Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "utils.h"
     18 
     19 #include <pthread.h>
     20 #include <sys/stat.h>
     21 #include <sys/syscall.h>
     22 #include <sys/types.h>
     23 #include <unistd.h>
     24 
     25 #include "UniquePtr.h"
     26 #include "base/unix_file/fd_file.h"
     27 #include "dex_file-inl.h"
     28 #include "mirror/art_field-inl.h"
     29 #include "mirror/art_method-inl.h"
     30 #include "mirror/class-inl.h"
     31 #include "mirror/class_loader.h"
     32 #include "mirror/object-inl.h"
     33 #include "mirror/object_array-inl.h"
     34 #include "mirror/string.h"
     35 #include "object_utils.h"
     36 #include "os.h"
     37 #include "utf.h"
     38 
     39 #if !defined(HAVE_POSIX_CLOCKS)
     40 #include <sys/time.h>
     41 #endif
     42 
     43 #if defined(HAVE_PRCTL)
     44 #include <sys/prctl.h>
     45 #endif
     46 
     47 #if defined(__APPLE__)
     48 #include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
     49 #include <sys/syscall.h>
     50 #endif
     51 
     52 #include <corkscrew/backtrace.h>  // For DumpNativeStack.
     53 #include <corkscrew/demangle.h>  // For DumpNativeStack.
     54 
     55 #if defined(__linux__)
     56 #include <linux/unistd.h>
     57 #endif
     58 
     59 namespace art {
     60 
     61 pid_t GetTid() {
     62 #if defined(__APPLE__)
     63   uint64_t owner;
     64   CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
     65   return owner;
     66 #else
     67   // Neither bionic nor glibc exposes gettid(2).
     68   return syscall(__NR_gettid);
     69 #endif
     70 }
     71 
     72 std::string GetThreadName(pid_t tid) {
     73   std::string result;
     74   if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
     75     result.resize(result.size() - 1);  // Lose the trailing '\n'.
     76   } else {
     77     result = "<unknown>";
     78   }
     79   return result;
     80 }
     81 
     82 void GetThreadStack(pthread_t thread, void*& stack_base, size_t& stack_size) {
     83 #if defined(__APPLE__)
     84   stack_size = pthread_get_stacksize_np(thread);
     85   void* stack_addr = pthread_get_stackaddr_np(thread);
     86 
     87   // Check whether stack_addr is the base or end of the stack.
     88   // (On Mac OS 10.7, it's the end.)
     89   int stack_variable;
     90   if (stack_addr > &stack_variable) {
     91     stack_base = reinterpret_cast<byte*>(stack_addr) - stack_size;
     92   } else {
     93     stack_base = stack_addr;
     94   }
     95 #else
     96   pthread_attr_t attributes;
     97   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
     98   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, &stack_base, &stack_size), __FUNCTION__);
     99   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    100 #endif
    101 }
    102 
    103 bool ReadFileToString(const std::string& file_name, std::string* result) {
    104   UniquePtr<File> file(new File);
    105   if (!file->Open(file_name, O_RDONLY)) {
    106     return false;
    107   }
    108 
    109   std::vector<char> buf(8 * KB);
    110   while (true) {
    111     int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
    112     if (n == -1) {
    113       return false;
    114     }
    115     if (n == 0) {
    116       return true;
    117     }
    118     result->append(&buf[0], n);
    119   }
    120 }
    121 
    122 std::string GetIsoDate() {
    123   time_t now = time(NULL);
    124   tm tmbuf;
    125   tm* ptm = localtime_r(&now, &tmbuf);
    126   return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
    127       ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
    128       ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
    129 }
    130 
    131 uint64_t MilliTime() {
    132 #if defined(HAVE_POSIX_CLOCKS)
    133   timespec now;
    134   clock_gettime(CLOCK_MONOTONIC, &now);
    135   return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL;
    136 #else
    137   timeval now;
    138   gettimeofday(&now, NULL);
    139   return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_usec / 1000LL;
    140 #endif
    141 }
    142 
    143 uint64_t MicroTime() {
    144 #if defined(HAVE_POSIX_CLOCKS)
    145   timespec now;
    146   clock_gettime(CLOCK_MONOTONIC, &now);
    147   return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
    148 #else
    149   timeval now;
    150   gettimeofday(&now, NULL);
    151   return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_usec;
    152 #endif
    153 }
    154 
    155 uint64_t NanoTime() {
    156 #if defined(HAVE_POSIX_CLOCKS)
    157   timespec now;
    158   clock_gettime(CLOCK_MONOTONIC, &now);
    159   return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
    160 #else
    161   timeval now;
    162   gettimeofday(&now, NULL);
    163   return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL;
    164 #endif
    165 }
    166 
    167 uint64_t ThreadCpuNanoTime() {
    168 #if defined(HAVE_POSIX_CLOCKS)
    169   timespec now;
    170   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
    171   return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
    172 #else
    173   UNIMPLEMENTED(WARNING);
    174   return -1;
    175 #endif
    176 }
    177 
    178 void NanoSleep(uint64_t ns) {
    179   timespec tm;
    180   tm.tv_sec = 0;
    181   tm.tv_nsec = ns;
    182   nanosleep(&tm, NULL);
    183 }
    184 
    185 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
    186   int64_t endSec;
    187 
    188   if (absolute) {
    189 #if !defined(__APPLE__)
    190     clock_gettime(clock, ts);
    191 #else
    192     UNUSED(clock);
    193     timeval tv;
    194     gettimeofday(&tv, NULL);
    195     ts->tv_sec = tv.tv_sec;
    196     ts->tv_nsec = tv.tv_usec * 1000;
    197 #endif
    198   } else {
    199     ts->tv_sec = 0;
    200     ts->tv_nsec = 0;
    201   }
    202   endSec = ts->tv_sec + ms / 1000;
    203   if (UNLIKELY(endSec >= 0x7fffffff)) {
    204     std::ostringstream ss;
    205     LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
    206     endSec = 0x7ffffffe;
    207   }
    208   ts->tv_sec = endSec;
    209   ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
    210 
    211   // Catch rollover.
