106 return Active() ? current_parameters_.tick_target : base::TimeTicks(); 107 } 108 109 void DelayBasedTimeSource::OnTimerFired() { 110 DCHECK(active_); 111 112 last_tick_time_ = current_parameters_.tick_target; 113 114 PostNextTickTask(Now()); 115 116 // Fire the tick. 117 if (client_) 118 client_->OnTimerTick(); 119 } 120 121 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) { 122 client_ = client; 123 } 124 125 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase, 126 base::TimeDelta interval) { 127 next_parameters_.interval = interval; 128 next_parameters_.tick_target = timebase; 129 130 if (!active_) { 131 // If we aren't active, there's no need to reset the timer. 132 return; 133 } 134 135 // If the change in interval is larger than the change threshold, 136 // request an immediate reset. 137 double interval_delta = 138 std::abs((interval - current_parameters_.interval).InSecondsF()); 139 double interval_change = interval_delta / interval.InSecondsF(); 140 if (interval_change > kIntervalChangeThreshold) { 141 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged", 142 TRACE_EVENT_SCOPE_THREAD); 143 SetActive(false); 144 SetActive(true); 145 return; 146 } 147 148 // If the change in phase is greater than the change threshold in either 149 // direction, request an immediate reset. This logic might result in a false 150 // negative if there is a simultaneous small change in the interval and the 151 // fmod just happens to return something near zero. Assuming the timebase 152 // is very recent though, which it should be, we'll still be ok because the 153 // old clock and new clock just happen to line up. 154 double target_delta = 155 std::abs((timebase - current_parameters_.tick_target).InSecondsF()); 156 double phase_change = 157 fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF(); 158 if (phase_change > kPhaseChangeThreshold && 159 phase_change < (1.0 - kPhaseChangeThreshold)) { 160 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged", 161 TRACE_EVENT_SCOPE_THREAD); 162 SetActive(false); 163 SetActive(true); 164 return; 165 } 166 } 167 168 base::TimeTicks DelayBasedTimeSource::Now() const { 169 return base::TimeTicks::Now(); 170 } 171 172 // This code tries to achieve an average tick rate as close to interval_ as 173 // possible. To do this, it has to deal with a few basic issues: 174 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666 175 // has to posted as 16 or 17. 176 // 2. A delayed task may come back a bit late (a few ms), or really late 177 // (frames later) 178 // 179 // The basic idea with this scheduler here is to keep track of where we *want* 180 // to run in tick_target_. We update this with the exact interval. 181 // 182 // Then, when we post our task, we take the floor of (tick_target_ and Now()). 183 // If we started at now=0, and 60FPs (all times in milliseconds): 184 // now=0 target=16.667 PostDelayedTask(16) 185 // 186 // When our callback runs, we figure out how far off we were from that goal. 187 // Because of the flooring operation, and assuming our timer runs exactly when 188 // it should, this yields: 189 // now=16 target=16.667 190 // 191 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a 192 // tick. Then, we update target to be 33.333. We now post another task based on 193 // the difference between our target and now: 194 // now=16 tick_target=16.667 new_target=33.333 --> 195 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17) 196 // 197 // Over time, with no late tasks, this leads to us posting tasks like this: 198 // now=0 tick_target=0 new_target=16.667 --> 199 // tick(), PostDelayedTask(16) 200 // now=16 tick_target=16.667 new_target=33.333 --> 201 // tick(), PostDelayedTask(17) 202 // now=33 tick_target=33.333 new_target=50.000 --> 203 // tick(), PostDelayedTask(17) 204 // now=50 tick_target=50.000 new_target=66.667 --> 205 // tick(), PostDelayedTask(16) 206 // 207 // We treat delays in tasks differently depending on the amount of delay we 208 // encounter. Suppose we posted a task with a target=16.667: 209 // Case 1: late but not unrecoverably-so 210 // now=18 tick_target=16.667 211 // 212 // Case 2: so late we obviously missed the tick 213 // now=25.0 tick_target=16.667 214 // 215 // We treat the first case as a tick anyway, and assume the delay was unusual. 216 // Thus, we compute the new_target based on the old timebase: 217 // now=18 tick_target=16.667 new_target=33.333 --> 218 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15) 219 // This brings us back to 18+15 = 33, which was where we would have been if the 220 // task hadn't been late. 221 // 222 // For the really late delay, we we move to the next logical tick. The timebase 223 // is not reset. 224 // now=37 tick_target=16.667 new_target=50.000 --> 225 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13) 226 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) { 227 base::TimeDelta new_interval = next_parameters_.interval; 228 229 // |interval_offset| is the offset from |now| to the next multiple of 230 // |interval| after |tick_target|, possibly negative if in the past. 231 base::TimeDelta interval_offset = base::TimeDelta::FromInternalValue( 232 (next_parameters_.tick_target - now).ToInternalValue() % 233 new_interval.ToInternalValue()); 234 // If |now| is exactly on the interval (i.e. offset==0), don't adjust. 235 // Otherwise, if |tick_target| was in the past, adjust forward to the next 236 // tick after |now|. 237 if (interval_offset.ToInternalValue() != 0 && 238 next_parameters_.tick_target < now) { 239 interval_offset += new_interval; 240 } 241 242 base::TimeTicks new_tick_target = now + interval_offset; 243 DCHECK(now <= new_tick_target) 244 << "now = " << now.ToInternalValue() 245 << "; new_tick_target = " << new_tick_target.ToInternalValue() 246 << "; new_interval = " << new_interval.InMicroseconds() 247 << "; tick_target = " << next_parameters_.tick_target.ToInternalValue() 248 << "; interval_offset = " << interval_offset.ToInternalValue(); 249 250 // Avoid double ticks when: 251 // 1) Turning off the timer and turning it right back on. 252 // 2) Jittery data is passed to SetTimebaseAndInterval(). 253 if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor) 254 new_tick_target += new_interval; 255 256 return new_tick_target; 257 } 258 259 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) { 260 base::TimeTicks new_tick_target = NextTickTarget(now); 261 262 // Post another task *before* the tick and update state 263 base::TimeDelta delay; 264 if (now <= new_tick_target) 265 delay = new_tick_target - now; 266 task_runner_->PostDelayedTask(FROM_HERE, 267 base::Bind(&DelayBasedTimeSource::OnTimerFired, 268 weak_factory_.GetWeakPtr()), 269 delay); 270 271 next_parameters_.tick_target = new_tick_target; 272 current_parameters_ = next_parameters_; 273 } 274 275 } // namespace cc 276