1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include <limits.h> // For LONG_MIN, LONG_MAX. 29 30 #include "v8.h" 31 32 #if V8_TARGET_ARCH_MIPS 33 34 #include "bootstrapper.h" 35 #include "codegen.h" 36 #include "cpu-profiler.h" 37 #include "debug.h" 38 #include "isolate-inl.h" 39 #include "runtime.h" 40 41 namespace v8 { 42 namespace internal { 43 44 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) 45 : Assembler(arg_isolate, buffer, size), 46 generating_stub_(false), 47 has_frame_(false) { 48 if (isolate() != NULL) { 49 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), 50 isolate()); 51 } 52 } 53 54 55 void MacroAssembler::Load(Register dst, 56 const MemOperand& src, 57 Representation r) { 58 ASSERT(!r.IsDouble()); 59 if (r.IsInteger8()) { 60 lb(dst, src); 61 } else if (r.IsUInteger8()) { 62 lbu(dst, src); 63 } else if (r.IsInteger16()) { 64 lh(dst, src); 65 } else if (r.IsUInteger16()) { 66 lhu(dst, src); 67 } else { 68 lw(dst, src); 69 } 70 } 71 72 73 void MacroAssembler::Store(Register src, 74 const MemOperand& dst, 75 Representation r) { 76 ASSERT(!r.IsDouble()); 77 if (r.IsInteger8() || r.IsUInteger8()) { 78 sb(src, dst); 79 } else if (r.IsInteger16() || r.IsUInteger16()) { 80 sh(src, dst); 81 } else { 82 sw(src, dst); 83 } 84 } 85 86 87 void MacroAssembler::LoadRoot(Register destination, 88 Heap::RootListIndex index) { 89 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 90 } 91 92 93 void MacroAssembler::LoadRoot(Register destination, 94 Heap::RootListIndex index, 95 Condition cond, 96 Register src1, const Operand& src2) { 97 Branch(2, NegateCondition(cond), src1, src2); 98 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 99 } 100 101 102 void MacroAssembler::StoreRoot(Register source, 103 Heap::RootListIndex index) { 104 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 105 } 106 107 108 void MacroAssembler::StoreRoot(Register source, 109 Heap::RootListIndex index, 110 Condition cond, 111 Register src1, const Operand& src2) { 112 Branch(2, NegateCondition(cond), src1, src2); 113 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 114 } 115 116 117 // Push and pop all registers that can hold pointers. 118 void MacroAssembler::PushSafepointRegisters() { 119 // Safepoints expect a block of kNumSafepointRegisters values on the 120 // stack, so adjust the stack for unsaved registers. 121 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 122 ASSERT(num_unsaved >= 0); 123 if (num_unsaved > 0) { 124 Subu(sp, sp, Operand(num_unsaved * kPointerSize)); 125 } 126 MultiPush(kSafepointSavedRegisters); 127 } 128 129 130 void MacroAssembler::PopSafepointRegisters() { 131 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 132 MultiPop(kSafepointSavedRegisters); 133 if (num_unsaved > 0) { 134 Addu(sp, sp, Operand(num_unsaved * kPointerSize)); 135 } 136 } 137 138 139 void MacroAssembler::PushSafepointRegistersAndDoubles() { 140 PushSafepointRegisters(); 141 Subu(sp, sp, Operand(FPURegister::NumAllocatableRegisters() * kDoubleSize)); 142 for (int i = 0; i < FPURegister::NumAllocatableRegisters(); i+=2) { 143 FPURegister reg = FPURegister::FromAllocationIndex(i); 144 sdc1(reg, MemOperand(sp, i * kDoubleSize)); 145 } 146 } 147 148 149 void MacroAssembler::PopSafepointRegistersAndDoubles() { 150 for (int i = 0; i < FPURegister::NumAllocatableRegisters(); i+=2) { 151 FPURegister reg = FPURegister::FromAllocationIndex(i); 152 ldc1(reg, MemOperand(sp, i * kDoubleSize)); 153 } 154 Addu(sp, sp, Operand(FPURegister::NumAllocatableRegisters() * kDoubleSize)); 155 PopSafepointRegisters(); 156 } 157 158 159 void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src, 160 Register dst) { 161 sw(src, SafepointRegistersAndDoublesSlot(dst)); 162 } 163 164 165 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { 166 sw(src, SafepointRegisterSlot(dst)); 167 } 168 169 170 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { 171 lw(dst, SafepointRegisterSlot(src)); 172 } 173 174 175 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { 176 // The registers are pushed starting with the highest encoding, 177 // which means that lowest encodings are closest to the stack pointer. 178 return kSafepointRegisterStackIndexMap[reg_code]; 179 } 180 181 182 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { 183 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); 184 } 185 186 187 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { 188 UNIMPLEMENTED_MIPS(); 189 // General purpose registers are pushed last on the stack. 190 int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize; 191 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; 192 return MemOperand(sp, doubles_size + register_offset); 193 } 194 195 196 void MacroAssembler::InNewSpace(Register object, 197 Register scratch, 198 Condition cc, 199 Label* branch) { 200 ASSERT(cc == eq || cc == ne); 201 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); 202 Branch(branch, cc, scratch, 203 Operand(ExternalReference::new_space_start(isolate()))); 204 } 205 206 207 void MacroAssembler::RecordWriteField( 208 Register object, 209 int offset, 210 Register value, 211 Register dst, 212 RAStatus ra_status, 213 SaveFPRegsMode save_fp, 214 RememberedSetAction remembered_set_action, 215 SmiCheck smi_check) { 216 ASSERT(!AreAliased(value, dst, t8, object)); 217 // First, check if a write barrier is even needed. The tests below 218 // catch stores of Smis. 219 Label done; 220 221 // Skip barrier if writing a smi. 222 if (smi_check == INLINE_SMI_CHECK) { 223 JumpIfSmi(value, &done); 224 } 225 226 // Although the object register is tagged, the offset is relative to the start 227 // of the object, so so offset must be a multiple of kPointerSize. 228 ASSERT(IsAligned(offset, kPointerSize)); 229 230 Addu(dst, object, Operand(offset - kHeapObjectTag)); 231 if (emit_debug_code()) { 232 Label ok; 233 And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); 234 Branch(&ok, eq, t8, Operand(zero_reg)); 235 stop("Unaligned cell in write barrier"); 236 bind(&ok); 237 } 238 239 RecordWrite(object, 240 dst, 241 value, 242 ra_status, 243 save_fp, 244 remembered_set_action, 245 OMIT_SMI_CHECK); 246 247 bind(&done); 248 249 // Clobber clobbered input registers when running with the debug-code flag 250 // turned on to provoke errors. 251 if (emit_debug_code()) { 252 li(value, Operand(BitCast<int32_t>(kZapValue + 4))); 253 li(dst, Operand(BitCast<int32_t>(kZapValue + 8))); 254 } 255 } 256 257 258 // Will clobber 4 registers: object, address, scratch, ip. The 259 // register 'object' contains a heap object pointer. The heap object 260 // tag is shifted away. 261 void MacroAssembler::RecordWrite(Register object, 262 Register address, 263 Register value, 264 RAStatus ra_status, 265 SaveFPRegsMode fp_mode, 266 RememberedSetAction remembered_set_action, 267 SmiCheck smi_check) { 268 ASSERT(!AreAliased(object, address, value, t8)); 269 ASSERT(!AreAliased(object, address, value, t9)); 270 271 if (emit_debug_code()) { 272 lw(at, MemOperand(address)); 273 Assert( 274 eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value)); 275 } 276 277 // Count number of write barriers in generated code. 278 isolate()->counters()->write_barriers_static()->Increment(); 279 // TODO(mstarzinger): Dynamic counter missing. 280 281 // First, check if a write barrier is even needed. The tests below 282 // catch stores of smis and stores into the young generation. 283 Label done; 284 285 if (smi_check == INLINE_SMI_CHECK) { 286 ASSERT_EQ(0, kSmiTag); 287 JumpIfSmi(value, &done); 288 } 289 290 CheckPageFlag(value, 291 value, // Used as scratch. 292 MemoryChunk::kPointersToHereAreInterestingMask, 293 eq, 294 &done); 295 CheckPageFlag(object, 296 value, // Used as scratch. 297 MemoryChunk::kPointersFromHereAreInterestingMask, 298 eq, 299 &done); 300 301 // Record the actual write. 302 if (ra_status == kRAHasNotBeenSaved) { 303 push(ra); 304 } 305 RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); 306 CallStub(&stub); 307 if (ra_status == kRAHasNotBeenSaved) { 308 pop(ra); 309 } 310 311 bind(&done); 312 313 // Clobber clobbered registers when running with the debug-code flag 314 // turned on to provoke errors. 