    212   if (ts->tv_nsec >= 1000000000L) {
    213     ts->tv_sec++;
    214     ts->tv_nsec -= 1000000000L;
    215   }
    216 }
    217 
    218 std::string PrettyDescriptor(const mirror::String* java_descriptor) {
    219   if (java_descriptor == NULL) {
    220     return "null";
    221   }
    222   return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
    223 }
    224 
    225 std::string PrettyDescriptor(const mirror::Class* klass) {
    226   if (klass == NULL) {
    227     return "null";
    228   }
    229   return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
    230 }
    231 
    232 std::string PrettyDescriptor(const std::string& descriptor) {
    233   // Count the number of '['s to get the dimensionality.
    234   const char* c = descriptor.c_str();
    235   size_t dim = 0;
    236   while (*c == '[') {
    237     dim++;
    238     c++;
    239   }
    240 
    241   // Reference or primitive?
    242   if (*c == 'L') {
    243     // "[[La/b/C;" -> "a.b.C[][]".
    244     c++;  // Skip the 'L'.
    245   } else {
    246     // "[[B" -> "byte[][]".
    247     // To make life easier, we make primitives look like unqualified
    248     // reference types.
    249     switch (*c) {
    250     case 'B': c = "byte;"; break;
    251     case 'C': c = "char;"; break;
    252     case 'D': c = "double;"; break;
    253     case 'F': c = "float;"; break;
    254     case 'I': c = "int;"; break;
    255     case 'J': c = "long;"; break;
    256     case 'S': c = "short;"; break;
    257     case 'Z': c = "boolean;"; break;
    258     case 'V': c = "void;"; break;  // Used when decoding return types.
    259     default: return descriptor;
    260     }
    261   }
    262 
    263   // At this point, 'c' is a string of the form "fully/qualified/Type;"
    264   // or "primitive;". Rewrite the type with '.' instead of '/':
    265   std::string result;
    266   const char* p = c;
    267   while (*p != ';') {
    268     char ch = *p++;
    269     if (ch == '/') {
    270       ch = '.';
    271     }
    272     result.push_back(ch);
    273   }
    274   // ...and replace the semicolon with 'dim' "[]" pairs:
    275   while (dim--) {
    276     result += "[]";
    277   }
    278   return result;
    279 }
    280 
    281 std::string PrettyDescriptor(Primitive::Type type) {
    282   std::string descriptor_string(Primitive::Descriptor(type));
    283   return PrettyDescriptor(descriptor_string);
    284 }
    285 
    286 std::string PrettyField(const mirror::ArtField* f, bool with_type) {
    287   if (f == NULL) {
    288     return "null";
    289   }
    290   FieldHelper fh(f);
    291   std::string result;
    292   if (with_type) {
    293     result += PrettyDescriptor(fh.GetTypeDescriptor());
    294     result += ' ';
    295   }
    296   result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
    297   result += '.';
    298   result += fh.GetName();
    299   return result;
    300 }
    301 
    302 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
    303   if (field_idx >= dex_file.NumFieldIds()) {
    304     return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
    305   }
    306   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
    307   std::string result;
    308   if (with_type) {
    309     result += dex_file.GetFieldTypeDescriptor(field_id);
    310     result += ' ';
    311   }
    312   result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
    313   result += '.';
    314   result += dex_file.GetFieldName(field_id);
    315   return result;
    316 }
    317 
    318 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
    319   if (type_idx >= dex_file.NumTypeIds()) {
    320     return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
    321   }
    322   const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
    323   return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
    324 }
    325 
    326 std::string PrettyArguments(const char* signature) {
    327   std::string result;
    328   result += '(';
    329   CHECK_EQ(*signature, '(');
    330   ++signature;  // Skip the '('.
