1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This is an implementation of the P224 elliptic curve group. It's written to 6 // be short and simple rather than fast, although it's still constant-time. 7 // 8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 9 10 #include "crypto/p224.h" 11 12 #include <string.h> 13 14 #include "base/sys_byteorder.h" 15 16 namespace { 17 18 using base::HostToNet32; 19 using base::NetToHost32; 20 21 // Field element functions. 22 // 23 // The field that we're dealing with is /p where p = 2**224 - 2**96 + 1. 24 // 25 // Field elements are represented by a FieldElement, which is a typedef to an 26 // array of 8 uint32's. The value of a FieldElement, a, is: 27 // a[0] + 2**28a[1] + 2**56a[1] + ... + 2**196a[7] 28 // 29 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 30 // than we would really like. But it has the useful feature that we hit 2**224 31 // exactly, making the reflections during a reduce much nicer. 32 33 using crypto::p224::FieldElement; 34 35 // kP is the P224 prime. 36 const FieldElement kP = { 37 1, 0, 0, 268431360, 38 268435455, 268435455, 268435455, 268435455, 39 }; 40 41 void Contract(FieldElement* inout); 42 43 // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise. 44 uint32 IsZero(const FieldElement& a) { 45 FieldElement minimal; 46 memcpy(&minimal, &a, sizeof(minimal)); 47 Contract(&minimal); 48 49 uint32 is_zero = 0, is_p = 0; 50 for (unsigned i = 0; i < 8; i++) { 51 is_zero |= minimal[i]; 52 is_p |= minimal[i] - kP[i]; 53 } 54 55 // If either is_zero or is_p is 0, then we should return 1. 56 is_zero |= is_zero >> 16; 57 is_zero |= is_zero >> 8; 58 is_zero |= is_zero >> 4; 59 is_zero |= is_zero >> 2; 60 is_zero |= is_zero >> 1; 61 62 is_p |= is_p >> 16; 63 is_p |= is_p >> 8; 64 is_p |= is_p >> 4; 65 is_p |= is_p >> 2; 66 is_p |= is_p >> 1; 67 68 // For is_zero and is_p, the LSB is 0 iff all the bits are zero. 69 is_zero &= is_p & 1; 70 is_zero = (~is_zero) << 31; 71 is_zero = static_cast<int32>(is_zero) >> 31; 72 return is_zero; 73 } 74 75 // Add computes *out = a+b 76 // 77 // a[i] + b[i] < 2**32 78 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { 79 for (int i = 0; i < 8; i++) { 80 (*out)[i] = a[i] + b[i]; 81 } 82 } 83 84 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); 85 static const uint32 kTwo31m3 = (1u<<31) - (1u<<3); 86 static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3); 87 // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can 88 // subtract smaller amounts without underflow. See the section "Subtraction" in 89 // [1] for why. 90 static const FieldElement kZero31ModP = { 91 kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3, 92 kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3 93 }; 94 95 // Subtract computes *out = a-b 96 // 97 // a[i], b[i] < 2**30 98 // out[i] < 2**32 99 void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) { 100 for (int i = 0; i < 8; i++) { 101 // See the section on "Subtraction" in [1] for details. 102 (*out)[i] = a[i] + kZero31ModP[i] - b[i]; 103 } 104 } 105 106 static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35); 107 static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35); 108 static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19); 109 // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section 110 // "Subtraction" in [1] for why. 111 static const uint64 kZero63ModP[8] = { 112 kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35, 113 kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35, 114 }; 115 116 static const uint32 kBottom28Bits = 0xfffffff; 117 118 // LargeFieldElement also represents an element of the field. The limbs are 119 // still spaced 28-bits apart and in little-endian order. So the limbs are at 120 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 121 typedef uint64 LargeFieldElement[15]; 122 123 // ReduceLarge converts a LargeFieldElement to a FieldElement. 