315 if (emit_debug_code()) { 316 li(address, Operand(BitCast<int32_t>(kZapValue + 12))); 317 li(value, Operand(BitCast<int32_t>(kZapValue + 16))); 318 } 319 } 320 321 322 void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. 323 Register address, 324 Register scratch, 325 SaveFPRegsMode fp_mode, 326 RememberedSetFinalAction and_then) { 327 Label done; 328 if (emit_debug_code()) { 329 Label ok; 330 JumpIfNotInNewSpace(object, scratch, &ok); 331 stop("Remembered set pointer is in new space"); 332 bind(&ok); 333 } 334 // Load store buffer top. 335 ExternalReference store_buffer = 336 ExternalReference::store_buffer_top(isolate()); 337 li(t8, Operand(store_buffer)); 338 lw(scratch, MemOperand(t8)); 339 // Store pointer to buffer and increment buffer top. 340 sw(address, MemOperand(scratch)); 341 Addu(scratch, scratch, kPointerSize); 342 // Write back new top of buffer. 343 sw(scratch, MemOperand(t8)); 344 // Call stub on end of buffer. 345 // Check for end of buffer. 346 And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); 347 if (and_then == kFallThroughAtEnd) { 348 Branch(&done, eq, t8, Operand(zero_reg)); 349 } else { 350 ASSERT(and_then == kReturnAtEnd); 351 Ret(eq, t8, Operand(zero_reg)); 352 } 353 push(ra); 354 StoreBufferOverflowStub store_buffer_overflow = 355 StoreBufferOverflowStub(fp_mode); 356 CallStub(&store_buffer_overflow); 357 pop(ra); 358 bind(&done); 359 if (and_then == kReturnAtEnd) { 360 Ret(); 361 } 362 } 363 364 365 // ----------------------------------------------------------------------------- 366 // Allocation support. 367 368 369 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, 370 Register scratch, 371 Label* miss) { 372 Label same_contexts; 373 374 ASSERT(!holder_reg.is(scratch)); 375 ASSERT(!holder_reg.is(at)); 376 ASSERT(!scratch.is(at)); 377 378 // Load current lexical context from the stack frame. 379 lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); 380 // In debug mode, make sure the lexical context is set. 381 #ifdef DEBUG 382 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext, 383 scratch, Operand(zero_reg)); 384 #endif 385 386 // Load the native context of the current context. 387 int offset = 388 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; 389 lw(scratch, FieldMemOperand(scratch, offset)); 390 lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); 391 392 // Check the context is a native context. 393 if (emit_debug_code()) { 394 push(holder_reg); // Temporarily save holder on the stack. 395 // Read the first word and compare to the native_context_map. 396 lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); 397 LoadRoot(at, Heap::kNativeContextMapRootIndex); 398 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, 399 holder_reg, Operand(at)); 400 pop(holder_reg); // Restore holder. 401 } 402 403 // Check if both contexts are the same. 404 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); 405 Branch(&same_contexts, eq, scratch, Operand(at)); 406 407 // Check the context is a native context. 408 if (emit_debug_code()) { 409 push(holder_reg); // Temporarily save holder on the stack. 410 mov(holder_reg, at); // Move at to its holding place. 411 LoadRoot(at, Heap::kNullValueRootIndex); 412 Check(ne, kJSGlobalProxyContextShouldNotBeNull, 413 holder_reg, Operand(at)); 414 415 lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); 416 LoadRoot(at, Heap::kNativeContextMapRootIndex); 417 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, 418 holder_reg, Operand(at)); 419 // Restore at is not needed. at is reloaded below. 420 pop(holder_reg); // Restore holder. 421 // Restore at to holder's context. 422 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); 423 } 424 425 // Check that the security token in the calling global object is 426 // compatible with the security token in the receiving global 427 // object. 428 int token_offset = Context::kHeaderSize + 429 Context::SECURITY_TOKEN_INDEX * kPointerSize; 430 431 lw(scratch, FieldMemOperand(scratch, token_offset)); 432 lw(at, FieldMemOperand(at, token_offset)); 433 Branch(miss, ne, scratch, Operand(at)); 434 435 bind(&same_contexts); 436 } 437 438 439 void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { 440 // First of all we assign the hash seed to scratch. 441 LoadRoot(scratch, Heap::kHashSeedRootIndex); 442 SmiUntag(scratch); 443 444 // Xor original key with a seed. 445 xor_(reg0, reg0, scratch); 446 447 // Compute the hash code from the untagged key. This must be kept in sync 448 // with ComputeIntegerHash in utils.h. 449 // 450 // hash = ~hash + (hash << 15); 451 nor(scratch, reg0, zero_reg); 452 sll(at, reg0, 15); 453 addu(reg0, scratch, at); 454 455 // hash = hash ^ (hash >> 12); 456 srl(at, reg0, 12); 457 xor_(reg0, reg0, at); 458 459 // hash = hash + (hash << 2); 460 sll(at, reg0, 2); 461 addu(reg0, reg0, at); 462 463 // hash = hash ^ (hash >> 4); 464 srl(at, reg0, 4); 465 xor_(reg0, reg0, at); 466 467 // hash = hash * 2057; 468 sll(scratch, reg0, 11); 469 sll(at, reg0, 3); 470 addu(reg0, reg0, at); 471 addu(reg0, reg0, scratch); 472 473 // hash = hash ^ (hash >> 16); 474 srl(at, reg0, 16); 475 xor_(reg0, reg0, at); 476 } 477 478 479 void MacroAssembler::LoadFromNumberDictionary(Label* miss, 480 Register elements, 481 Register key, 482 Register result, 483 Register reg0, 484 Register reg1, 485 Register reg2) { 486 // Register use: 487 // 488 // elements - holds the slow-case elements of the receiver on entry. 489 // Unchanged unless 'result' is the same register. 490 // 491 // key - holds the smi key on entry. 492 // Unchanged unless 'result' is the same register. 493 // 494 // 495 // result - holds the result on exit if the load succeeded. 496 // Allowed to be the same as 'key' or 'result'. 497 // Unchanged on bailout so 'key' or 'result' can be used 498 // in further computation. 499 // 500 // Scratch registers: 501 // 502 // reg0 - holds the untagged key on entry and holds the hash once computed. 503 // 504 // reg1 - Used to hold the capacity mask of the dictionary. 505 // 506 // reg2 - Used for the index into the dictionary. 507 // at - Temporary (avoid MacroAssembler instructions also using 'at'). 508 Label done; 509 510 GetNumberHash(reg0, reg1); 511 512 // Compute the capacity mask. 513 lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); 514 sra(reg1, reg1, kSmiTagSize); 515 Subu(reg1, reg1, Operand(1)); 516 517 // Generate an unrolled loop that performs a few probes before giving up. 518 for (int i = 0; i < kNumberDictionaryProbes; i++) { 519 // Use reg2 for index calculations and keep the hash intact in reg0. 520 mov(reg2, reg0); 521 // Compute the masked index: (hash + i + i * i) & mask. 522 if (i > 0) { 523 Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); 524 } 525 and_(reg2, reg2, reg1); 526 527 // Scale the index by multiplying by the element size. 528 ASSERT(SeededNumberDictionary::kEntrySize == 3); 529 sll(at, reg2, 1); // 2x. 530 addu(reg2, reg2, at); // reg2 = reg2 * 3. 531 532 // Check if the key is identical to the name. 533 sll(at, reg2, kPointerSizeLog2); 534 addu(reg2, elements, at); 535 536 lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); 537 if (i != kNumberDictionaryProbes - 1) { 538 Branch(&done, eq, key, Operand(at)); 539 } else { 540 Branch(miss, ne, key, Operand(at)); 541 } 542 } 543 544 bind(&done); 545 // Check that the value is a normal property. 546 // reg2: elements + (index * kPointerSize). 547 const int kDetailsOffset = 548 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; 549 lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); 550 And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); 551 Branch(miss, ne, at, Operand(zero_reg)); 552 553 // Get the value at the masked, scaled index and return. 554 const int kValueOffset = 555 SeededNumberDictionary::kElementsStartOffset + kPointerSize; 556 lw(result, FieldMemOperand(reg2, kValueOffset)); 557 } 558 559 560 // --------------------------------------------------------------------------- 561 // Instruction macros. 