    331   while (*signature != ')') {
    332     size_t argument_length = 0;
    333     while (signature[argument_length] == '[') {
    334       ++argument_length;
    335     }
    336     if (signature[argument_length] == 'L') {
    337       argument_length = (strchr(signature, ';') - signature + 1);
    338     } else {
    339       ++argument_length;
    340     }
    341     std::string argument_descriptor(signature, argument_length);
    342     result += PrettyDescriptor(argument_descriptor);
    343     if (signature[argument_length] != ')') {
    344       result += ", ";
    345     }
    346     signature += argument_length;
    347   }
    348   CHECK_EQ(*signature, ')');
    349   ++signature;  // Skip the ')'.
    350   result += ')';
    351   return result;
    352 }
    353 
    354 std::string PrettyReturnType(const char* signature) {
    355   const char* return_type = strchr(signature, ')');
    356   CHECK(return_type != NULL);
    357   ++return_type;  // Skip ')'.
    358   return PrettyDescriptor(return_type);
    359 }
    360 
    361 std::string PrettyMethod(const mirror::ArtMethod* m, bool with_signature) {
    362   if (m == NULL) {
    363     return "null";
    364   }
    365   MethodHelper mh(m);
    366   std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
    367   result += '.';
    368   result += mh.GetName();
    369   if (with_signature) {
    370     std::string signature(mh.GetSignature());
    371     if (signature == "<no signature>") {
    372       return result + signature;
    373     }
    374     result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
    375   }
    376   return result;
    377 }
    378 
    379 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
    380   if (method_idx >= dex_file.NumMethodIds()) {
    381     return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
    382   }
    383   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
    384   std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
    385   result += '.';
    386   result += dex_file.GetMethodName(method_id);
    387   if (with_signature) {
    388     std::string signature(dex_file.GetMethodSignature(method_id));
    389     if (signature == "<no signature>") {
    390       return result + signature;
    391     }
    392     result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
    393   }
    394   return result;
    395 }
    396 
    397 std::string PrettyTypeOf(const mirror::Object* obj) {
    398   if (obj == NULL) {
    399     return "null";
    400   }
    401   if (obj->GetClass() == NULL) {
    402     return "(raw)";
    403   }
    404   ClassHelper kh(obj->GetClass());
    405   std::string result(PrettyDescriptor(kh.GetDescriptor()));
    406   if (obj->IsClass()) {
    407     kh.ChangeClass(obj->AsClass());
    408     result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
    409   }
    410   return result;
    411 }
    412 
    413 std::string PrettyClass(const mirror::Class* c) {
    414   if (c == NULL) {
    415     return "null";
    416   }
    417   std::string result;
    418   result += "java.lang.Class<";
    419   result += PrettyDescriptor(c);
    420   result += ">";
    421   return result;
    422 }
    423 
    424 std::string PrettyClassAndClassLoader(const mirror::Class* c) {
    425   if (c == NULL) {
    426     return "null";
    427   }
    428   std::string result;
    429   result += "java.lang.Class<";
    430   result += PrettyDescriptor(c);
    431   result += ",";
    432   result += PrettyTypeOf(c->GetClassLoader());
    433   // TODO: add an identifying hash value for the loader
    434   result += ">";
    435   return result;
    436 }
    437 
    438 std::string PrettySize(size_t byte_count) {
    439   // The byte thresholds at which we display amounts.  A byte count is displayed
    440   // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
    441   static const size_t kUnitThresholds[] = {
    442     0,              // B up to...
    443     3*1024,         // KB up to...
    444     2*1024*1024,    // MB up to...
    445     1024*1024*1024  // GB from here.
    446   };
    447   static const size_t kBytesPerUnit[] = { 1, KB, MB, GB };
    448   static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
    449 
    450   int i = arraysize(kUnitThresholds);
    451   while (--i > 0) {
    452     if (byte_count >= kUnitThresholds[i]) {
    453       break;
    454     }
    455   }
    456 
    457   return StringPrintf("%zd%s", byte_count / kBytesPerUnit[i], kUnitStrings[i]);
    458 }
    459 
    460 std::string PrettyDuration(uint64_t nano_duration) {
    461   if (nano_duration == 0) {
    462     return "0";
    463   } else {
    464     return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
    465   }
    466 }
    467 
    468 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
    469   const uint64_t one_sec = 1000 * 1000 * 1000;
    470   const uint64_t one_ms  = 1000 * 1000;
    471   const uint64_t one_us  = 1000;
    472   if (nano_duration >= one_sec) {
    473     return kTimeUnitSecond;
    474   } else if (nano_duration >= one_ms) {
    475     return kTimeUnitMillisecond;
    476   } else if (nano_duration >= one_us) {
    477     return kTimeUnitMicrosecond;
    478   } else {
    479     return kTimeUnitNanosecond;
    480   }
    481 }
    482 
    483 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
    484   const uint64_t one_sec = 1000 * 1000 * 1000;
    485   const uint64_t one_ms  = 1000 * 1000;
    486   const uint64_t one_us  = 1000;
    487 
    488   switch (time_unit) {
    489     case kTimeUnitSecond:
    490       return one_sec;
    491     case kTimeUnitMillisecond:
    492       return one_ms;
    493     case kTimeUnitMicrosecond:
    494       return one_us;
    495     case kTimeUnitNanosecond:
    496       return 1;
    497   }
    498   return 0;
    499 }
    500 
    501 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
    502   const char* unit = NULL;
    503   uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
    504   uint32_t zero_fill = 1;
    505   switch (time_unit) {