124 // 125 // in[i] < 2**62 126 void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) { 127 LargeFieldElement& in(*inptr); 128 129 for (int i = 0; i < 8; i++) { 130 in[i] += kZero63ModP[i]; 131 } 132 133 // Eliminate the coefficients at 2**224 and greater while maintaining the 134 // same value mod p. 135 for (int i = 14; i >= 8; i--) { 136 in[i-8] -= in[i]; // reflection off the "+1" term of p. 137 in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection. 138 in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection. 139 } 140 in[8] = 0; 141 // in[0..8] < 2**64 142 143 // As the values become small enough, we start to store them in |out| and use 144 // 32-bit operations. 145 for (int i = 1; i < 8; i++) { 146 in[i+1] += in[i] >> 28; 147 (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits); 148 } 149 // Eliminate the term at 2*224 that we introduced while keeping the same 150 // value mod p. 151 in[0] -= in[8]; // reflection off the "+1" term of p. 152 (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term 153 (*out)[4] += static_cast<uint32>(in[8] >> 16); // rest of "-2**96" term 154 // in[0] < 2**64 155 // out[3] < 2**29 156 // out[4] < 2**29 157 // out[1,2,5..7] < 2**28 158 159 (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits); 160 (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits); 161 (*out)[2] += static_cast<uint32>(in[0] >> 56); 162 // out[0] < 2**28 163 // out[1..4] < 2**29 164 // out[5..7] < 2**28 165 } 166 167 // Mul computes *out = a*b 168 // 169 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 170 // out[i] < 2**29 171 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) { 172 LargeFieldElement tmp; 173 memset(&tmp, 0, sizeof(tmp)); 174 175 for (int i = 0; i < 8; i++) { 176 for (int j = 0; j < 8; j++) { 177 tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]); 178 } 179 } 180 181 ReduceLarge(out, &tmp); 182 } 183 184 // Square computes *out = a*a 185 // 186 // a[i] < 2**29 187 // out[i] < 2**29 188 void Square(FieldElement* out, const FieldElement& a) { 189 LargeFieldElement tmp; 190 memset(&tmp, 0, sizeof(tmp)); 191 192 for (int i = 0; i < 8; i++) { 193 for (int j = 0; j <= i; j++) { 194 uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]); 195 if (i == j) { 196 tmp[i+j] += r; 197 } else { 198 tmp[i+j] += r << 1; 199 } 200 } 201 } 202 203 ReduceLarge(out, &tmp); 204 } 205 206 // Reduce reduces the coefficients of in_out to smaller bounds. 207 // 208 // On entry: a[i] < 2**31 + 2**30 209 // On exit: a[i] < 2**29 210 void Reduce(FieldElement* in_out) { 211 FieldElement& a = *in_out; 212 213 for (int i = 0; i < 7; i++) { 214 a[i+1] += a[i] >> 28; 215 a[i] &= kBottom28Bits; 216 } 217 uint32 top = a[7] >> 28; 218 a[7] &= kBottom28Bits; 219 220 // top < 2**4 221 // Constant-time: mask = (top != 0) ? 0xffffffff : 0 222 uint32 mask = top; 223 mask |= mask >> 2; 224 mask |= mask >> 1; 225 mask <<= 31; 226 mask = static_cast<uint32>(static_cast<int32>(mask) >> 31); 227 228 // Eliminate top while maintaining the same value mod p. 229 a[0] -= top; 230 a[3] += top << 12; 231 232 // We may have just made a[0] negative but, if we did, then we must 233 // have added something to a[3], thus it's > 2**12. Therefore we can 234 // carry down to a[0]. 235 a[3] -= 1 & mask; 236 a[2] += mask & ((1<<28) - 1); 237 a[1] += mask & ((1<<28) - 1); 238 a[0] += mask & (1<<28); 239 } 240 241 // Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e. 242 // Fermat's little theorem. 