Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This is an implementation of the P224 elliptic curve group. It's written to
      6 // be short and simple rather than fast, although it's still constant-time.
      7 //
      8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
      9 
     10 #include "crypto/p224.h"
     11 
     12 #include <string.h>
     13 
     14 #include "base/sys_byteorder.h"
     15 
     16 namespace {
     17 
     18 using base::HostToNet32;
     19 using base::NetToHost32;
     20 
     21 // Field element functions.
     22 //
     23 // The field that we're dealing with is /p where p = 2**224 - 2**96 + 1.
     24 //
     25 // Field elements are represented by a FieldElement, which is a typedef to an
     26 // array of 8 uint32's. The value of a FieldElement, a, is:
     27 //   a[0] + 2**28a[1] + 2**56a[1] + ... + 2**196a[7]
     28 //
     29 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
     30 // than we would really like. But it has the useful feature that we hit 2**224
     31 // exactly, making the reflections during a reduce much nicer.
     32 
     33 using crypto::p224::FieldElement;
     34 
     35 // kP is the P224 prime.
     36 const FieldElement kP = {
     37   1, 0, 0, 268431360,
     38   268435455, 268435455, 268435455, 268435455,
     39 };
     40 
     41 void Contract(FieldElement* inout);
     42 
     43 // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise.
     44 uint32 IsZero(const FieldElement& a) {
     45   FieldElement minimal;
     46   memcpy(&minimal, &a, sizeof(minimal));
     47   Contract(&minimal);
     48 
     49   uint32 is_zero = 0, is_p = 0;
     50   for (unsigned i = 0; i < 8; i++) {
     51     is_zero |= minimal[i];
     52     is_p |= minimal[i] - kP[i];
     53   }
     54 
     55   // If either is_zero or is_p is 0, then we should return 1.
     56   is_zero |= is_zero >> 16;
     57   is_zero |= is_zero >> 8;
     58   is_zero |= is_zero >> 4;
     59   is_zero |= is_zero >> 2;
     60   is_zero |= is_zero >> 1;
     61 
     62   is_p |= is_p >> 16;
     63   is_p |= is_p >> 8;
     64   is_p |= is_p >> 4;
     65   is_p |= is_p >> 2;
     66   is_p |= is_p >> 1;
     67 
     68   // For is_zero and is_p, the LSB is 0 iff all the bits are zero.
     69   is_zero &= is_p & 1;
     70   is_zero = (~is_zero) << 31;
     71   is_zero = static_cast<int32>(is_zero) >> 31;
     72   return is_zero;
     73 }
     74 
     75 // Add computes *out = a+b
     76 //
     77 // a[i] + b[i] < 2**32
     78 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
     79   for (int i = 0; i < 8; i++) {
     80     (*out)[i] = a[i] + b[i];
     81   }
     82 }
     83 
     84 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3);
     85 static const uint32 kTwo31m3 = (1u<<31) - (1u<<3);
     86 static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3);
     87 // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
     88 // subtract smaller amounts without underflow. See the section "Subtraction" in
     89 // [1] for why.
     90 static const FieldElement kZero31ModP = {
     91   kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3,
     92   kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3
     93 };
     94 
     95 // Subtract computes *out = a-b
     96 //
     97 // a[i], b[i] < 2**30
     98 // out[i] < 2**32
     99 void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
    100   for (int i = 0; i < 8; i++) {
    101     // See the section on "Subtraction" in [1] for details.
    102     (*out)[i] = a[i] + kZero31ModP[i] - b[i];
    103   }
    104 }
    105 
    106 static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35);
    107 static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35);
    108 static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19);
    109 // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
    110 // "Subtraction" in [1] for why.
    111 static const uint64 kZero63ModP[8] = {
    112   kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
    113   kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
    114 };
    115 
    116 static const uint32 kBottom28Bits = 0xfffffff;
    117 
    118 // LargeFieldElement also represents an element of the field. The limbs are
    119 // still spaced 28-bits apart and in little-endian order. So the limbs are at
    120 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
    121 typedef uint64 LargeFieldElement[15];
    122 
    123 // ReduceLarge converts a LargeFieldElement to a FieldElement.