    506     case kTimeUnitSecond:
    507       unit = "s";
    508       zero_fill = 9;
    509       break;
    510     case kTimeUnitMillisecond:
    511       unit = "ms";
    512       zero_fill = 6;
    513       break;
    514     case kTimeUnitMicrosecond:
    515       unit = "us";
    516       zero_fill = 3;
    517       break;
    518     case kTimeUnitNanosecond:
    519       unit = "ns";
    520       zero_fill = 0;
    521       break;
    522   }
    523 
    524   uint64_t whole_part = nano_duration / divisor;
    525   uint64_t fractional_part = nano_duration % divisor;
    526   if (fractional_part == 0) {
    527     return StringPrintf("%llu%s", whole_part, unit);
    528   } else {
    529     while ((fractional_part % 1000) == 0) {
    530       zero_fill -= 3;
    531       fractional_part /= 1000;
    532     }
    533     if (zero_fill == 3) {
    534       return StringPrintf("%llu.%03llu%s", whole_part, fractional_part, unit);
    535     } else if (zero_fill == 6) {
    536       return StringPrintf("%llu.%06llu%s", whole_part, fractional_part, unit);
    537     } else {
    538       return StringPrintf("%llu.%09llu%s", whole_part, fractional_part, unit);
    539     }
    540   }
    541 }
    542 
    543 std::string PrintableString(const std::string& utf) {
    544   std::string result;
    545   result += '"';
    546   const char* p = utf.c_str();
    547   size_t char_count = CountModifiedUtf8Chars(p);
    548   for (size_t i = 0; i < char_count; ++i) {
    549     uint16_t ch = GetUtf16FromUtf8(&p);
    550     if (ch == '\\') {
    551       result += "\\\\";
    552     } else if (ch == '\n') {
    553       result += "\\n";
    554     } else if (ch == '\r') {
    555       result += "\\r";
    556     } else if (ch == '\t') {
    557       result += "\\t";
    558     } else if (NeedsEscaping(ch)) {
    559       StringAppendF(&result, "\\u%04x", ch);
    560     } else {
    561       result += ch;
    562     }
    563   }
    564   result += '"';
    565   return result;
    566 }
    567 
    568 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
    569 std::string MangleForJni(const std::string& s) {
    570   std::string result;
    571   size_t char_count = CountModifiedUtf8Chars(s.c_str());
    572   const char* cp = &s[0];
    573   for (size_t i = 0; i < char_count; ++i) {
    574     uint16_t ch = GetUtf16FromUtf8(&cp);
    575     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
    576       result.push_back(ch);
    577     } else if (ch == '.' || ch == '/') {
    578       result += "_";
    579     } else if (ch == '_') {
    580       result += "_1";
    581     } else if (ch == ';') {
    582       result += "_2";
    583     } else if (ch == '[') {
    584       result += "_3";
    585     } else {
    586       StringAppendF(&result, "_0%04x", ch);
    587     }
    588   }
    589   return result;
    590 }
    591 
    592 std::string DotToDescriptor(const char* class_name) {
    593   std::string descriptor(class_name);
    594   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
    595   if (descriptor.length() > 0 && descriptor[0] != '[') {
    596     descriptor = "L" + descriptor + ";";
    597   }
    598   return descriptor;
    599 }
    600 
    601 std::string DescriptorToDot(const char* descriptor) {
    602   size_t length = strlen(descriptor);
    603   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    604     std::string result(descriptor + 1, length - 2);
    605     std::replace(result.begin(), result.end(), '/', '.');
    606     return result;
    607   }
    608   return descriptor;
    609 }
    610 
    611 std::string DescriptorToName(const char* descriptor) {
    612   size_t length = strlen(descriptor);
    613   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    614     std::string result(descriptor + 1, length - 2);
    615     return result;
    616   }
    617   return descriptor;
    618 }
    619 
    620 std::string JniShortName(const mirror::ArtMethod* m) {
    621   MethodHelper mh(m);
    622   std::string class_name(mh.GetDeclaringClassDescriptor());
    623   // Remove the leading 'L' and trailing ';'...
    624   CHECK_EQ(class_name[0], 'L') << class_name;
    625   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
    626   class_name.erase(0, 1);
    627   class_name.erase(class_name.size() - 1, 1);
    628 
    629   std::string method_name(mh.GetName());
    630 
    631   std::string short_name;
    632   short_name += "Java_";
    633   short_name += MangleForJni(class_name);
    634   short_name += "_";
    635   short_name += MangleForJni(method_name);
    636   return short_name;
    637 }
    638 
    639 std::string JniLongName(const mirror::ArtMethod* m) {
    640   std::string long_name;
    641   long_name += JniShortName(m);
    642   long_name += "__";
    643 
    644   std::string signature(MethodHelper(m).GetSignature());
    645   signature.erase(0, 1);
    646   signature.erase(signature.begin() + signature.find(')'), signature.end());
    647 
    648   long_name += MangleForJni(signature);
    649 
    650   return long_name;
    651 }
    652 
    653 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
    654 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
    655   0x00000000,  // 00..1f low control characters; nothing valid
    656   0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
    657   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
    658   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
    659 };
    660 
    661 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
    662 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
    663   /*
    664    * It's a multibyte encoded character. Decode it and analyze. We
    665    * accept anything that isn't (a) an improperly encoded low value,
    666    * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
    667    * control character, or (e) a high space, layout, or special
    668    * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
    669    * U+fff0..U+ffff). This is all specified in the dex format
    670    * document.