243 void Invert(FieldElement* out, const FieldElement& in) { 244 FieldElement f1, f2, f3, f4; 245 246 Square(&f1, in); // 2 247 Mul(&f1, f1, in); // 2**2 - 1 248 Square(&f1, f1); // 2**3 - 2 249 Mul(&f1, f1, in); // 2**3 - 1 250 Square(&f2, f1); // 2**4 - 2 251 Square(&f2, f2); // 2**5 - 4 252 Square(&f2, f2); // 2**6 - 8 253 Mul(&f1, f1, f2); // 2**6 - 1 254 Square(&f2, f1); // 2**7 - 2 255 for (int i = 0; i < 5; i++) { // 2**12 - 2**6 256 Square(&f2, f2); 257 } 258 Mul(&f2, f2, f1); // 2**12 - 1 259 Square(&f3, f2); // 2**13 - 2 260 for (int i = 0; i < 11; i++) { // 2**24 - 2**12 261 Square(&f3, f3); 262 } 263 Mul(&f2, f3, f2); // 2**24 - 1 264 Square(&f3, f2); // 2**25 - 2 265 for (int i = 0; i < 23; i++) { // 2**48 - 2**24 266 Square(&f3, f3); 267 } 268 Mul(&f3, f3, f2); // 2**48 - 1 269 Square(&f4, f3); // 2**49 - 2 270 for (int i = 0; i < 47; i++) { // 2**96 - 2**48 271 Square(&f4, f4); 272 } 273 Mul(&f3, f3, f4); // 2**96 - 1 274 Square(&f4, f3); // 2**97 - 2 275 for (int i = 0; i < 23; i++) { // 2**120 - 2**24 276 Square(&f4, f4); 277 } 278 Mul(&f2, f4, f2); // 2**120 - 1 279 for (int i = 0; i < 6; i++) { // 2**126 - 2**6 280 Square(&f2, f2); 281 } 282 Mul(&f1, f1, f2); // 2**126 - 1 283 Square(&f1, f1); // 2**127 - 2 284 Mul(&f1, f1, in); // 2**127 - 1 285 for (int i = 0; i < 97; i++) { // 2**224 - 2**97 286 Square(&f1, f1); 287 } 288 Mul(out, f1, f3); // 2**224 - 2**96 - 1 289 } 290 291 // Contract converts a FieldElement to its minimal, distinguished form. 292 // 293 // On entry, in[i] < 2**29 294 // On exit, in[i] < 2**28 295 void Contract(FieldElement* inout) { 296 FieldElement& out = *inout; 297 298 // Reduce the coefficients to < 2**28. 299 for (int i = 0; i < 7; i++) { 300 out[i+1] += out[i] >> 28; 301 out[i] &= kBottom28Bits; 302 } 303 uint32 top = out[7] >> 28; 304 out[7] &= kBottom28Bits; 305 306 // Eliminate top while maintaining the same value mod p. 307 out[0] -= top; 308 out[3] += top << 12; 309 310 // We may just have made out[0] negative. So we carry down. If we made 311 // out[0] negative then we know that out[3] is sufficiently positive 312 // because we just added to it. 313 for (int i = 0; i < 3; i++) { 314 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); 315 out[i] += (1 << 28) & mask; 316 out[i+1] -= 1 & mask; 317 } 318 319 // We might have pushed out[3] over 2**28 so we perform another, partial 320 // carry chain. 321 for (int i = 3; i < 7; i++) { 322 out[i+1] += out[i] >> 28; 323 out[i] &= kBottom28Bits; 324 } 325 top = out[7] >> 28; 326 out[7] &= kBottom28Bits; 327 328 // Eliminate top while maintaining the same value mod p. 329 out[0] -= top; 330 out[3] += top << 12; 331 332 // There are two cases to consider for out[3]: 333 // 1) The first time that we eliminated top, we didn't push out[3] over 334 // 2**28. In this case, the partial carry chain didn't change any values 335 // and top is zero. 336 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 337 // The first value of top was in [0..16), therefore, prior to eliminating 338 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after 339 // overflowing and being reduced by the second carry chain, out[3] <= 340 // 0xf000. Thus it cannot have overflowed when we eliminated top for the 341 // second time. 342 343 // Again, we may just have made out[0] negative, so do the same carry down. 344 // As before, if we made out[0] negative then we know that out[3] is 345 // sufficiently positive. 