    124 //
    125 // in[i] < 2**62
    126 void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
    127   LargeFieldElement& in(*inptr);
    128 
    129   for (int i = 0; i < 8; i++) {
    130     in[i] += kZero63ModP[i];
    131   }
    132 
    133   // Eliminate the coefficients at 2**224 and greater while maintaining the
    134   // same value mod p.
    135   for (int i = 14; i >= 8; i--) {
    136     in[i-8] -= in[i];  // reflection off the "+1" term of p.
    137     in[i-5] += (in[i] & 0xffff) << 12;  // part of the "-2**96" reflection.
    138     in[i-4] += in[i] >> 16;  // the rest of the "-2**96" reflection.
    139   }
    140   in[8] = 0;
    141   // in[0..8] < 2**64
    142 
    143   // As the values become small enough, we start to store them in |out| and use
    144   // 32-bit operations.
    145   for (int i = 1; i < 8; i++) {
    146     in[i+1] += in[i] >> 28;
    147     (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits);
    148   }
    149   // Eliminate the term at 2*224 that we introduced while keeping the same
    150   // value mod p.
    151   in[0] -= in[8];  // reflection off the "+1" term of p.
    152   (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term
    153   (*out)[4] += static_cast<uint32>(in[8] >> 16);  // rest of "-2**96" term
    154   // in[0] < 2**64
    155   // out[3] < 2**29
    156   // out[4] < 2**29
    157   // out[1,2,5..7] < 2**28
    158 
    159   (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits);
    160   (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits);
    161   (*out)[2] += static_cast<uint32>(in[0] >> 56);
    162   // out[0] < 2**28
    163   // out[1..4] < 2**29
    164   // out[5..7] < 2**28
    165 }
    166 
    167 // Mul computes *out = a*b
    168 //
    169 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
    170 // out[i] < 2**29
    171 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
    172   LargeFieldElement tmp;
    173   memset(&tmp, 0, sizeof(tmp));
    174 
    175   for (int i = 0; i < 8; i++) {
    176     for (int j = 0; j < 8; j++) {
    177       tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]);
    178     }
    179   }
    180 
    181   ReduceLarge(out, &tmp);
    182 }
    183 
    184 // Square computes *out = a*a
    185 //
    186 // a[i] < 2**29
    187 // out[i] < 2**29
    188 void Square(FieldElement* out, const FieldElement& a) {
    189   LargeFieldElement tmp;
    190   memset(&tmp, 0, sizeof(tmp));
    191 
    192   for (int i = 0; i < 8; i++) {
    193     for (int j = 0; j <= i; j++) {
    194       uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]);
    195       if (i == j) {
    196         tmp[i+j] += r;
    197       } else {
    198         tmp[i+j] += r << 1;
    199       }
    200     }
    201   }
    202 
    203   ReduceLarge(out, &tmp);
    204 }
    205 
    206 // Reduce reduces the coefficients of in_out to smaller bounds.
    207 //
    208 // On entry: a[i] < 2**31 + 2**30
    209 // On exit: a[i] < 2**29
    210 void Reduce(FieldElement* in_out) {
    211   FieldElement& a = *in_out;
    212 
    213   for (int i = 0; i < 7; i++) {
    214     a[i+1] += a[i] >> 28;
    215     a[i] &= kBottom28Bits;
    216   }
    217   uint32 top = a[7] >> 28;
    218   a[7] &= kBottom28Bits;
    219 
    220   // top < 2**4
    221   // Constant-time: mask = (top != 0) ? 0xffffffff : 0
    222   uint32 mask = top;
    223   mask |= mask >> 2;
    224   mask |= mask >> 1;
    225   mask <<= 31;
    226   mask = static_cast<uint32>(static_cast<int32>(mask) >> 31);
    227 
    228   // Eliminate top while maintaining the same value mod p.
    229   a[0] -= top;
    230   a[3] += top << 12;
    231 
    232   // We may have just made a[0] negative but, if we did, then we must
    233   // have added something to a[3], thus it's > 2**12. Therefore we can
    234   // carry down to a[0].
    235   a[3] -= 1 & mask;
    236   a[2] += mask & ((1<<28) - 1);
    237   a[1] += mask & ((1<<28) - 1);
    238   a[0] += mask & (1<<28);
    239 }
    240 
    241 // Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e.