    671    */
    672 
    673   uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
    674 
    675   // Perform follow-up tests based on the high 8 bits.
    676   switch (utf16 >> 8) {
    677   case 0x00:
    678     // It's only valid if it's above the ISO-8859-1 high space (0xa0).
    679     return (utf16 > 0x00a0);
    680   case 0xd8:
    681   case 0xd9:
    682   case 0xda:
    683   case 0xdb:
    684     // It's a leading surrogate. Check to see that a trailing
    685     // surrogate follows.
    686     utf16 = GetUtf16FromUtf8(pUtf8Ptr);
    687     return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
    688   case 0xdc:
    689   case 0xdd:
    690   case 0xde:
    691   case 0xdf:
    692     // It's a trailing surrogate, which is not valid at this point.
    693     return false;
    694   case 0x20:
    695   case 0xff:
    696     // It's in the range that has spaces, controls, and specials.
    697     switch (utf16 & 0xfff8) {
    698     case 0x2000:
    699     case 0x2008:
    700     case 0x2028:
    701     case 0xfff0:
    702     case 0xfff8:
    703       return false;
    704     }
    705     break;
    706   }
    707   return true;
    708 }
    709 
    710 /* Return whether the pointed-at modified-UTF-8 encoded character is
    711  * valid as part of a member name, updating the pointer to point past
    712  * the consumed character. This will consume two encoded UTF-16 code
    713  * points if the character is encoded as a surrogate pair. Also, if
    714  * this function returns false, then the given pointer may only have
    715  * been partially advanced.
    716  */
    717 bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
    718   uint8_t c = (uint8_t) **pUtf8Ptr;
    719   if (c <= 0x7f) {
    720     // It's low-ascii, so check the table.
    721     uint32_t wordIdx = c >> 5;
    722     uint32_t bitIdx = c & 0x1f;
    723     (*pUtf8Ptr)++;
    724     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
    725   }
    726 
    727   // It's a multibyte encoded character. Call a non-inline function
    728   // for the heavy lifting.
    729   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
    730 }
    731 
    732 bool IsValidMemberName(const char* s) {
    733   bool angle_name = false;
    734 
    735   switch (*s) {
    736     case '\0':
    737       // The empty string is not a valid name.
    738       return false;
    739     case '<':
    740       angle_name = true;
    741       s++;
    742       break;
    743   }
    744 
    745   while (true) {
    746     switch (*s) {
    747       case '\0':
    748         return !angle_name;
    749       case '>':
    750         return angle_name && s[1] == '\0';
    751     }
    752 
    753     if (!IsValidPartOfMemberNameUtf8(&s)) {
    754       return false;
    755     }
    756   }
    757 }
    758 
    759 enum ClassNameType { kName, kDescriptor };
    760 bool IsValidClassName(const char* s, ClassNameType type, char separator) {
    761   int arrayCount = 0;
    762   while (*s == '[') {
    763     arrayCount++;
    764     s++;
    765   }
    766 
    767   if (arrayCount > 255) {
    768     // Arrays may have no more than 255 dimensions.
    769     return false;
    770   }
    771 
    772   if (arrayCount != 0) {
    773     /*
    774      * If we're looking at an array of some sort, then it doesn't
    775      * matter if what is being asked for is a class name; the
    776      * format looks the same as a type descriptor in that case, so
    777      * treat it as such.
    778      */
    779     type = kDescriptor;
    780   }
    781 
    782   if (type == kDescriptor) {
    783     /*
    784      * We are looking for a descriptor. Either validate it as a
    785      * single-character primitive type, or continue on to check the
    786      * embedded class name (bracketed by "L" and ";").
    787      */
    788     switch (*(s++)) {
    789     case 'B':
    790     case 'C':
    791     case 'D':
    792     case 'F':
    793     case 'I':
    794     case 'J':
    795     case 'S':
    796     case 'Z':
    797       // These are all single-character descriptors for primitive types.
    798       return (*s == '\0');
    799     case 'V':
    800       // Non-array void is valid, but you can't have an array of void.
    801       return (arrayCount == 0) && (*s == '\0');
    802     case 'L':
    803       // Class name: Break out and continue below.
    804       break;
    805     default:
    806       // Oddball descriptor character.
    807       return false;
    808     }
    809   }
    810 
    811   /*
    812    * We just consumed the 'L' that introduces a class name as part
    813    * of a type descriptor, or we are looking for an unadorned class
    814    * name.