346 for (int i = 0; i < 3; i++) { 347 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); 348 out[i] += (1 << 28) & mask; 349 out[i+1] -= 1 & mask; 350 } 351 352 // The value is < 2**224, but maybe greater than p. In order to reduce to a 353 // unique, minimal value we see if the value is >= p and, if so, subtract p. 354 355 // First we build a mask from the top four limbs, which must all be 356 // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones 357 // ends up with any zero bits in the bottom 28 bits, then this wasn't 358 // true. 359 uint32 top_4_all_ones = 0xffffffffu; 360 for (int i = 4; i < 8; i++) { 361 top_4_all_ones &= out[i]; 362 } 363 top_4_all_ones |= 0xf0000000; 364 // Now we replicate any zero bits to all the bits in top_4_all_ones. 365 top_4_all_ones &= top_4_all_ones >> 16; 366 top_4_all_ones &= top_4_all_ones >> 8; 367 top_4_all_ones &= top_4_all_ones >> 4; 368 top_4_all_ones &= top_4_all_ones >> 2; 369 top_4_all_ones &= top_4_all_ones >> 1; 370 top_4_all_ones = 371 static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31); 372 373 // Now we test whether the bottom three limbs are non-zero. 374 uint32 bottom_3_non_zero = out[0] | out[1] | out[2]; 375 bottom_3_non_zero |= bottom_3_non_zero >> 16; 376 bottom_3_non_zero |= bottom_3_non_zero >> 8; 377 bottom_3_non_zero |= bottom_3_non_zero >> 4; 378 bottom_3_non_zero |= bottom_3_non_zero >> 2; 379 bottom_3_non_zero |= bottom_3_non_zero >> 1; 380 bottom_3_non_zero = 381 static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31); 382 383 // Everything depends on the value of out[3]. 384 // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p 385 // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0, 386 // then the whole value is >= p 387 // If it's < 0xffff000, then the whole value is < p 388 uint32 n = out[3] - 0xffff000; 389 uint32 out_3_equal = n; 390 out_3_equal |= out_3_equal >> 16; 391 out_3_equal |= out_3_equal >> 8; 392 out_3_equal |= out_3_equal >> 4; 393 out_3_equal |= out_3_equal >> 2; 394 out_3_equal |= out_3_equal >> 1; 395 out_3_equal = 396 ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31); 397 398 // If out[3] > 0xffff000 then n's MSB will be zero. 399 uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); 400 401 uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt); 402 out[0] -= 1 & mask; 403 out[3] -= 0xffff000 & mask; 404 out[4] -= 0xfffffff & mask; 405 out[5] -= 0xfffffff & mask; 406 out[6] -= 0xfffffff & mask; 407 out[7] -= 0xfffffff & mask; 408 } 409 410 411 // Group element functions. 412 // 413 // These functions deal with group elements. The group is an elliptic curve 414 // group with a = -3 defined in FIPS 186-3, section D.2.2. 415 416 using crypto::p224::Point; 417 418 // kB is parameter of the elliptic curve. 419 const FieldElement kB = { 420 55967668, 11768882, 265861671, 185302395, 421 39211076, 180311059, 84673715, 188764328, 422 }; 423 424 void CopyConditional(Point* out, const Point& a, uint32 mask); 425 void DoubleJacobian(Point* out, const Point& a); 426 427 // AddJacobian computes *out = a+b where a != b. 428 void AddJacobian(Point *out, 429 const Point& a, 430 const Point& b) { 431 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 432 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; 433 434 uint32 z1_is_zero = IsZero(a.z); 435 uint32 z2_is_zero = IsZero(b.z); 436 437 // Z1Z1 = Z1 438 Square(&z1z1, a.z); 439 440 // Z2Z2 = Z2 441 Square(&z2z2, b.z); 442 443 // U1 = X1*Z2Z2 444 Mul(&u1, a.x, z2z2); 445 446 // U2 = X2*Z1Z1 447 Mul(&u2, b.x, z1z1); 448 449 // S1 = Y1*Z2*Z2Z2 450 Mul(&s1, b.z, z2z2); 451 Mul(&s1, a.y, s1); 452 453 // S2 = Y2*Z1*Z1Z1 454 Mul(&s2, a.z, z1z1); 455 Mul(&s2, b.y, s2); 456 457 // H = U2-U1 458 Subtract(&h, u2, u1); 459 Reduce(&h); 460 uint32 x_equal = IsZero(h); 461 462 // I = (2*H) 463 for (int j = 0; j < 8; j++) { 464 i[j] = h[j] << 1; 465 } 466 Reduce(&i); 467 Square(&i, i); 468 469 // J = H*I 470 Mul(&j, h, i); 471 // r = 2*(S2-S1) 472 Subtract(&r, s2, s1); 473 Reduce(&r); 474 uint32 y_equal = IsZero(r); 475 476 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { 477 // The two input points are the same therefore we must use the dedicated 478 // doubling function as the slope of the line is undefined. 