    242 // Fermat's little theorem.
    243 void Invert(FieldElement* out, const FieldElement& in) {
    244   FieldElement f1, f2, f3, f4;
    245 
    246   Square(&f1, in);                        // 2
    247   Mul(&f1, f1, in);                       // 2**2 - 1
    248   Square(&f1, f1);                        // 2**3 - 2
    249   Mul(&f1, f1, in);                       // 2**3 - 1
    250   Square(&f2, f1);                        // 2**4 - 2
    251   Square(&f2, f2);                        // 2**5 - 4
    252   Square(&f2, f2);                        // 2**6 - 8
    253   Mul(&f1, f1, f2);                       // 2**6 - 1
    254   Square(&f2, f1);                        // 2**7 - 2
    255   for (int i = 0; i < 5; i++) {           // 2**12 - 2**6
    256     Square(&f2, f2);
    257   }
    258   Mul(&f2, f2, f1);                       // 2**12 - 1
    259   Square(&f3, f2);                        // 2**13 - 2
    260   for (int i = 0; i < 11; i++) {          // 2**24 - 2**12
    261     Square(&f3, f3);
    262   }
    263   Mul(&f2, f3, f2);                       // 2**24 - 1
    264   Square(&f3, f2);                        // 2**25 - 2
    265   for (int i = 0; i < 23; i++) {          // 2**48 - 2**24
    266     Square(&f3, f3);
    267   }
    268   Mul(&f3, f3, f2);                       // 2**48 - 1
    269   Square(&f4, f3);                        // 2**49 - 2
    270   for (int i = 0; i < 47; i++) {          // 2**96 - 2**48
    271     Square(&f4, f4);
    272   }
    273   Mul(&f3, f3, f4);                       // 2**96 - 1
    274   Square(&f4, f3);                        // 2**97 - 2
    275   for (int i = 0; i < 23; i++) {          // 2**120 - 2**24
    276     Square(&f4, f4);
    277   }
    278   Mul(&f2, f4, f2);                       // 2**120 - 1
    279   for (int i = 0; i < 6; i++) {           // 2**126 - 2**6
    280     Square(&f2, f2);
    281   }
    282   Mul(&f1, f1, f2);                       // 2**126 - 1
    283   Square(&f1, f1);                        // 2**127 - 2
    284   Mul(&f1, f1, in);                       // 2**127 - 1
    285   for (int i = 0; i < 97; i++) {          // 2**224 - 2**97
    286     Square(&f1, f1);
    287   }
    288   Mul(out, f1, f3);                       // 2**224 - 2**96 - 1
    289 }
    290 
    291 // Contract converts a FieldElement to its minimal, distinguished form.
    292 //
    293 // On entry, in[i] < 2**29
    294 // On exit, in[i] < 2**28
    295 void Contract(FieldElement* inout) {
    296   FieldElement& out = *inout;
    297 
    298   // Reduce the coefficients to < 2**28.
    299   for (int i = 0; i < 7; i++) {
    300     out[i+1] += out[i] >> 28;
    301     out[i] &= kBottom28Bits;
    302   }
    303   uint32 top = out[7] >> 28;
    304   out[7] &= kBottom28Bits;
    305 
    306   // Eliminate top while maintaining the same value mod p.
    307   out[0] -= top;
    308   out[3] += top << 12;
    309 
    310   // We may just have made out[0] negative. So we carry down. If we made
    311   // out[0] negative then we know that out[3] is sufficiently positive
    312   // because we just added to it.
    313   for (int i = 0; i < 3; i++) {
    314     uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
    315     out[i] += (1 << 28) & mask;
    316     out[i+1] -= 1 & mask;
    317   }
    318 
    319   // We might have pushed out[3] over 2**28 so we perform another, partial
    320   // carry chain.
    321   for (int i = 3; i < 7; i++) {
    322     out[i+1] += out[i] >> 28;
    323     out[i] &= kBottom28Bits;
    324   }
    325   top = out[7] >> 28;
    326   out[7] &= kBottom28Bits;
    327 
    328   // Eliminate top while maintaining the same value mod p.