562 563 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { 564 if (rt.is_reg()) { 565 addu(rd, rs, rt.rm()); 566 } else { 567 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 568 addiu(rd, rs, rt.imm32_); 569 } else { 570 // li handles the relocation. 571 ASSERT(!rs.is(at)); 572 li(at, rt); 573 addu(rd, rs, at); 574 } 575 } 576 } 577 578 579 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { 580 if (rt.is_reg()) { 581 subu(rd, rs, rt.rm()); 582 } else { 583 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 584 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). 585 } else { 586 // li handles the relocation. 587 ASSERT(!rs.is(at)); 588 li(at, rt); 589 subu(rd, rs, at); 590 } 591 } 592 } 593 594 595 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { 596 if (rt.is_reg()) { 597 if (kArchVariant == kLoongson) { 598 mult(rs, rt.rm()); 599 mflo(rd); 600 } else { 601 mul(rd, rs, rt.rm()); 602 } 603 } else { 604 // li handles the relocation. 605 ASSERT(!rs.is(at)); 606 li(at, rt); 607 if (kArchVariant == kLoongson) { 608 mult(rs, at); 609 mflo(rd); 610 } else { 611 mul(rd, rs, at); 612 } 613 } 614 } 615 616 617 void MacroAssembler::Mult(Register rs, const Operand& rt) { 618 if (rt.is_reg()) { 619 mult(rs, rt.rm()); 620 } else { 621 // li handles the relocation. 622 ASSERT(!rs.is(at)); 623 li(at, rt); 624 mult(rs, at); 625 } 626 } 627 628 629 void MacroAssembler::Multu(Register rs, const Operand& rt) { 630 if (rt.is_reg()) { 631 multu(rs, rt.rm()); 632 } else { 633 // li handles the relocation. 634 ASSERT(!rs.is(at)); 635 li(at, rt); 636 multu(rs, at); 637 } 638 } 639 640 641 void MacroAssembler::Div(Register rs, const Operand& rt) { 642 if (rt.is_reg()) { 643 div(rs, rt.rm()); 644 } else { 645 // li handles the relocation. 646 ASSERT(!rs.is(at)); 647 li(at, rt); 648 div(rs, at); 649 } 650 } 651 652 653 void MacroAssembler::Divu(Register rs, const Operand& rt) { 654 if (rt.is_reg()) { 655 divu(rs, rt.rm()); 656 } else { 657 // li handles the relocation. 658 ASSERT(!rs.is(at)); 659 li(at, rt); 660 divu(rs, at); 661 } 662 } 663 664 665 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { 666 if (rt.is_reg()) { 667 and_(rd, rs, rt.rm()); 668 } else { 669 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 670 andi(rd, rs, rt.imm32_); 671 } else { 672 // li handles the relocation. 673 ASSERT(!rs.is(at)); 674 li(at, rt); 675 and_(rd, rs, at); 676 } 677 } 678 } 679 680 681 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { 682 if (rt.is_reg()) { 683 or_(rd, rs, rt.rm()); 684 } else { 685 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 686 ori(rd, rs, rt.imm32_); 687 } else { 688 // li handles the relocation. 689 ASSERT(!rs.is(at)); 690 li(at, rt); 691 or_(rd, rs, at); 692 } 693 } 694 } 695 696 697 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { 698 if (rt.is_reg()) { 699 xor_(rd, rs, rt.rm()); 700 } else { 701 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 702 xori(rd, rs, rt.imm32_); 703 } else { 704 // li handles the relocation. 705 ASSERT(!rs.is(at)); 706 li(at, rt); 707 xor_(rd, rs, at); 708 } 709 } 710 } 711 712 713 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { 714 if (rt.is_reg()) { 715 nor(rd, rs, rt.rm()); 716 } else { 717 // li handles the relocation. 718 ASSERT(!rs.is(at)); 719 li(at, rt); 720 nor(rd, rs, at); 721 } 722 } 723 724 725 void MacroAssembler::Neg(Register rs, const Operand& rt) { 726 ASSERT(rt.is_reg()); 727 ASSERT(!at.is(rs)); 728 ASSERT(!at.is(rt.rm())); 729 li(at, -1); 730 xor_(rs, rt.rm(), at); 731 } 732 733 734 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { 735 if (rt.is_reg()) { 736 slt(rd, rs, rt.rm()); 737 } else { 738 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 739 slti(rd, rs, rt.imm32_); 740 } else { 741 // li handles the relocation. 742 ASSERT(!rs.is(at)); 743 li(at, rt); 744 slt(rd, rs, at); 745 } 746 } 747 } 748 749 750 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { 751 if (rt.is_reg()) { 752 sltu(rd, rs, rt.rm()); 753 } else { 754 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 755 sltiu(rd, rs, rt.imm32_); 756 } else { 757 // li handles the relocation. 758 ASSERT(!rs.is(at)); 759 li(at, rt); 760 sltu(rd, rs, at); 761 } 762 } 763 } 764 765 766 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { 767 if (kArchVariant == kMips32r2) { 768 if (rt.is_reg()) { 769 rotrv(rd, rs, rt.rm()); 770 } else { 771 rotr(rd, rs, rt.imm32_); 772 } 773 } else { 774 if (rt.is_reg()) { 775 subu(at, zero_reg, rt.rm()); 776 sllv(at, rs, at); 777 srlv(rd, rs, rt.rm()); 778 or_(rd, rd, at); 779 } else { 780 if (rt.imm32_ == 0) { 781 srl(rd, rs, 0); 782 } else { 783 srl(at, rs, rt.imm32_); 784 sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); 785 or_(rd, rd, at); 786 } 787 } 788 } 789 } 790 791 792 //------------Pseudo-instructions------------- 793 794 void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) { 795 AllowDeferredHandleDereference smi_check; 796 if (value->IsSmi()) { 797 li(dst, Operand(value), mode); 798 } else { 799 ASSERT(value->IsHeapObject()); 800 if (isolate()->heap()->InNewSpace(*value)) { 801 Handle<Cell> cell = isolate()->factory()->NewCell(value); 802 li(dst, Operand(cell)); 803 lw(dst, FieldMemOperand(dst, Cell::kValueOffset)); 804 } else { 805 li(dst, Operand(value)); 806 } 807 } 808 } 809 810 811 void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { 812 ASSERT(!j.is_reg()); 813 BlockTrampolinePoolScope block_trampoline_pool(this); 814 if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { 815 // Normal load of an immediate value which does not need Relocation Info. 816 if (is_int16(j.imm32_)) { 817 addiu(rd, zero_reg, j.imm32_); 818 } else if (!(j.imm32_ & kHiMask)) { 819 ori(rd, zero_reg, j.imm32_); 820 } else if (!(j.imm32_ & kImm16Mask)) { 821 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 822 } else { 823 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 824 ori(rd, rd, (j.imm32_ & kImm16Mask)); 825 } 826 } else { 827 if (MustUseReg(j.rmode_)) { 828 RecordRelocInfo(j.rmode_, j.imm32_); 829 } 830 // We always need the same number of instructions as we may need to patch 831 // this code to load another value which may need 2 instructions to load. 832 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 833 ori(rd, rd, (j.imm32_ & kImm16Mask)); 834 } 835 } 836 837 838 void MacroAssembler::MultiPush(RegList regs) { 839 int16_t num_to_push = NumberOfBitsSet(regs); 840 int16_t stack_offset = num_to_push * kPointerSize; 841 842 Subu(sp, sp, Operand(stack_offset)); 843 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 844 if ((regs & (1 << i)) != 0) { 845 stack_offset -= kPointerSize; 846 sw(ToRegister(i), MemOperand(sp, stack_offset)); 847 } 848 } 849 } 850 851 852 void MacroAssembler::MultiPushReversed(RegList regs) { 853 int16_t num_to_push = NumberOfBitsSet(regs); 854 int16_t stack_offset = num_to_push * kPointerSize; 855 856 Subu(sp, sp, Operand(stack_offset)); 857 for (int16_t i = 0; i < kNumRegisters; i++) { 858 if ((regs & (1 << i)) != 0) { 859 stack_offset -= kPointerSize; 860 sw(ToRegister(i), MemOperand(sp, stack_offset)); 861 } 862 } 863 } 864 865 866 void MacroAssembler::MultiPop(RegList regs) { 867 int16_t stack_offset = 0; 868 869 for (int16_t i = 0; i < kNumRegisters; i++) { 870 if ((regs & (1 << i)) != 0) { 871 lw(ToRegister(i), MemOperand(sp, stack_offset)); 872 stack_offset += kPointerSize; 873 } 874 } 875 addiu(sp, sp, stack_offset); 876 } 877 878 879 void MacroAssembler::MultiPopReversed(RegList regs) { 880 int16_t stack_offset = 0; 881 882 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 883 if ((regs & (1 << i)) != 0) { 884 lw(ToRegister(i), MemOperand(sp, stack_offset)); 885 stack_offset += kPointerSize; 886 } 887 } 888 addiu(sp, sp, stack_offset); 889 } 890 891 892 void MacroAssembler::MultiPushFPU(RegList regs) { 893 int16_t num_to_push = NumberOfBitsSet(regs); 894 int16_t stack_offset = num_to_push * kDoubleSize; 895 896 Subu(sp, sp, Operand(stack_offset)); 897 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 898 if ((regs & (1 << i)) != 0) { 899 stack_offset -= kDoubleSize; 900 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 901 } 902 } 903 } 904 905 906 void MacroAssembler::MultiPushReversedFPU(RegList regs) { 907 int16_t num_to_push = NumberOfBitsSet(regs); 908 int16_t stack_offset = num_to_push * kDoubleSize; 909 910 Subu(sp, sp, Operand(stack_offset)); 911 for (int16_t i = 0; i < kNumRegisters; i++) { 912 if ((regs & (1 << i)) != 0) { 913 stack_offset -= kDoubleSize; 914 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 915 } 916 } 917 } 918 919 920 void MacroAssembler::MultiPopFPU(RegList regs) { 921 int16_t stack_offset = 0; 922 923 for (int16_t i = 0; i < kNumRegisters; i++) { 924 if ((regs & (1 << i)) != 0) { 925 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 926 stack_offset += kDoubleSize; 927 } 928 } 929 addiu(sp, sp, stack_offset); 930 } 931 932 933 void MacroAssembler::MultiPopReversedFPU(RegList regs) { 934 int16_t stack_offset = 0; 935 936 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 937 if ((regs & (1 << i)) != 0) { 938 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 939 stack_offset += kDoubleSize; 940 } 941 } 942 addiu(sp, sp, stack_offset); 943 } 944 945 946 void MacroAssembler::FlushICache(Register address, unsigned instructions) { 947 RegList saved_regs = kJSCallerSaved | ra.bit(); 948 MultiPush(saved_regs); 949 AllowExternalCallThatCantCauseGC scope(this); 950 951 // Save to a0 in case address == t0. 952 Move(a0, address); 953 PrepareCallCFunction(2, t0); 954 955 li(a1, instructions * kInstrSize); 956 CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); 957 MultiPop(saved_regs); 958 } 959 960 961 void MacroAssembler::Ext(Register rt, 962 Register rs, 963 uint16_t pos, 964 uint16_t size) { 965 ASSERT(pos < 32); 966 ASSERT(pos + size < 33); 967 968 if (kArchVariant == kMips32r2) { 969 ext_(rt, rs, pos, size); 970 } else { 971 // Move rs to rt and shift it left then right to get the 972 // desired bitfield on the right side and zeroes on the left. 973 int shift_left = 32 - (pos + size); 974 sll(rt, rs, shift_left); // Acts as a move if shift_left == 0. 975 976 int shift_right = 32 - size; 977 if (shift_right > 0) { 978 srl(rt, rt, shift_right); 979 } 980 } 981 } 982 983 984 void MacroAssembler::Ins(Register rt, 985 Register rs, 986 uint16_t pos, 987 uint16_t size) { 988 ASSERT(pos < 32); 989 ASSERT(pos + size <= 32); 990 ASSERT(size != 0); 991 992 if (kArchVariant == kMips32r2) { 993 ins_(rt, rs, pos, size); 994 } else { 995 ASSERT(!rt.is(t8) && !rs.is(t8)); 996 Subu(at, zero_reg, Operand(1)); 997 srl(at, at, 32 - size); 998 and_(t8, rs, at); 999 sll(t8, t8, pos); 1000 sll(at, at, pos); 1001 nor(at, at, zero_reg); 1002 and_(at, rt, at); 1003 or_(rt, t8, at); 1004 } 1005 } 1006 1007 1008 void MacroAssembler::Cvt_d_uw(FPURegister fd, 1009 FPURegister fs, 1010 FPURegister scratch) { 1011 // Move the data from fs to t8. 1012 mfc1(t8, fs); 1013 Cvt_d_uw(fd, t8, scratch); 1014 } 1015 1016 1017 void MacroAssembler::Cvt_d_uw(FPURegister fd, 1018 Register rs, 1019 FPURegister scratch) { 1020 // Convert rs to a FP value in fd (and fd + 1). 1021 // We do this by converting rs minus the MSB to avoid sign conversion, 1022 // then adding 2^31 to the result (if needed). 1023 1024 ASSERT(!fd.is(scratch)); 1025 ASSERT(!rs.is(t9)); 1026 ASSERT(!rs.is(at)); 1027 1028 // Save rs's MSB to t9. 1029 Ext(t9, rs, 31, 1); 1030 // Remove rs's MSB. 1031 Ext(at, rs, 0, 31); 1032 // Move the result to fd. 1033 mtc1(at, fd); 1034 1035 // Convert fd to a real FP value. 1036 cvt_d_w(fd, fd); 1037 1038 Label conversion_done; 1039 1040 // If rs's MSB was 0, it's done. 1041 // Otherwise we need to add that to the FP register. 1042 Branch(&conversion_done, eq, t9, Operand(zero_reg)); 1043 1044 // Load 2^31 into f20 as its float representation. 1045 li(at, 0x41E00000); 1046 mtc1(at, FPURegister::from_code(scratch.code() + 1)); 1047 mtc1(zero_reg, scratch); 1048 // Add it to fd. 1049 add_d(fd, fd, scratch); 1050 1051 bind(&conversion_done); 1052 } 1053 1054 1055 void MacroAssembler::Trunc_uw_d(FPURegister fd, 1056 FPURegister fs, 1057 FPURegister scratch) { 1058 Trunc_uw_d(fs, t8, scratch); 1059 mtc1(t8, fd); 1060 } 1061 1062 1063 void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { 1064 if (kArchVariant == kLoongson && fd.is(fs)) { 1065 mfc1(t8, FPURegister::from_code(fs.code() + 1)); 1066 trunc_w_d(fd, fs); 1067 mtc1(t8, FPURegister::from_code(fs.code() + 1)); 1068 } else { 1069 trunc_w_d(fd, fs); 1070 } 1071 } 1072 1073 1074 void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { 1075 if (kArchVariant == kLoongson && fd.is(fs)) { 1076 mfc1(t8, FPURegister::from_code(fs.code() + 1)); 1077 round_w_d(fd, fs); 1078 mtc1(t8, FPURegister::from_code(fs.code() + 1)); 1079 } else { 1080 round_w_d(fd, fs); 1081 } 1082 } 1083 1084 1085 void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { 1086 if (kArchVariant == kLoongson && fd.is(fs)) { 1087 mfc1(t8, FPURegister::from_code(fs.code() + 1)); 1088 floor_w_d(fd, fs); 1089 mtc1(t8, FPURegister::from_code(fs.code() + 1)); 1090 } else { 1091 floor_w_d(fd, fs); 1092 } 1093 } 1094 1095 1096 void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { 1097 if (kArchVariant == kLoongson && fd.is(fs)) { 1098 mfc1(t8, FPURegister::from_code(fs.code() + 1)); 1099 ceil_w_d(fd, fs); 1100 mtc1(t8, FPURegister::from_code(fs.code() + 1)); 1101 } else { 1102 ceil_w_d(fd, fs); 1103 } 1104 } 1105 1106 1107 void MacroAssembler::Trunc_uw_d(FPURegister fd, 1108 Register rs, 1109 FPURegister scratch) { 1110 ASSERT(!fd.is(scratch)); 1111 ASSERT(!rs.is(at)); 1112 1113 // Load 2^31 into scratch as its float representation. 1114 li(at, 0x41E00000); 1115 mtc1(at, FPURegister::from_code(scratch.code() + 1)); 1116 mtc1(zero_reg, scratch); 1117 // Test if scratch > fd. 1118 // If fd < 2^31 we can convert it normally. 1119 Label simple_convert; 1120 BranchF(&simple_convert, NULL, lt, fd, scratch); 1121 1122 // First we subtract 2^31 from fd, then trunc it to rs 1123 // and add 2^31 to rs. 1124 sub_d(scratch, fd, scratch); 1125 trunc_w_d(scratch, scratch); 1126 mfc1(rs, scratch); 1127 Or(rs, rs, 1 << 31); 1128 1129 Label done; 1130 Branch(&done); 1131 // Simple conversion. 1132 bind(&simple_convert); 1133 trunc_w_d(scratch, fd); 1134 mfc1(rs, scratch); 1135 1136 bind(&done); 1137 } 1138 1139 1140 void MacroAssembler::BranchF(Label* target, 1141 Label* nan, 1142 Condition cc, 1143 FPURegister cmp1, 1144 FPURegister cmp2, 1145 BranchDelaySlot bd) { 1146 BlockTrampolinePoolScope block_trampoline_pool(this); 1147 if (cc == al) { 1148 Branch(bd, target); 1149 return; 1150 } 1151 1152 ASSERT(nan || target); 1153 // Check for unordered (NaN) cases. 1154 if (nan) { 1155 c(UN, D, cmp1, cmp2); 1156 bc1t(nan); 1157 } 1158 1159 if (target) { 1160 // Here NaN cases were either handled by this function or are assumed to 1161 // have been handled by the caller. 1162 // Unsigned conditions are treated as their signed counterpart. 1163 switch (cc) { 1164 case lt: 1165 c(OLT, D, cmp1, cmp2); 1166 bc1t(target); 1167 break; 1168 case gt: 1169 c(ULE, D, cmp1, cmp2); 1170 bc1f(target); 1171 break; 1172 case ge: 1173 c(ULT, D, cmp1, cmp2); 1174 bc1f(target); 1175 break; 1176 case le: 1177 c(OLE, D, cmp1, cmp2); 1178 bc1t(target); 1179 break; 1180 case eq: 1181 c(EQ, D, cmp1, cmp2); 1182 bc1t(target); 1183 break; 1184 case ueq: 1185 c(UEQ, D, cmp1, cmp2); 1186 bc1t(target); 1187 break; 1188 case ne: 1189 c(EQ, D, cmp1, cmp2); 1190 bc1f(target); 1191 break; 1192 case nue: 1193 c(UEQ, D, cmp1, cmp2); 1194 bc1f(target); 1195 break; 1196 default: 1197 CHECK(0); 1198 }; 1199 } 1200 1201 if (bd == PROTECT) { 1202 nop(); 1203 } 1204 } 1205 1206 1207 void MacroAssembler::Move(FPURegister dst, double imm) { 1208 static const DoubleRepresentation minus_zero(-0.0); 1209 static const DoubleRepresentation zero(0.0); 1210 DoubleRepresentation value(imm); 1211 // Handle special values first. 