    815    */
    816 
    817   bool sepOrFirst = true;  // first character or just encountered a separator.
    818   for (;;) {
    819     uint8_t c = (uint8_t) *s;
    820     switch (c) {
    821     case '\0':
    822       /*
    823        * Premature end for a type descriptor, but valid for
    824        * a class name as long as we haven't encountered an
    825        * empty component (including the degenerate case of
    826        * the empty string "").
    827        */
    828       return (type == kName) && !sepOrFirst;
    829     case ';':
    830       /*
    831        * Invalid character for a class name, but the
    832        * legitimate end of a type descriptor. In the latter
    833        * case, make sure that this is the end of the string
    834        * and that it doesn't end with an empty component
    835        * (including the degenerate case of "L;").
    836        */
    837       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
    838     case '/':
    839     case '.':
    840       if (c != separator) {
    841         // The wrong separator character.
    842         return false;
    843       }
    844       if (sepOrFirst) {
    845         // Separator at start or two separators in a row.
    846         return false;
    847       }
    848       sepOrFirst = true;
    849       s++;
    850       break;
    851     default:
    852       if (!IsValidPartOfMemberNameUtf8(&s)) {
    853         return false;
    854       }
    855       sepOrFirst = false;
    856       break;
    857     }
    858   }
    859 }
    860 
    861 bool IsValidBinaryClassName(const char* s) {
    862   return IsValidClassName(s, kName, '.');
    863 }
    864 
    865 bool IsValidJniClassName(const char* s) {
    866   return IsValidClassName(s, kName, '/');
    867 }
    868 
    869 bool IsValidDescriptor(const char* s) {
    870   return IsValidClassName(s, kDescriptor, '/');
    871 }
    872 
    873 void Split(const std::string& s, char separator, std::vector<std::string>& result) {
    874   const char* p = s.data();
    875   const char* end = p + s.size();
    876   while (p != end) {
    877     if (*p == separator) {
    878       ++p;
    879     } else {
    880       const char* start = p;
    881       while (++p != end && *p != separator) {
    882         // Skip to the next occurrence of the separator.
    883       }
    884       result.push_back(std::string(start, p - start));
    885     }
    886   }
    887 }
    888 
    889 template <typename StringT>
    890 std::string Join(std::vector<StringT>& strings, char separator) {
    891   if (strings.empty()) {
    892     return "";
    893   }
    894 
    895   std::string result(strings[0]);
    896   for (size_t i = 1; i < strings.size(); ++i) {
    897     result += separator;
    898     result += strings[i];
    899   }
    900   return result;
    901 }
    902 
    903 // Explicit instantiations.
    904 template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
    905 template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
    906 template std::string Join<char*>(std::vector<char*>& strings, char separator);
    907 
    908 bool StartsWith(const std::string& s, const char* prefix) {
    909   return s.compare(0, strlen(prefix), prefix) == 0;
    910 }
    911 
    912 bool EndsWith(const std::string& s, const char* suffix) {
    913   size_t suffix_length = strlen(suffix);
    914   size_t string_length = s.size();
    915   if (suffix_length > string_length) {
    916     return false;
    917   }
    918   size_t offset = string_length - suffix_length;
    919   return s.compare(offset, suffix_length, suffix) == 0;
    920 }
    921 
    922 void SetThreadName(const char* thread_name) {
    923   int hasAt = 0;
    924   int hasDot = 0;
    925   const char* s = thread_name;
    926   while (*s) {
    927     if (*s == '.') {
    928       hasDot = 1;
    929     } else if (*s == '@') {
    930       hasAt = 1;
    931     }
    932     s++;
    933   }
    934   int len = s - thread_name;
    935   if (len < 15 || hasAt || !hasDot) {
    936     s = thread_name;
    937   } else {
    938     s = thread_name + len - 15;
    939   }
    940 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
    941   // pthread_setname_np fails rather than truncating long strings.
    942   char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
    943   strncpy(buf, s, sizeof(buf)-1);
    944   buf[sizeof(buf)-1] = '\0';
    945   errno = pthread_setname_np(pthread_self(), buf);
    946   if (errno != 0) {
    947     PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
    948   }
    949 #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
    950   pthread_setname_np(thread_name);
    951 #elif defined(HAVE_PRCTL)
    952   prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
    953 #else
    954   UNIMPLEMENTED(WARNING) << thread_name;
    955 #endif
    956 }
    957 
    958 void GetTaskStats(pid_t tid, char& state, int& utime, int& stime, int& task_cpu) {
    959   utime = stime = task_cpu = 0;
    960   std::string stats;
    961   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
    962     return;
    963   }
    964   // Skip the command, which may contain spaces.
    965   stats = stats.substr(stats.find(')') + 2);
    966   // Extract the three fields we care about.