    329   out[0] -= top;
    330   out[3] += top << 12;
    331 
    332   // There are two cases to consider for out[3]:
    333   //   1) The first time that we eliminated top, we didn't push out[3] over
    334   //      2**28. In this case, the partial carry chain didn't change any values
    335   //      and top is zero.
    336   //   2) We did push out[3] over 2**28 the first time that we eliminated top.
    337   //      The first value of top was in [0..16), therefore, prior to eliminating
    338   //      the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
    339   //      overflowing and being reduced by the second carry chain, out[3] <=
    340   //      0xf000. Thus it cannot have overflowed when we eliminated top for the
    341   //      second time.
    342 
    343   // Again, we may just have made out[0] negative, so do the same carry down.
    344   // As before, if we made out[0] negative then we know that out[3] is
    345   // sufficiently positive.
    346   for (int i = 0; i < 3; i++) {
    347     uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
    348     out[i] += (1 << 28) & mask;
    349     out[i+1] -= 1 & mask;
    350   }
    351 
    352   // The value is < 2**224, but maybe greater than p. In order to reduce to a
    353   // unique, minimal value we see if the value is >= p and, if so, subtract p.
    354 
    355   // First we build a mask from the top four limbs, which must all be
    356   // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones
    357   // ends up with any zero bits in the bottom 28 bits, then this wasn't
    358   // true.
    359   uint32 top_4_all_ones = 0xffffffffu;
    360   for (int i = 4; i < 8; i++) {
    361     top_4_all_ones &= out[i];
    362   }
    363   top_4_all_ones |= 0xf0000000;
    364   // Now we replicate any zero bits to all the bits in top_4_all_ones.
    365   top_4_all_ones &= top_4_all_ones >> 16;
    366   top_4_all_ones &= top_4_all_ones >> 8;
    367   top_4_all_ones &= top_4_all_ones >> 4;
    368   top_4_all_ones &= top_4_all_ones >> 2;
    369   top_4_all_ones &= top_4_all_ones >> 1;
    370   top_4_all_ones =
    371       static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31);
    372 
    373   // Now we test whether the bottom three limbs are non-zero.
    374   uint32 bottom_3_non_zero = out[0] | out[1] | out[2];
    375   bottom_3_non_zero |= bottom_3_non_zero >> 16;
    376   bottom_3_non_zero |= bottom_3_non_zero >> 8;
    377   bottom_3_non_zero |= bottom_3_non_zero >> 4;
    378   bottom_3_non_zero |= bottom_3_non_zero >> 2;
    379   bottom_3_non_zero |= bottom_3_non_zero >> 1;
    380   bottom_3_non_zero =
    381       static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31);
    382 
    383   // Everything depends on the value of out[3].
    384   //    If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p
    385   //    If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0,
    386   //      then the whole value is >= p
    387   //    If it's < 0xffff000, then the whole value is < p
    388   uint32 n = out[3] - 0xffff000;
    389   uint32 out_3_equal = n;
    390   out_3_equal |= out_3_equal >> 16;
    391   out_3_equal |= out_3_equal >> 8;
    392   out_3_equal |= out_3_equal >> 4;
    393   out_3_equal |= out_3_equal >> 2;
    394   out_3_equal |= out_3_equal >> 1;
    395   out_3_equal =
    396       ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31);
    397 
    398   // If out[3] > 0xffff000 then n's MSB will be zero.
    399   uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31);
    400 
    401   uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt);
    402   out[0] -= 1 & mask;
    403   out[3] -= 0xffff000 & mask;
    404   out[4] -= 0xfffffff & mask;
    405   out[5] -= 0xfffffff & mask;
    406   out[6] -= 0xfffffff & mask;
    407   out[7] -= 0xfffffff & mask;
    408 }
    409 
    410 
    411 // Group element functions.
    412 //
    413 // These functions deal with group elements. The group is an elliptic curve
    414 // group with a = -3 defined in FIPS 186-3, section D.2.2.
    415 
    416 using crypto::p224::Point;
    417 
    418 // kB is parameter of the elliptic curve.