479 DoubleJacobian(out, a); 480 return; 481 } 482 483 for (int i = 0; i < 8; i++) { 484 r[i] <<= 1; 485 } 486 Reduce(&r); 487 488 // V = U1*I 489 Mul(&v, u1, i); 490 491 // Z3 = ((Z1+Z2)-Z1Z1-Z2Z2)*H 492 Add(&z1z1, z1z1, z2z2); 493 Add(&z2z2, a.z, b.z); 494 Reduce(&z2z2); 495 Square(&z2z2, z2z2); 496 Subtract(&out->z, z2z2, z1z1); 497 Reduce(&out->z); 498 Mul(&out->z, out->z, h); 499 500 // X3 = r-J-2*V 501 for (int i = 0; i < 8; i++) { 502 z1z1[i] = v[i] << 1; 503 } 504 Add(&z1z1, j, z1z1); 505 Reduce(&z1z1); 506 Square(&out->x, r); 507 Subtract(&out->x, out->x, z1z1); 508 Reduce(&out->x); 509 510 // Y3 = r*(V-X3)-2*S1*J 511 for (int i = 0; i < 8; i++) { 512 s1[i] <<= 1; 513 } 514 Mul(&s1, s1, j); 515 Subtract(&z1z1, v, out->x); 516 Reduce(&z1z1); 517 Mul(&z1z1, z1z1, r); 518 Subtract(&out->y, z1z1, s1); 519 Reduce(&out->y); 520 521 CopyConditional(out, a, z2_is_zero); 522 CopyConditional(out, b, z1_is_zero); 523 } 524 525 // DoubleJacobian computes *out = a+a. 526 void DoubleJacobian(Point* out, const Point& a) { 527 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b 528 FieldElement delta, gamma, beta, alpha, t; 529 530 Square(&delta, a.z); 531 Square(&gamma, a.y); 532 Mul(&beta, a.x, gamma); 533 534 // alpha = 3*(X1-delta)*(X1+delta) 535 Add(&t, a.x, delta); 536 for (int i = 0; i < 8; i++) { 537 t[i] += t[i] << 1; 538 } 539 Reduce(&t); 540 Subtract(&alpha, a.x, delta); 541 Reduce(&alpha); 542 Mul(&alpha, alpha, t); 543 544 // Z3 = (Y1+Z1)-gamma-delta 545 Add(&out->z, a.y, a.z); 546 Reduce(&out->z); 547 Square(&out->z, out->z); 548 Subtract(&out->z, out->z, gamma); 549 Reduce(&out->z); 550 Subtract(&out->z, out->z, delta); 551 Reduce(&out->z); 552 553 // X3 = alpha-8*beta 554 for (int i = 0; i < 8; i++) { 555 delta[i] = beta[i] << 3; 556 } 557 Reduce(&delta); 558 Square(&out->x, alpha); 559 Subtract(&out->x, out->x, delta); 560 Reduce(&out->x); 561 562 // Y3 = alpha*(4*beta-X3)-8*gamma 563 for (int i = 0; i < 8; i++) { 564 beta[i] <<= 2; 565 } 566 Reduce(&beta); 567 Subtract(&beta, beta, out->x); 568 Reduce(&beta); 569 Square(&gamma, gamma); 570 for (int i = 0; i < 8; i++) { 571 gamma[i] <<= 3; 572 } 573 Reduce(&gamma); 574 Mul(&out->y, alpha, beta); 575 Subtract(&out->y, out->y, gamma); 576 Reduce(&out->y); 577 } 578 579 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of 580 // 0xffffffff. 581 void CopyConditional(Point* out, 582 const Point& a, 583 uint32 mask) { 584 for (int i = 0; i < 8; i++) { 585 out->x[i] ^= mask & (a.x[i] ^ out->x[i]); 586 out->y[i] ^= mask & (a.y[i] ^ out->y[i]); 587 out->z[i] ^= mask & (a.z[i] ^ out->z[i]); 588 } 589 } 590 591 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of 592 // length scalar_len and != 0. 593 void ScalarMult(Point* out, const Point& a, 594 const uint8* scalar, size_t scalar_len) { 595 memset(out, 0, sizeof(*out)); 596 Point tmp; 597 598 for (size_t i = 0; i < scalar_len; i++) { 599 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { 600 DoubleJacobian(out, *out); 601 uint32 bit = static_cast<uint32>(static_cast<int32>( 602 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); 603 AddJacobian(&tmp, a, *out); 604 CopyConditional(out, tmp, bit); 605 } 606 } 607 } 608 609 // Get224Bits reads 7 words from in and scatters their contents in 610 // little-endian form into 8 words at out, 28 bits per output word. 611 void Get224Bits(uint32* out, const uint32* in) { 612 out[0] = NetToHost32(in[6]) & kBottom28Bits; 613 out[1] = ((NetToHost32(in[5]) << 4) | 614 (NetToHost32(in[6]) >> 28)) & kBottom28Bits; 615 out[2] = ((NetToHost32(in[4]) << 8) | 616 (NetToHost32(in[5]) >> 24)) & kBottom28Bits; 617 out[3] = ((NetToHost32(in[3]) << 12) | 618 (NetToHost32(in[4]) >> 20)) & kBottom28Bits; 619 out[4] = ((NetToHost32(in[2]) << 