    967   std::vector<std::string> fields;
    968   Split(stats, ' ', fields);
    969   state = fields[0][0];
    970   utime = strtoull(fields[11].c_str(), NULL, 10);
    971   stime = strtoull(fields[12].c_str(), NULL, 10);
    972   task_cpu = strtoull(fields[36].c_str(), NULL, 10);
    973 }
    974 
    975 std::string GetSchedulerGroupName(pid_t tid) {
    976   // /proc/<pid>/cgroup looks like this:
    977   // 2:devices:/
    978   // 1:cpuacct,cpu:/
    979   // We want the third field from the line whose second field contains the "cpu" token.
    980   std::string cgroup_file;
    981   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
    982     return "";
    983   }
    984   std::vector<std::string> cgroup_lines;
    985   Split(cgroup_file, '\n', cgroup_lines);
    986   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
    987     std::vector<std::string> cgroup_fields;
    988     Split(cgroup_lines[i], ':', cgroup_fields);
    989     std::vector<std::string> cgroups;
    990     Split(cgroup_fields[1], ',', cgroups);
    991     for (size_t i = 0; i < cgroups.size(); ++i) {
    992       if (cgroups[i] == "cpu") {
    993         return cgroup_fields[2].substr(1);  // Skip the leading slash.
    994       }
    995     }
    996   }
    997   return "";
    998 }
    999 
   1000 static const char* CleanMapName(const backtrace_symbol_t* symbol) {
   1001   const char* map_name = symbol->map_name;
   1002   if (map_name == NULL) {
   1003     map_name = "???";
   1004   }
   1005   // Turn "/usr/local/google/home/enh/clean-dalvik-dev/out/host/linux-x86/lib/libartd.so"
   1006   // into "libartd.so".
   1007   const char* last_slash = strrchr(map_name, '/');
   1008   if (last_slash != NULL) {
   1009     map_name = last_slash + 1;
   1010   }
   1011   return map_name;
   1012 }
   1013 
   1014 static void FindSymbolInElf(const backtrace_frame_t* frame, const backtrace_symbol_t* symbol,
   1015                             std::string& symbol_name, uint32_t& pc_offset) {
   1016   symbol_table_t* symbol_table = NULL;
   1017   if (symbol->map_name != NULL) {
   1018     symbol_table = load_symbol_table(symbol->map_name);
   1019   }
   1020   const symbol_t* elf_symbol = NULL;
   1021   bool was_relative = true;
   1022   if (symbol_table != NULL) {
   1023     elf_symbol = find_symbol(symbol_table, symbol->relative_pc);
   1024     if (elf_symbol == NULL) {
   1025       elf_symbol = find_symbol(symbol_table, frame->absolute_pc);
   1026       was_relative = false;
   1027     }
   1028   }
   1029   if (elf_symbol != NULL) {
   1030     const char* demangled_symbol_name = demangle_symbol_name(elf_symbol->name);
   1031     if (demangled_symbol_name != NULL) {
   1032       symbol_name = demangled_symbol_name;
   1033     } else {
   1034       symbol_name = elf_symbol->name;
   1035     }
   1036 
   1037     // TODO: is it a libcorkscrew bug that we have to do this?
   1038     pc_offset = (was_relative ? symbol->relative_pc : frame->absolute_pc) - elf_symbol->start;
   1039   } else {
   1040     symbol_name = "???";
   1041   }
   1042   free_symbol_table(symbol_table);
   1043 }
   1044 
   1045 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
   1046   // Ensure libcorkscrew doesn't use a stale cache of /proc/self/maps.
   1047   flush_my_map_info_list();
   1048 
   1049   const size_t MAX_DEPTH = 32;
   1050   UniquePtr<backtrace_frame_t[]> frames(new backtrace_frame_t[MAX_DEPTH]);
   1051   size_t ignore_count = 2;  // Don't include unwind_backtrace_thread or DumpNativeStack.
   1052   ssize_t frame_count = unwind_backtrace_thread(tid, frames.get(), ignore_count, MAX_DEPTH);
   1053   if (frame_count == -1) {
   1054     os << prefix << "(unwind_backtrace_thread failed for thread " << tid << ")\n";
   1055     return;
   1056   } else if (frame_count == 0) {
   1057     os << prefix << "(no native stack frames for thread " << tid << ")\n";
   1058     return;
   1059   }
   1060 
   1061   UniquePtr<backtrace_symbol_t[]> backtrace_symbols(new backtrace_symbol_t[frame_count]);
   1062   get_backtrace_symbols(frames.get(), frame_count, backtrace_symbols.get());
   1063 
   1064   for (size_t i = 0; i < static_cast<size_t>(frame_count); ++i) {
   1065     const backtrace_frame_t* frame = &frames[i];
   1066     const backtrace_symbol_t* symbol = &backtrace_symbols[i];
   1067 
   1068     // We produce output like this:
   1069     // ]    #00 unwind_backtrace_thread+536 [0x55d75bb8] (libcorkscrew.so)
   1070 
   1071     std::string symbol_name;
   1072     uint32_t pc_offset = 0;
   1073     if (symbol->demangled_name != NULL) {
   1074       symbol_name = symbol->demangled_name;
   1075       pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
   1076     } else if (symbol->symbol_name != NULL) {
   1077       symbol_name = symbol->symbol_name;
   1078       pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
   1079     } else {
   1080       // dladdr(3) didn't find a symbol; maybe it's static? Look in the ELF file...