1212 bool force_load = dst.is(kDoubleRegZero); 1213 if (value.bits == zero.bits && !force_load) { 1214 mov_d(dst, kDoubleRegZero); 1215 } else if (value.bits == minus_zero.bits && !force_load) { 1216 neg_d(dst, kDoubleRegZero); 1217 } else { 1218 uint32_t lo, hi; 1219 DoubleAsTwoUInt32(imm, &lo, &hi); 1220 // Move the low part of the double into the lower of the corresponding FPU 1221 // register of FPU register pair. 1222 if (lo != 0) { 1223 li(at, Operand(lo)); 1224 mtc1(at, dst); 1225 } else { 1226 mtc1(zero_reg, dst); 1227 } 1228 // Move the high part of the double into the higher of the corresponding FPU 1229 // register of FPU register pair. 1230 if (hi != 0) { 1231 li(at, Operand(hi)); 1232 mtc1(at, dst.high()); 1233 } else { 1234 mtc1(zero_reg, dst.high()); 1235 } 1236 } 1237 } 1238 1239 1240 void MacroAssembler::Movz(Register rd, Register rs, Register rt) { 1241 if (kArchVariant == kLoongson) { 1242 Label done; 1243 Branch(&done, ne, rt, Operand(zero_reg)); 1244 mov(rd, rs); 1245 bind(&done); 1246 } else { 1247 movz(rd, rs, rt); 1248 } 1249 } 1250 1251 1252 void MacroAssembler::Movn(Register rd, Register rs, Register rt) { 1253 if (kArchVariant == kLoongson) { 1254 Label done; 1255 Branch(&done, eq, rt, Operand(zero_reg)); 1256 mov(rd, rs); 1257 bind(&done); 1258 } else { 1259 movn(rd, rs, rt); 1260 } 1261 } 1262 1263 1264 void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { 1265 if (kArchVariant == kLoongson) { 1266 // Tests an FP condition code and then conditionally move rs to rd. 1267 // We do not currently use any FPU cc bit other than bit 0. 1268 ASSERT(cc == 0); 1269 ASSERT(!(rs.is(t8) || rd.is(t8))); 1270 Label done; 1271 Register scratch = t8; 1272 // For testing purposes we need to fetch content of the FCSR register and 1273 // than test its cc (floating point condition code) bit (for cc = 0, it is 1274 // 24. bit of the FCSR). 1275 cfc1(scratch, FCSR); 1276 // For the MIPS I, II and III architectures, the contents of scratch is 1277 // UNPREDICTABLE for the instruction immediately following CFC1. 1278 nop(); 1279 srl(scratch, scratch, 16); 1280 andi(scratch, scratch, 0x0080); 1281 Branch(&done, eq, scratch, Operand(zero_reg)); 1282 mov(rd, rs); 1283 bind(&done); 1284 } else { 1285 movt(rd, rs, cc); 1286 } 1287 } 1288 1289 1290 void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { 1291 if (kArchVariant == kLoongson) { 1292 // Tests an FP condition code and then conditionally move rs to rd. 1293 // We do not currently use any FPU cc bit other than bit 0. 1294 ASSERT(cc == 0); 1295 ASSERT(!(rs.is(t8) || rd.is(t8))); 1296 Label done; 1297 Register scratch = t8; 1298 // For testing purposes we need to fetch content of the FCSR register and 1299 // than test its cc (floating point condition code) bit (for cc = 0, it is 1300 // 24. bit of the FCSR). 1301 cfc1(scratch, FCSR); 1302 // For the MIPS I, II and III architectures, the contents of scratch is 1303 // UNPREDICTABLE for the instruction immediately following CFC1. 1304 nop(); 1305 srl(scratch, scratch, 16); 1306 andi(scratch, scratch, 0x0080); 1307 Branch(&done, ne, scratch, Operand(zero_reg)); 1308 mov(rd, rs); 1309 bind(&done); 1310 } else { 1311 movf(rd, rs, cc); 1312 } 1313 } 1314 1315 1316 void MacroAssembler::Clz(Register rd, Register rs) { 1317 if (kArchVariant == kLoongson) { 1318 ASSERT(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); 1319 Register mask = t8; 1320 Register scratch = t9; 1321 Label loop, end; 1322 mov(at, rs); 1323 mov(rd, zero_reg); 1324 lui(mask, 0x8000); 1325 bind(&loop); 1326 and_(scratch, at, mask); 1327 Branch(&end, ne, scratch, Operand(zero_reg)); 1328 addiu(rd, rd, 1); 1329 Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); 1330 srl(mask, mask, 1); 1331 bind(&end); 1332 } else { 1333 clz(rd, rs); 1334 } 1335 } 1336 1337 1338 void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, 1339 Register result, 1340 DoubleRegister double_input, 1341 Register scratch, 1342 DoubleRegister double_scratch, 1343 Register except_flag, 1344 CheckForInexactConversion check_inexact) { 1345 ASSERT(!result.is(scratch)); 1346 ASSERT(!double_input.is(double_scratch)); 1347 ASSERT(!except_flag.is(scratch)); 1348 1349 Label done; 1350 1351 // Clear the except flag (0 = no exception) 1352 mov(except_flag, zero_reg); 1353 1354 // Test for values that can be exactly represented as a signed 32-bit integer. 1355 cvt_w_d(double_scratch, double_input); 1356 mfc1(result, double_scratch); 1357 cvt_d_w(double_scratch, double_scratch); 1358 BranchF(&done, NULL, eq, double_input, double_scratch); 1359 1360 int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. 1361 1362 if (check_inexact == kDontCheckForInexactConversion) { 1363 // Ignore inexact exceptions. 1364 except_mask &= ~kFCSRInexactFlagMask; 1365 } 1366 1367 // Save FCSR. 1368 cfc1(scratch, FCSR); 1369 // Disable FPU exceptions. 1370 ctc1(zero_reg, FCSR); 1371 1372 // Do operation based on rounding mode. 1373 switch (rounding_mode) { 1374 case kRoundToNearest: 1375 Round_w_d(double_scratch, double_input); 1376 break; 1377 case kRoundToZero: 1378 Trunc_w_d(double_scratch, double_input); 1379 break; 1380 case kRoundToPlusInf: 1381 Ceil_w_d(double_scratch, double_input); 1382 break; 1383 case kRoundToMinusInf: 1384 Floor_w_d(double_scratch, double_input); 1385 break; 1386 } // End of switch-statement. 1387 1388 // Retrieve FCSR. 1389 cfc1(except_flag, FCSR); 1390 // Restore FCSR. 1391 ctc1(scratch, FCSR); 1392 // Move the converted value into the result register. 1393 mfc1(result, double_scratch); 1394 1395 // Check for fpu exceptions. 1396 And(except_flag, except_flag, Operand(except_mask)); 1397 1398 bind(&done); 1399 } 1400 1401 1402 void MacroAssembler::TryInlineTruncateDoubleToI(Register result, 1403 DoubleRegister double_input, 1404 Label* done) { 1405 DoubleRegister single_scratch = kLithiumScratchDouble.low(); 1406 Register scratch = at; 1407 Register scratch2 = t9; 1408 1409 // Clear cumulative exception flags and save the FCSR. 1410 cfc1(scratch2, FCSR); 1411 ctc1(zero_reg, FCSR); 1412 // Try a conversion to a signed integer. 1413 trunc_w_d(single_scratch, double_input); 1414 mfc1(result, single_scratch); 1415 // Retrieve and restore the FCSR. 1416 cfc1(scratch, FCSR); 1417 ctc1(scratch2, FCSR); 1418 // Check for overflow and NaNs. 1419 And(scratch, 1420 scratch, 1421 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); 1422 // If we had no exceptions we are done. 1423 Branch(done, eq, scratch, Operand(zero_reg)); 1424 } 1425 1426 1427 void MacroAssembler::TruncateDoubleToI(Register result, 1428 DoubleRegister double_input) { 1429 Label done; 1430 1431 TryInlineTruncateDoubleToI(result, double_input, &done); 1432 1433 // If we fell through then inline version didn't succeed - call stub instead. 1434 push(ra); 1435 Subu(sp, sp, Operand(kDoubleSize)); // Put input on stack. 1436 sdc1(double_input, MemOperand(sp, 0)); 1437 1438 DoubleToIStub stub(sp, result, 0, true, true); 1439 CallStub(&stub); 1440 1441 Addu(sp, sp, Operand(kDoubleSize)); 1442 pop(ra); 1443 1444 bind(&done); 1445 } 1446 1447 1448 void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { 1449 Label done; 1450 DoubleRegister double_scratch = f12; 1451 ASSERT(!result.is(object)); 1452 1453 ldc1(double_scratch, 1454 MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); 1455 TryInlineTruncateDoubleToI(result, double_scratch, &done); 1456 1457 // If we fell through then inline version didn't succeed - call stub instead. 1458 push(ra); 1459 DoubleToIStub stub(object, 1460 result, 1461 HeapNumber::kValueOffset - kHeapObjectTag, 1462 true, 1463 true); 1464 CallStub(&stub); 1465 pop(ra); 1466 1467 bind(&done); 1468 } 1469 1470 1471 void MacroAssembler::TruncateNumberToI(Register object, 1472 Register result, 1473 Register heap_number_map, 1474 Register scratch, 1475 Label* not_number) { 1476 Label done; 1477 ASSERT(!result.is(object)); 1478 1479 UntagAndJumpIfSmi(result, object, &done); 1480 JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number); 1481 TruncateHeapNumberToI(result, object); 1482 1483 bind(&done); 1484 } 1485 1486 1487 void MacroAssembler::GetLeastBitsFromSmi(Register dst, 1488 Register src, 1489 int num_least_bits) { 1490 Ext(dst, src, kSmiTagSize, num_least_bits); 1491 } 1492 1493 1494 void MacroAssembler::GetLeastBitsFromInt32(Register dst, 1495 Register src, 1496 int num_least_bits) { 1497 And(dst, src, Operand((1 << num_least_bits) - 1)); 1498 } 1499 1500 1501 // Emulated condtional branches do not emit a nop in the branch delay slot. 1502 // 1503 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. 