    419 const FieldElement kB = {
    420   55967668, 11768882, 265861671, 185302395,
    421   39211076, 180311059, 84673715, 188764328,
    422 };
    423 
    424 void CopyConditional(Point* out, const Point& a, uint32 mask);
    425 void DoubleJacobian(Point* out, const Point& a);
    426 
    427 // AddJacobian computes *out = a+b where a != b.
    428 void AddJacobian(Point *out,
    429                  const Point& a,
    430                  const Point& b) {
    431   // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
    432   FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;
    433 
    434   uint32 z1_is_zero = IsZero(a.z);
    435   uint32 z2_is_zero = IsZero(b.z);
    436 
    437   // Z1Z1 = Z1
    438   Square(&z1z1, a.z);
    439 
    440   // Z2Z2 = Z2
    441   Square(&z2z2, b.z);
    442 
    443   // U1 = X1*Z2Z2
    444   Mul(&u1, a.x, z2z2);
    445 
    446   // U2 = X2*Z1Z1
    447   Mul(&u2, b.x, z1z1);
    448 
    449   // S1 = Y1*Z2*Z2Z2
    450   Mul(&s1, b.z, z2z2);
    451   Mul(&s1, a.y, s1);
    452 
    453   // S2 = Y2*Z1*Z1Z1
    454   Mul(&s2, a.z, z1z1);
    455   Mul(&s2, b.y, s2);
    456 
    457   // H = U2-U1
    458   Subtract(&h, u2, u1);
    459   Reduce(&h);
    460   uint32 x_equal = IsZero(h);
    461 
    462   // I = (2*H)
    463   for (int j = 0; j < 8; j++) {
    464     i[j] = h[j] << 1;
    465   }
    466   Reduce(&i);
    467   Square(&i, i);
    468 
    469   // J = H*I
    470   Mul(&j, h, i);
    471   // r = 2*(S2-S1)
    472   Subtract(&r, s2, s1);
    473   Reduce(&r);
    474   uint32 y_equal = IsZero(r);
    475 
    476   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
    477     // The two input points are the same therefore we must use the dedicated
    478     // doubling function as the slope of the line is undefined.
    479     DoubleJacobian(out, a);
    480     return;
    481   }
    482 
    483   for (int i = 0; i < 8; i++) {
    484     r[i] <<= 1;
    485   }
    486   Reduce(&r);
    487 
    488   // V = U1*I
    489   Mul(&v, u1, i);
    490 
    491   // Z3 = ((Z1+Z2)-Z1Z1-Z2Z2)*H
    492   Add(&z1z1, z1z1, z2z2);
    493   Add(&z2z2, a.z, b.z);
    494   Reduce(&z2z2);
    495   Square(&z2z2, z2z2);
    496   Subtract(&out->z, z2z2, z1z1);
    497   Reduce(&out->z);
    498   Mul(&out->z, out->z, h);
    499 
    500   // X3 = r-J-2*V
    501   for (int i = 0; i < 8; i++) {
    502     z1z1[i] = v[i] << 1;
    503   }
    504   Add(&z1z1, j, z1z1);
    505   Reduce(&z1z1);
    506   Square(&out->x, r);
    507   Subtract(&out->x, out->x, z1z1);
    508   Reduce(&out->x);
    509 
    510   // Y3 = r*(V-X3)-2*S1*J
    511   for (int i = 0; i < 8; i++) {
    512     s1[i] <<= 1;
    513   }
    514   Mul(&s1, s1, j);
    515   Subtract(&z1z1, v, out->x);
    516   Reduce(&z1z1);
    517   Mul(&z1z1, z1z1, r);
    518   Subtract(&out->y, z1z1, s1);
    519   Reduce(&out->y);
    520 
    521   CopyConditional(out, a, z2_is_zero);
    522   CopyConditional(out, b, z1_is_zero);
    523 }
    524 
    525 // DoubleJacobian computes *out = a+a.