   1081       FindSymbolInElf(frame, symbol, symbol_name, pc_offset);
   1082     }
   1083 
   1084     os << prefix;
   1085     if (include_count) {
   1086       os << StringPrintf("#%02zd ", i);
   1087     }
   1088     os << symbol_name;
   1089     if (pc_offset != 0) {
   1090       os << "+" << pc_offset;
   1091     }
   1092     os << StringPrintf(" [%p] (%s)\n",
   1093                        reinterpret_cast<void*>(frame->absolute_pc), CleanMapName(symbol));
   1094   }
   1095 
   1096   free_backtrace_symbols(backtrace_symbols.get(), frame_count);
   1097 }
   1098 
   1099 #if defined(__APPLE__)
   1100 
   1101 // TODO: is there any way to get the kernel stack on Mac OS?
   1102 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
   1103 
   1104 #else
   1105 
   1106 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
   1107   if (tid == GetTid()) {
   1108     // There's no point showing that we're reading our stack out of /proc!
   1109     return;
   1110   }
   1111 
   1112   std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
   1113   std::string kernel_stack;
   1114   if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
   1115     os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
   1116     return;
   1117   }
   1118 
   1119   std::vector<std::string> kernel_stack_frames;
   1120   Split(kernel_stack, '\n', kernel_stack_frames);
   1121   // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
   1122   // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
   1123   kernel_stack_frames.pop_back();
   1124   for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
   1125     // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" into "futex_wait_queue_me+0xcd/0x110".
   1126     const char* text = kernel_stack_frames[i].c_str();
   1127     const char* close_bracket = strchr(text, ']');
   1128     if (close_bracket != NULL) {
   1129       text = close_bracket + 2;
   1130     }
   1131     os << prefix;
   1132     if (include_count) {
   1133       os << StringPrintf("#%02zd ", i);
   1134     }
   1135     os << text << "\n";
   1136   }
   1137 }
   1138 
   1139 #endif
   1140 
   1141 const char* GetAndroidRoot() {
   1142   const char* android_root = getenv("ANDROID_ROOT");
   1143   if (android_root == NULL) {
   1144     if (OS::DirectoryExists("/system")) {
   1145       android_root = "/system";
   1146     } else {
   1147       LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
   1148       return "";
   1149     }
   1150   }
   1151   if (!OS::DirectoryExists(android_root)) {
   1152     LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
   1153     return "";
   1154   }
   1155   return android_root;
   1156 }
   1157 
   1158 const char* GetAndroidData() {
   1159   const char* android_data = getenv("ANDROID_DATA");
   1160   if (android_data == NULL) {
   1161     if (OS::DirectoryExists("/data")) {
   1162       android_data = "/data";
   1163     } else {
   1164       LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
   1165       return "";
   1166     }
   1167   }
   1168   if (!OS::DirectoryExists(android_data)) {
   1169     LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
   1170     return "";
   1171   }
   1172   return android_data;
   1173 }
   1174 
   1175 std::string GetDalvikCacheOrDie(const char* android_data) {
   1176   std::string dalvik_cache(StringPrintf("%s/dalvik-cache", android_data));
   1177 
   1178   if (!OS::DirectoryExists(dalvik_cache.c_str())) {
   1179     if (StartsWith(dalvik_cache, "/tmp/")) {
   1180       int result = mkdir(dalvik_cache.c_str(), 0700);
   1181       if (result != 0) {
   1182         LOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
   1183         return "";
   1184       }
   1185     } else {
   1186       LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
   1187       return "";
   1188     }
   1189   }
   1190   return dalvik_cache;
   1191 }
   1192 
   1193 std::string GetDalvikCacheFilenameOrDie(const std::string& location) {
   1194   std::string dalvik_cache(GetDalvikCacheOrDie(GetAndroidData()));
   1195   if (location[0] != '/') {
   1196     LOG(FATAL) << "Expected path in location to be absolute: "<< location;
   1197   }
   1198   std::string cache_file(location, 1);  // skip leading slash
   1199   if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) {
   1200     cache_file += "/";
   1201     cache_file += DexFile::kClassesDex;
   1202   }
   1203   std::replace(cache_file.begin(), cache_file.end(), '/', '@');
   1204   return dalvik_cache + "/" + cache_file;
   1205 }
   1206 
   1207 bool IsZipMagic(uint32_t magic) {
   1208   return (('P' == ((magic >> 0) & 0xff)) &&
   1209           ('K' == ((magic >> 8) & 0xff)));
   1210 }
   1211 
   1212 bool IsDexMagic(uint32_t magic) {
   1213   return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
   1214 }
   1215 
   1216 bool IsOatMagic(uint32_t magic) {
   1217   return (memcmp(reinterpret_cast<const byte*>(magic),
   1218                  OatHeader::kOatMagic,
   1219                  sizeof(OatHeader::kOatMagic)) == 0);
   1220 }
   1221 
   1222 }  // namespace art
   1223