1504 #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \ 1505 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ 1506 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) 1507 1508 1509 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { 1510 BranchShort(offset, bdslot); 1511 } 1512 1513 1514 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, 1515 const Operand& rt, 1516 BranchDelaySlot bdslot) { 1517 BranchShort(offset, cond, rs, rt, bdslot); 1518 } 1519 1520 1521 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { 1522 if (L->is_bound()) { 1523 if (is_near(L)) { 1524 BranchShort(L, bdslot); 1525 } else { 1526 Jr(L, bdslot); 1527 } 1528 } else { 1529 if (is_trampoline_emitted()) { 1530 Jr(L, bdslot); 1531 } else { 1532 BranchShort(L, bdslot); 1533 } 1534 } 1535 } 1536 1537 1538 void MacroAssembler::Branch(Label* L, Condition cond, Register rs, 1539 const Operand& rt, 1540 BranchDelaySlot bdslot) { 1541 if (L->is_bound()) { 1542 if (is_near(L)) { 1543 BranchShort(L, cond, rs, rt, bdslot); 1544 } else { 1545 Label skip; 1546 Condition neg_cond = NegateCondition(cond); 1547 BranchShort(&skip, neg_cond, rs, rt); 1548 Jr(L, bdslot); 1549 bind(&skip); 1550 } 1551 } else { 1552 if (is_trampoline_emitted()) { 1553 Label skip; 1554 Condition neg_cond = NegateCondition(cond); 1555 BranchShort(&skip, neg_cond, rs, rt); 1556 Jr(L, bdslot); 1557 bind(&skip); 1558 } else { 1559 BranchShort(L, cond, rs, rt, bdslot); 1560 } 1561 } 1562 } 1563 1564 1565 void MacroAssembler::Branch(Label* L, 1566 Condition cond, 1567 Register rs, 1568 Heap::RootListIndex index, 1569 BranchDelaySlot bdslot) { 1570 LoadRoot(at, index); 1571 Branch(L, cond, rs, Operand(at), bdslot); 1572 } 1573 1574 1575 void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { 1576 b(offset); 1577 1578 // Emit a nop in the branch delay slot if required. 1579 if (bdslot == PROTECT) 1580 nop(); 1581 } 1582 1583 1584 void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, 1585 const Operand& rt, 1586 BranchDelaySlot bdslot) { 1587 BRANCH_ARGS_CHECK(cond, rs, rt); 1588 ASSERT(!rs.is(zero_reg)); 1589 Register r2 = no_reg; 1590 Register scratch = at; 1591 1592 if (rt.is_reg()) { 1593 // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or 1594 // rt. 1595 BlockTrampolinePoolScope block_trampoline_pool(this); 1596 r2 = rt.rm_; 1597 switch (cond) { 1598 case cc_always: 1599 b(offset); 1600 break; 1601 case eq: 1602 beq(rs, r2, offset); 1603 break; 1604 case ne: 1605 bne(rs, r2, offset); 1606 break; 1607 // Signed comparison. 1608 case greater: 1609 if (r2.is(zero_reg)) { 1610 bgtz(rs, offset); 1611 } else { 1612 slt(scratch, r2, rs); 1613 bne(scratch, zero_reg, offset); 1614 } 1615 break; 1616 case greater_equal: 1617 if (r2.is(zero_reg)) { 1618 bgez(rs, offset); 1619 } else { 1620 slt(scratch, rs, r2); 1621 beq(scratch, zero_reg, offset); 1622 } 1623 break; 1624 case less: 1625 if (r2.is(zero_reg)) { 1626 bltz(rs, offset); 1627 } else { 1628 slt(scratch, rs, r2); 1629 bne(scratch, zero_reg, offset); 1630 } 1631 break; 1632 case less_equal: 1633 if (r2.is(zero_reg)) { 1634 blez(rs, offset); 1635 } else { 1636 slt(scratch, r2, rs); 1637 beq(scratch, zero_reg, offset); 1638 } 1639 break; 1640 // Unsigned comparison. 1641 case Ugreater: 1642 if (r2.is(zero_reg)) { 1643 bgtz(rs, offset); 1644 } else { 1645 sltu(scratch, r2, rs); 1646 bne(scratch, zero_reg, offset); 1647 } 1648 break; 1649 case Ugreater_equal: 1650 if (r2.is(zero_reg)) { 1651 bgez(rs, offset); 1652 } else { 1653 sltu(scratch, rs, r2); 1654 beq(scratch, zero_reg, offset); 1655 } 1656 break; 1657 case Uless: 1658 if (r2.is(zero_reg)) { 1659 // No code needs to be emitted. 1660 return; 1661 } else { 1662 sltu(scratch, rs, r2); 1663 bne(scratch, zero_reg, offset); 1664 } 1665 break; 1666 case Uless_equal: 1667 if (r2.is(zero_reg)) { 1668 b(offset); 1669 } else { 1670 sltu(scratch, r2, rs); 1671 beq(scratch, zero_reg, offset); 1672 } 1673 break; 1674 default: 1675 UNREACHABLE(); 1676 } 1677 } else { 1678 // Be careful to always use shifted_branch_offset only just before the 1679 // branch instruction, as the location will be remember for patching the 1680 // target. 1681 BlockTrampolinePoolScope block_trampoline_pool(this); 1682 switch (cond) { 1683 case cc_always: 1684 b(offset); 1685 break; 1686 case eq: 1687 // We don't want any other register but scratch clobbered. 1688 ASSERT(!scratch.is(rs)); 1689 r2 = scratch; 1690 li(r2, rt); 1691 beq(rs, r2, offset); 1692 break; 1693 case ne: 1694 // We don't want any other register but scratch clobbered. 1695 ASSERT(!scratch.is(rs)); 1696 r2 = scratch; 1697 li(r2, rt); 1698 bne(rs, r2, offset); 1699 break; 1700 // Signed comparison. 1701 case greater: 1702 if (rt.imm32_ == 0) { 1703 bgtz(rs, offset); 1704 } else { 1705 r2 = scratch; 1706 li(r2, rt); 1707 slt(scratch, r2, rs); 1708 bne(scratch, zero_reg, offset); 1709 } 1710 break; 1711 case greater_equal: 1712 if (rt.imm32_ == 0) { 1713 bgez(rs, offset); 1714 } else if (is_int16(rt.imm32_)) { 1715 slti(scratch, rs, rt.imm32_); 1716 beq(scratch, zero_reg, offset); 1717 } else { 1718 r2 = scratch; 1719 li(r2, rt); 1720 slt(scratch, rs, r2); 1721 beq(scratch, zero_reg, offset); 1722 } 1723 break; 1724 case less: 1725 if (rt.imm32_ == 0) { 1726 bltz(rs, offset); 1727 } else if (is_int16(rt.imm32_)) { 1728 slti(scratch, rs, rt.imm32_); 1729 bne(scratch, zero_reg, offset); 1730 } else { 1731 r2 = scratch; 1732 li(r2, rt); 1733 slt(scratch, rs, r2); 1734 bne(scratch, zero_reg, offset); 1735 } 1736 break; 1737 case less_equal: 1738 if (rt.imm32_ == 0) { 1739 blez(rs, offset); 1740 } else { 1741 r2 = scratch; 1742 li(r2, rt); 1743 slt(scratch, r2, rs); 1744 beq(scratch, zero_reg, offset); 1745 } 1746 break; 1747 // Unsigned comparison. 1748 case Ugreater: 1749 if (rt.imm32_ == 0) { 1750 bgtz(rs, offset); 1751 } else { 1752 r2 = scratch; 1753 li(r2, rt); 1754 sltu(scratch, r2, rs); 1755 bne(scratch, zero_reg, offset); 1756 } 1757 break; 1758 case Ugreater_equal: 1759 if (rt.imm32_ == 0) { 1760 bgez(rs, offset); 1761 } else if (is_int16(rt.imm32_)) { 1762 sltiu(scratch, rs, rt.imm32_); 1763 beq(scratch, zero_reg, offset); 1764 } else { 1765 r2 = scratch; 1766 li(r2, rt); 1767 sltu(scratch, rs, r2); 1768 beq(scratch, zero_reg, offset); 1769 } 1770 break; 1771 case Uless: 1772 if (rt.imm32_ == 0) { 1773 // No code needs to be emitted. 1774 return; 1775 } else if (is_int16(rt.imm32_)) { 1776 sltiu(scratch, rs, rt.imm32_); 1777 bne(scratch, zero_reg, offset); 1778 } else { 1779 r2 = scratch; 1780 li(r2, rt); 1781 sltu(scratch, rs, r2); 1782 bne(scratch, zero_reg, offset); 1783 } 1784 break; 1785 case Uless_equal: 1786 if (rt.imm32_ == 0) { 1787 b(offset); 1788 } else { 1789 r2 = scratch; 1790 li(r2, rt); 1791 sltu(scratch, r2, rs); 1792 beq(scratch, zero_reg, offset); 1793 } 1794 break; 1795 default: 1796 UNREACHABLE(); 1797 } 1798 } 1799 // Emit a nop in the branch delay slot if required. 1800 if (bdslot == PROTECT) 1801 nop(); 1802 } 1803 1804 1805 void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { 1806 // We use branch_offset as an argument for the branch instructions to be sure 1807 // it is called just before generating the branch instruction, as needed. 1808 1809 b(shifted_branch_offset(L, false)); 1810 1811 // Emit a nop in the branch delay slot if required. 1812 if (bdslot == PROTECT) 1813 nop(); 1814 } 1815 1816 1817 void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, 1818 const Operand& rt, 1819 BranchDelaySlot bdslot) { 1820 BRANCH_ARGS_CHECK(cond, rs, rt); 1821 1822 int32_t offset = 0; 1823 Register r2 = no_reg; 1824 Register scratch = at; 1825 if (rt.is_reg()) { 1826 BlockTrampolinePoolScope block_trampoline_pool(this); 1827 r2 = rt.rm_; 1828 // Be careful to always use shifted_branch_offset only just before the 1829 // branch instruction, as the location will be remember for patching the 1830 // target. 