16) | 620 (NetToHost32(in[3]) >> 16)) & kBottom28Bits; 621 out[5] = ((NetToHost32(in[1]) << 20) | 622 (NetToHost32(in[2]) >> 12)) & kBottom28Bits; 623 out[6] = ((NetToHost32(in[0]) << 24) | 624 (NetToHost32(in[1]) >> 8)) & kBottom28Bits; 625 out[7] = (NetToHost32(in[0]) >> 4) & kBottom28Bits; 626 } 627 628 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from 629 // each of 8 input words and writing them in big-endian order to 7 words at 630 // out. 631 void Put224Bits(uint32* out, const uint32* in) { 632 out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28)); 633 out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24)); 634 out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20)); 635 out[3] = HostToNet32((in[3] >> 12) | (in[4] << 16)); 636 out[2] = HostToNet32((in[4] >> 16) | (in[5] << 12)); 637 out[1] = HostToNet32((in[5] >> 20) | (in[6] << 8)); 638 out[0] = HostToNet32((in[6] >> 24) | (in[7] << 4)); 639 } 640 641 } // anonymous namespace 642 643 namespace crypto { 644 645 namespace p224 { 646 647 bool Point::SetFromString(const base::StringPiece& in) { 648 if (in.size() != 2*28) 649 return false; 650 const uint32* inwords = reinterpret_cast<const uint32*>(in.data()); 651 Get224Bits(x, inwords); 652 Get224Bits(y, inwords + 7); 653 memset(&z, 0, sizeof(z)); 654 z[0] = 1; 655 656 // Check that the point is on the curve, i.e. that y = x - 3x + b. 657 FieldElement lhs; 658 Square(&lhs, y); 659 Contract(&lhs); 660 661 FieldElement rhs; 662 Square(&rhs, x); 663 Mul(&rhs, x, rhs); 664 665 FieldElement three_x; 666 for (int i = 0; i < 8; i++) { 667 three_x[i] = x[i] * 3; 668 } 669 Reduce(&three_x); 670 Subtract(&rhs, rhs, three_x); 671 Reduce(&rhs); 672 673 ::Add(&rhs, rhs, kB); 674 Contract(&rhs); 675 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; 676 } 677 678 std::string Point::ToString() const { 679 FieldElement zinv, zinv_sq, x, y; 680 681 // If this is the point at infinity we return a string of all zeros. 682 if (IsZero(this->z)) { 683 static const char zeros[56] = {0}; 684 return std::string(zeros, sizeof(zeros)); 685 } 686 687 Invert(&zinv, this->z); 688 Square(&zinv_sq, zinv); 689 Mul(&x, this->x, zinv_sq); 690 Mul(&zinv_sq, zinv_sq, zinv); 691 Mul(&y, this->y, zinv_sq); 692 693 Contract(&x); 694 Contract(&y); 695 696 uint32 outwords[14]; 697 Put224Bits(outwords, x); 698 Put224Bits(outwords + 7, y); 699 return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords)); 700 } 701 702 void ScalarMult(const Point& in, const uint8* scalar, Point* out) { 703 ::ScalarMult(out, in, scalar, 28); 704 } 705 706 // kBasePoint is the base point (generator) of the elliptic curve group. 707 static const Point kBasePoint = { 708 {22813985, 52956513, 34677300, 203240812, 709 12143107, 133374265, 225162431, 191946955}, 710 {83918388, 223877528, 122119236, 123340192, 711 266784067, 263504429, 146143011, 198407736}, 712 {1, 0, 0, 0, 0, 0, 0, 0}, 713 }; 714 715 void ScalarBaseMult(const uint8* scalar, Point* out) { 716 ::ScalarMult(out, kBasePoint, scalar, 28); 717 } 718 719 void Add(const Point& a, const Point& b, Point* out) { 720 AddJacobian(out, a, b); 721 } 722 723 void Negate(const Point& in, Point* out) { 724 // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z) 725 // is the negative in Jacobian coordinates, but it doesn't actually appear to 726 // be true in testing so this performs the negation in affine coordinates. 727 FieldElement zinv, zinv_sq, y; 728 Invert(&zinv, in.z); 729 Square(&zinv_sq, zinv); 730 Mul(&out->x, in.x, zinv_sq); 731 Mul(&zinv_sq, zinv_sq, zinv); 732 Mul(&y, in.y, zinv_sq); 733 734 Subtract(&out->y, kP, y); 735 Reduce(&out->y); 736 737 memset(&out->z, 0, sizeof(out->z)); 738 out->z[0] = 1; 739 } 740 741 } // namespace p224 742 743 } // namespace crypto 744