    526 void DoubleJacobian(Point* out, const Point& a) {
    527   // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
    528   FieldElement delta, gamma, beta, alpha, t;
    529 
    530   Square(&delta, a.z);
    531   Square(&gamma, a.y);
    532   Mul(&beta, a.x, gamma);
    533 
    534   // alpha = 3*(X1-delta)*(X1+delta)
    535   Add(&t, a.x, delta);
    536   for (int i = 0; i < 8; i++) {
    537           t[i] += t[i] << 1;
    538   }
    539   Reduce(&t);
    540   Subtract(&alpha, a.x, delta);
    541   Reduce(&alpha);
    542   Mul(&alpha, alpha, t);
    543 
    544   // Z3 = (Y1+Z1)-gamma-delta
    545   Add(&out->z, a.y, a.z);
    546   Reduce(&out->z);
    547   Square(&out->z, out->z);
    548   Subtract(&out->z, out->z, gamma);
    549   Reduce(&out->z);
    550   Subtract(&out->z, out->z, delta);
    551   Reduce(&out->z);
    552 
    553   // X3 = alpha-8*beta
    554   for (int i = 0; i < 8; i++) {
    555           delta[i] = beta[i] << 3;
    556   }
    557   Reduce(&delta);
    558   Square(&out->x, alpha);
    559   Subtract(&out->x, out->x, delta);
    560   Reduce(&out->x);
    561 
    562   // Y3 = alpha*(4*beta-X3)-8*gamma
    563   for (int i = 0; i < 8; i++) {
    564           beta[i] <<= 2;
    565   }
    566   Reduce(&beta);
    567   Subtract(&beta, beta, out->x);
    568   Reduce(&beta);
    569   Square(&gamma, gamma);
    570   for (int i = 0; i < 8; i++) {
    571           gamma[i] <<= 3;
    572   }
    573   Reduce(&gamma);
    574   Mul(&out->y, alpha, beta);
    575   Subtract(&out->y, out->y, gamma);
    576   Reduce(&out->y);
    577 }
    578 
    579 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
    580 // 0xffffffff.
    581 void CopyConditional(Point* out,
    582                      const Point& a,
    583                      uint32 mask) {
    584   for (int i = 0; i < 8; i++) {
    585     out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
    586     out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
    587     out->z[i] ^= mask & (a.z[i] ^ out->z[i]);
    588   }
    589 }
    590 
    591 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
    592 // length scalar_len and != 0.
    593 void ScalarMult(Point* out, const Point& a,
    594                 const uint8* scalar, size_t scalar_len) {
    595   memset(out, 0, sizeof(*out));
    596   Point tmp;
    597 
    598   for (size_t i = 0; i < scalar_len; i++) {
    599     for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
    600       DoubleJacobian(out, *out);
    601       uint32 bit = static_cast<uint32>(static_cast<int32>(
    602           (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
    603       AddJacobian(&tmp, a, *out);
    604       CopyConditional(out, tmp, bit);
    605     }
    606   }
    607 }
    608 
    609 // Get224Bits reads 7 words from in and scatters their contents in
    610 // little-endian form into 8 words at out, 28 bits per output word.
    611 void Get224Bits(uint32* out, const uint32* in) {
    612   out[0] = NetToHost32(in[6]) & kBottom28Bits;
    613   out[1] = ((NetToHost32(in[5]) << 4) |
    614             (NetToHost32(in[6]) >> 28)) & kBottom28Bits;
    615   out[2] = ((NetToHost32(in[4]) << 8) |
    616             (NetToHost32(in[5]) >> 24)) & kBottom28Bits;
    617   out[3] = ((NetToHost32(in[3]) << 12) |
    618             (NetToHost32(in[4]) >> 20)) & kBottom28Bits;
    619   out[4] = ((NetToHost32(in[2]) << 16) |
    620             (NetToHost32(in[3]) >> 16)) & kBottom28Bits;
    621   out[5] = ((NetToHost32(in[1]) << 20) |
    622             (NetToHost32(in[2]) >> 12)) & kBottom28Bits;
    623   out[6] = ((NetToHost32(in[0]) << 24) |
    624             (NetToHost32(in[1]) >> 8)) & kBottom28Bits;
    625   out[7] = (NetToHost32(in[0]) >> 4) & kBottom28Bits;
    626 }
    627 
    628 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
    629 // each of 8 input words and writing them in big-endian order to 7 words at
    630 // out.