1831 switch (cond) { 1832 case cc_always: 1833 offset = shifted_branch_offset(L, false); 1834 b(offset); 1835 break; 1836 case eq: 1837 offset = shifted_branch_offset(L, false); 1838 beq(rs, r2, offset); 1839 break; 1840 case ne: 1841 offset = shifted_branch_offset(L, false); 1842 bne(rs, r2, offset); 1843 break; 1844 // Signed comparison. 1845 case greater: 1846 if (r2.is(zero_reg)) { 1847 offset = shifted_branch_offset(L, false); 1848 bgtz(rs, offset); 1849 } else { 1850 slt(scratch, r2, rs); 1851 offset = shifted_branch_offset(L, false); 1852 bne(scratch, zero_reg, offset); 1853 } 1854 break; 1855 case greater_equal: 1856 if (r2.is(zero_reg)) { 1857 offset = shifted_branch_offset(L, false); 1858 bgez(rs, offset); 1859 } else { 1860 slt(scratch, rs, r2); 1861 offset = shifted_branch_offset(L, false); 1862 beq(scratch, zero_reg, offset); 1863 } 1864 break; 1865 case less: 1866 if (r2.is(zero_reg)) { 1867 offset = shifted_branch_offset(L, false); 1868 bltz(rs, offset); 1869 } else { 1870 slt(scratch, rs, r2); 1871 offset = shifted_branch_offset(L, false); 1872 bne(scratch, zero_reg, offset); 1873 } 1874 break; 1875 case less_equal: 1876 if (r2.is(zero_reg)) { 1877 offset = shifted_branch_offset(L, false); 1878 blez(rs, offset); 1879 } else { 1880 slt(scratch, r2, rs); 1881 offset = shifted_branch_offset(L, false); 1882 beq(scratch, zero_reg, offset); 1883 } 1884 break; 1885 // Unsigned comparison. 1886 case Ugreater: 1887 if (r2.is(zero_reg)) { 1888 offset = shifted_branch_offset(L, false); 1889 bgtz(rs, offset); 1890 } else { 1891 sltu(scratch, r2, rs); 1892 offset = shifted_branch_offset(L, false); 1893 bne(scratch, zero_reg, offset); 1894 } 1895 break; 1896 case Ugreater_equal: 1897 if (r2.is(zero_reg)) { 1898 offset = shifted_branch_offset(L, false); 1899 bgez(rs, offset); 1900 } else { 1901 sltu(scratch, rs, r2); 1902 offset = shifted_branch_offset(L, false); 1903 beq(scratch, zero_reg, offset); 1904 } 1905 break; 1906 case Uless: 1907 if (r2.is(zero_reg)) { 1908 // No code needs to be emitted. 1909 return; 1910 } else { 1911 sltu(scratch, rs, r2); 1912 offset = shifted_branch_offset(L, false); 1913 bne(scratch, zero_reg, offset); 1914 } 1915 break; 1916 case Uless_equal: 1917 if (r2.is(zero_reg)) { 1918 offset = shifted_branch_offset(L, false); 1919 b(offset); 1920 } else { 1921 sltu(scratch, r2, rs); 1922 offset = shifted_branch_offset(L, false); 1923 beq(scratch, zero_reg, offset); 1924 } 1925 break; 1926 default: 1927 UNREACHABLE(); 1928 } 1929 } else { 1930 // Be careful to always use shifted_branch_offset only just before the 1931 // branch instruction, as the location will be remember for patching the 1932 // target. 1933 BlockTrampolinePoolScope block_trampoline_pool(this); 1934 switch (cond) { 1935 case cc_always: 1936 offset = shifted_branch_offset(L, false); 1937 b(offset); 1938 break; 1939 case eq: 1940 ASSERT(!scratch.is(rs)); 1941 r2 = scratch; 1942 li(r2, rt); 1943 offset = shifted_branch_offset(L, false); 1944 beq(rs, r2, offset); 1945 break; 1946 case ne: 1947 ASSERT(!scratch.is(rs)); 1948 r2 = scratch; 1949 li(r2, rt); 1950 offset = shifted_branch_offset(L, false); 1951 bne(rs, r2, offset); 1952 break; 1953 // Signed comparison. 1954 case greater: 1955 if (rt.imm32_ == 0) { 1956 offset = shifted_branch_offset(L, false); 1957 bgtz(rs, offset); 1958 } else { 1959 ASSERT(!scratch.is(rs)); 1960 r2 = scratch; 1961 li(r2, rt); 1962 slt(scratch, r2, rs); 1963 offset = shifted_branch_offset(L, false); 1964 bne(scratch, zero_reg, offset); 1965 } 1966 break; 1967 case greater_equal: 1968 if (rt.imm32_ == 0) { 1969 offset = shifted_branch_offset(L, false); 1970 bgez(rs, offset); 1971 } else if (is_int16(rt.imm32_)) { 1972 slti(scratch, rs, rt.imm32_); 1973 offset = shifted_branch_offset(L, false); 1974 beq(scratch, zero_reg, offset); 1975 } else { 1976 ASSERT(!scratch.is(rs)); 1977 r2 = scratch; 1978 li(r2, rt); 1979 slt(scratch, rs, r2); 1980 offset = shifted_branch_offset(L, false); 1981 beq(scratch, zero_reg, offset); 1982 } 1983 break; 1984 case less: 1985 if (rt.imm32_ == 0) { 1986 offset = shifted_branch_offset(L, false); 1987 bltz(rs, offset); 1988 } else if (is_int16(rt.imm32_)) { 1989 slti(scratch, rs, rt.imm32_); 1990 offset = shifted_branch_offset(L, false); 1991 bne(scratch, zero_reg, offset); 1992 } else { 1993 ASSERT(!scratch.is(rs)); 1994 r2 = scratch; 1995 li(r2, rt); 1996 slt(scratch, rs, r2); 1997 offset = shifted_branch_offset(L, false); 1998 bne(scratch, zero_reg, offset); 1999 } 2000 break; 2001 case less_equal: 2002 if (rt.imm32_ == 0) { 2003 offset = shifted_branch_offset(L, false); 2004 blez(rs, offset); 2005 } else { 2006 ASSERT(!scratch.is(rs)); 2007 r2 = scratch; 2008 li(r2, rt); 2009 slt(scratch, r2, rs); 2010 offset = shifted_branch_offset(L, false); 2011 beq(scratch, zero_reg, offset); 2012 } 2013 break; 2014 // Unsigned comparison. 2015 case Ugreater: 2016 if (rt.imm32_ == 0) { 2017 offset = shifted_branch_offset(L, false); 2018 bgtz(rs, offset); 2019 } else { 2020 ASSERT(!scratch.is(rs)); 2021 r2 = scratch; 2022 li(r2, rt); 2023 sltu(scratch, r2, rs); 2024 offset = shifted_branch_offset(L, false); 2025 bne(scratch, zero_reg, offset); 2026 } 2027 break; 2028 case Ugreater_equal: 2029 if (rt.imm32_ == 0) { 2030 offset = shifted_branch_offset(L, false); 2031 bgez(rs, offset); 2032 } else if (is_int16(rt.imm32_)) { 2033 sltiu(scratch, rs, rt.imm32_); 2034 offset = shifted_branch_offset(L, false); 2035 beq(scratch, zero_reg, offset); 2036 } else { 2037 ASSERT(!scratch.is(rs)); 2038 r2 = scratch; 2039 li(r2, rt); 2040 sltu(scratch, rs, r2); 2041 offset = shifted_branch_offset(L, false); 2042 beq(scratch, zero_reg, offset); 2043 } 2044 break; 2045 case Uless: 2046 if (rt.imm32_ == 0) { 2047 // No code needs to be emitted. 2048 return; 2049 } else if (is_int16(rt.imm32_)) { 2050 sltiu(scratch, rs, rt.imm32_); 2051 offset = shifted_branch_offset(L, false); 2052 bne(scratch, zero_reg, offset); 2053 } else { 2054 ASSERT(!scratch.is(rs)); 2055 r2 = scratch; 2056 li(r2, rt); 2057 sltu(scratch, rs, r2); 2058 offset = shifted_branch_offset(L, false); 2059 bne(scratch, zero_reg, offset); 2060 } 2061 break; 2062 case Uless_equal: 2063 if (rt.imm32_ == 0) { 2064 offset = shifted_branch_offset(L, false); 2065 b(offset); 2066 } else { 2067 ASSERT(!scratch.is(rs)); 2068 r2 = scratch; 2069 li(r2, rt); 2070 sltu(scratch, r2, rs); 2071 offset = shifted_branch_offset(L, false); 2072 beq(scratch, zero_reg, offset); 2073 } 2074 break; 2075 default: 2076 UNREACHABLE(); 2077 } 2078 } 2079 // Check that offset could actually hold on an int16_t. 2080 ASSERT(is_int16(offset)); 2081 // Emit a nop in the branch delay slot if required. 2082 if (bdslot == PROTECT) 2083 nop(); 2084 } 2085 2086 2087 void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { 2088 BranchAndLinkShort(offset, bdslot); 2089 } 2090 2091 2092 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, 2093 const Operand& rt, 2094 BranchDelaySlot bdslot) { 2095 BranchAndLinkShort(offset, cond, rs, rt, bdslot); 2096 } 2097 2098 2099 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { 2100 if (L->is_bound()) { 2101 if (is_near(L)) { 2102 BranchAndLinkShort(L, bdslot); 2103 } else { 2104 Jalr(L, bdslot); 2105 } 2106 } else { 2107 if (is_trampoline_emitted()) { 2108 Jalr(L, bdslot); 2109 } else { 2110 BranchAndLinkShort(L, bdslot); 2111 } 2112 } 2113 } 2114 2115 2116 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, 2117 const Operand& rt, 2118 BranchDelaySlot bdslot) { 2119 if (L->is_bound()) { 2120 if (is_near(L)) { 2121 BranchAndLinkShort(L, cond, rs, rt, bdslot); 2122 } else { 2123 Label skip; 2124 Condition neg_cond = NegateCondition(cond); 2125 BranchShort(&skip, neg_cond, rs, rt); 2126 Jalr(L, bdslot); 2127 bind(&skip); 2128 } 2129 } else { 2130 if (is_trampoline_emitted()) { 2131 Label skip; 2132 Condition neg_cond = NegateCondition(cond); 2133 BranchShort(&skip, neg_cond, rs, rt); 2134 Jalr(L, bdslot); 2135 bind(&skip); 2136 } else { 2137 BranchAndLinkShort(L, cond, rs, rt, bdslot); 2138 } 2139 } 2140 } 2141 2142 2143 // We need to use a bgezal or bltzal, but they can't be used directly with the 2144 // slt instructions. We could use sub or add instead but we would miss overflow 2145 // cases, so we keep slt and add an intermediate third instruction. 