    631 void Put224Bits(uint32* out, const uint32* in) {
    632   out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28));
    633   out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24));
    634   out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20));
    635   out[3] = HostToNet32((in[3] >> 12) | (in[4] << 16));
    636   out[2] = HostToNet32((in[4] >> 16) | (in[5] << 12));
    637   out[1] = HostToNet32((in[5] >> 20) | (in[6] << 8));
    638   out[0] = HostToNet32((in[6] >> 24) | (in[7] << 4));
    639 }
    640 
    641 } // anonymous namespace
    642 
    643 namespace crypto {
    644 
    645 namespace p224 {
    646 
    647 bool Point::SetFromString(const base::StringPiece& in) {
    648   if (in.size() != 2*28)
    649     return false;
    650   const uint32* inwords = reinterpret_cast<const uint32*>(in.data());
    651   Get224Bits(x, inwords);
    652   Get224Bits(y, inwords + 7);
    653   memset(&z, 0, sizeof(z));
    654   z[0] = 1;
    655 
    656   // Check that the point is on the curve, i.e. that y = x - 3x + b.
    657   FieldElement lhs;
    658   Square(&lhs, y);
    659   Contract(&lhs);
    660 
    661   FieldElement rhs;
    662   Square(&rhs, x);
    663   Mul(&rhs, x, rhs);
    664 
    665   FieldElement three_x;
    666   for (int i = 0; i < 8; i++) {
    667     three_x[i] = x[i] * 3;
    668   }
    669   Reduce(&three_x);
    670   Subtract(&rhs, rhs, three_x);
    671   Reduce(&rhs);
    672 
    673   ::Add(&rhs, rhs, kB);
    674   Contract(&rhs);
    675   return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
    676 }
    677 
    678 std::string Point::ToString() const {
    679   FieldElement zinv, zinv_sq, x, y;
    680 
    681   // If this is the point at infinity we return a string of all zeros.
    682   if (IsZero(this->z)) {
    683     static const char zeros[56] = {0};
    684     return std::string(zeros, sizeof(zeros));
    685   }
    686 
    687   Invert(&zinv, this->z);
    688   Square(&zinv_sq, zinv);
    689   Mul(&x, this->x, zinv_sq);
    690   Mul(&zinv_sq, zinv_sq, zinv);
    691   Mul(&y, this->y, zinv_sq);
    692 
    693   Contract(&x);
    694   Contract(&y);
    695 
    696   uint32 outwords[14];
    697   Put224Bits(outwords, x);
    698   Put224Bits(outwords + 7, y);
    699   return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
    700 }
    701 
    702 void ScalarMult(const Point& in, const uint8* scalar, Point* out) {
    703   ::ScalarMult(out, in, scalar, 28);
    704 }
    705 
    706 // kBasePoint is the base point (generator) of the elliptic curve group.
    707 static const Point kBasePoint = {
    708   {22813985, 52956513, 34677300, 203240812,
    709    12143107, 133374265, 225162431, 191946955},
    710   {83918388, 223877528, 122119236, 123340192,
    711    266784067, 263504429, 146143011, 198407736},
    712   {1, 0, 0, 0, 0, 0, 0, 0},
    713 };
    714 
    715 void ScalarBaseMult(const uint8* scalar, Point* out) {
    716   ::ScalarMult(out, kBasePoint, scalar, 28);
    717 }
    718 
    719 void Add(const Point& a, const Point& b, Point* out) {
    720   AddJacobian(out, a, b);
    721 }
    722 
    723 void Negate(const Point& in, Point* out) {
    724   // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z)
    725   // is the negative in Jacobian coordinates, but it doesn't actually appear to
    726   // be true in testing so this performs the negation in affine coordinates.
    727   FieldElement zinv, zinv_sq, y;
    728   Invert(&zinv, in.z);
    729   Square(&zinv_sq, zinv);
    730   Mul(&out->x, in.x, zinv_sq);
    731   Mul(&zinv_sq, zinv_sq, zinv);
    732   Mul(&y, in.y, zinv_sq);
    733 
    734   Subtract(&out->y, kP, y);
    735   Reduce(&out->y);
    736 
    737   memset(&out->z, 0, sizeof(out->z));
    738   out->z[0] = 1;
    739 }
    740 
    741 }  // namespace p224
    742 
    743 }  // namespace crypto
    744