2146 void MacroAssembler::BranchAndLinkShort(int16_t offset, 2147 BranchDelaySlot bdslot) { 2148 bal(offset); 2149 2150 // Emit a nop in the branch delay slot if required. 2151 if (bdslot == PROTECT) 2152 nop(); 2153 } 2154 2155 2156 void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, 2157 Register rs, const Operand& rt, 2158 BranchDelaySlot bdslot) { 2159 BRANCH_ARGS_CHECK(cond, rs, rt); 2160 Register r2 = no_reg; 2161 Register scratch = at; 2162 2163 if (rt.is_reg()) { 2164 r2 = rt.rm_; 2165 } else if (cond != cc_always) { 2166 r2 = scratch; 2167 li(r2, rt); 2168 } 2169 2170 { 2171 BlockTrampolinePoolScope block_trampoline_pool(this); 2172 switch (cond) { 2173 case cc_always: 2174 bal(offset); 2175 break; 2176 case eq: 2177 bne(rs, r2, 2); 2178 nop(); 2179 bal(offset); 2180 break; 2181 case ne: 2182 beq(rs, r2, 2); 2183 nop(); 2184 bal(offset); 2185 break; 2186 2187 // Signed comparison. 2188 case greater: 2189 slt(scratch, r2, rs); 2190 addiu(scratch, scratch, -1); 2191 bgezal(scratch, offset); 2192 break; 2193 case greater_equal: 2194 slt(scratch, rs, r2); 2195 addiu(scratch, scratch, -1); 2196 bltzal(scratch, offset); 2197 break; 2198 case less: 2199 slt(scratch, rs, r2); 2200 addiu(scratch, scratch, -1); 2201 bgezal(scratch, offset); 2202 break; 2203 case less_equal: 2204 slt(scratch, r2, rs); 2205 addiu(scratch, scratch, -1); 2206 bltzal(scratch, offset); 2207 break; 2208 2209 // Unsigned comparison. 2210 case Ugreater: 2211 sltu(scratch, r2, rs); 2212 addiu(scratch, scratch, -1); 2213 bgezal(scratch, offset); 2214 break; 2215 case Ugreater_equal: 2216 sltu(scratch, rs, r2); 2217 addiu(scratch, scratch, -1); 2218 bltzal(scratch, offset); 2219 break; 2220 case Uless: 2221 sltu(scratch, rs, r2); 2222 addiu(scratch, scratch, -1); 2223 bgezal(scratch, offset); 2224 break; 2225 case Uless_equal: 2226 sltu(scratch, r2, rs); 2227 addiu(scratch, scratch, -1); 2228 bltzal(scratch, offset); 2229 break; 2230 2231 default: 2232 UNREACHABLE(); 2233 } 2234 } 2235 // Emit a nop in the branch delay slot if required. 2236 if (bdslot == PROTECT) 2237 nop(); 2238 } 2239 2240 2241 void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { 2242 bal(shifted_branch_offset(L, false)); 2243 2244 // Emit a nop in the branch delay slot if required. 2245 if (bdslot == PROTECT) 2246 nop(); 2247 } 2248 2249 2250 void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, 2251 const Operand& rt, 2252 BranchDelaySlot bdslot) { 2253 BRANCH_ARGS_CHECK(cond, rs, rt); 2254 2255 int32_t offset = 0; 2256 Register r2 = no_reg; 2257 Register scratch = at; 2258 if (rt.is_reg()) { 2259 r2 = rt.rm_; 2260 } else if (cond != cc_always) { 2261 r2 = scratch; 2262 li(r2, rt); 2263 } 2264 2265 { 2266 BlockTrampolinePoolScope block_trampoline_pool(this); 2267 switch (cond) { 2268 case cc_always: 2269 offset = shifted_branch_offset(L, false); 2270 bal(offset); 2271 break; 2272 case eq: 2273 bne(rs, r2, 2); 2274 nop(); 2275 offset = shifted_branch_offset(L, false); 2276 bal(offset); 2277 break; 2278 case ne: 2279 beq(rs, r2, 2); 2280 nop(); 2281 offset = shifted_branch_offset(L, false); 2282 bal(offset); 2283 break; 2284 2285 // Signed comparison. 2286 case greater: 2287 slt(scratch, r2, rs); 2288 addiu(scratch, scratch, -1); 2289 offset = shifted_branch_offset(L, false); 2290 bgezal(scratch, offset); 2291 break; 2292 case greater_equal: 2293 slt(scratch, rs, r2); 2294 addiu(scratch, scratch, -1); 2295 offset = shifted_branch_offset(L, false); 2296 bltzal(scratch, offset); 2297 break; 2298 case less: 2299 slt(scratch, rs, r2); 2300 addiu(scratch, scratch, -1); 2301 offset = shifted_branch_offset(L, false); 2302 bgezal(scratch, offset); 2303 break; 2304 case less_equal: 2305 slt(scratch, r2, rs); 2306 addiu(scratch, scratch, -1); 2307 offset = shifted_branch_offset(L, false); 2308 bltzal(scratch, offset); 2309 break; 2310 2311 // Unsigned comparison. 2312 case Ugreater: 2313 sltu(scratch, r2, rs); 2314 addiu(scratch, scratch, -1); 2315 offset = shifted_branch_offset(L, false); 2316 bgezal(scratch, offset); 2317 break; 2318 case Ugreater_equal: 2319 sltu(scratch, rs, r2); 2320 addiu(scratch, scratch, -1); 2321 offset = shifted_branch_offset(L, false); 2322 bltzal(scratch, offset); 2323 break; 2324 case Uless: 2325 sltu(scratch, rs, r2); 2326 addiu(scratch, scratch, -1); 2327 offset = shifted_branch_offset(L, false); 2328 bgezal(scratch, offset); 2329 break; 2330 case Uless_equal: 2331 sltu(scratch, r2, rs); 2332 addiu(scratch, scratch, -1); 2333 offset = shifted_branch_offset(L, false); 2334 bltzal(scratch, offset); 2335 break; 2336 2337 default: 2338 UNREACHABLE(); 2339 } 2340 } 2341 // Check that offset could actually hold on an int16_t. 2342 ASSERT(is_int16(offset)); 2343 2344 // Emit a nop in the branch delay slot if required. 2345 if (bdslot == PROTECT) 2346 nop(); 2347 } 2348 2349 2350 void MacroAssembler::Jump(Register target, 2351 Condition cond, 2352 Register rs, 2353 const Operand& rt, 2354 BranchDelaySlot bd) { 2355 BlockTrampolinePoolScope block_trampoline_pool(this); 2356 if (cond == cc_always) { 2357 jr(target); 2358 } else { 2359 BRANCH_ARGS_CHECK(cond, rs, rt); 2360 Branch(2, NegateCondition(cond), rs, rt); 2361 jr(target); 2362 } 2363 // Emit a nop in the branch delay slot if required. 2364 if (bd == PROTECT) 2365 nop(); 2366 } 2367 2368 2369 void MacroAssembler::Jump(intptr_t target, 2370 RelocInfo::Mode rmode, 2371 Condition cond, 2372 Register rs, 2373 const Operand& rt, 2374 BranchDelaySlot bd) { 2375 Label skip; 2376 if (cond != cc_always) { 2377 Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); 2378 } 2379 // The first instruction of 'li' may be placed in the delay slot. 2380 // This is not an issue, t9 is expected to be clobbered anyway. 2381 li(t9, Operand(target, rmode)); 2382 Jump(t9, al, zero_reg, Operand(zero_reg), bd); 2383 bind(&skip); 2384 } 2385 2386 2387 void MacroAssembler::Jump(Address target, 2388 RelocInfo::Mode rmode, 2389 Condition cond, 2390 Register rs, 2391 const Operand& rt, 2392 BranchDelaySlot bd) { 2393 ASSERT(!RelocInfo::IsCodeTarget(rmode)); 2394 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); 2395 } 2396 2397 2398 void MacroAssembler::Jump(Handle<Code> code, 2399 RelocInfo::Mode rmode, 2400 Condition cond, 2401 Register rs, 2402 const Operand& rt, 2403 BranchDelaySlot bd) { 2404 ASSERT(RelocInfo::IsCodeTarget(rmode)); 2405 AllowDeferredHandleDereference embedding_raw_address; 2406 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); 2407 } 2408 2409 2410 int MacroAssembler::CallSize(Register target, 2411 Condition cond, 2412 Register rs, 2413 const Operand& rt, 2414 BranchDelaySlot bd) { 2415 int size = 0; 2416 2417 if (cond == cc_always) { 2418 size += 1; 2419 } else { 2420 size += 3; 2421 } 2422 2423 if (bd == PROTECT) 2424 size += 1; 2425 2426 return size * kInstrSize; 2427 } 2428 2429 2430 // Note: To call gcc-compiled C code on mips, you must call thru t9. 2431 void MacroAssembler::Call(Register target, 2432 Condition cond, 2433 Register rs, 2434 const Operand& rt, 2435 BranchDelaySlot bd) { 2436 BlockTrampolinePoolScope block_trampoline_pool(this); 2437 Label start; 2438 bind(&start); 2439 if (cond == cc_always) { 2440 jalr(target); 2441 } else { 2442 BRANCH_ARGS_CHECK(cond, rs, rt); 2443 Branch(2, NegateCondition(cond), rs, rt); 2444 jalr(target); 2445 } 2446 // Emit a nop in the branch delay slot if required. 2447 if (bd == PROTECT) 2448 nop(); 2449 2450 ASSERT_EQ(CallSize(target, cond, rs, rt, bd), 2451 SizeOfCodeGeneratedSince(&start)); 2452 } 2453 2454 2455 int MacroAssembler::CallSize(Address target, 2456 RelocInfo::Mode rmode, 2457 Condition cond, 2458 Register rs, 2459 const Operand& rt, 2460 BranchDelaySlot bd) { 2461 int size = CallSize(t9, cond, rs, rt, bd); 2462 return size + 2 * kInstrSize; 2463 } 2464 2465 2466 void MacroAssembler::Call(Address target, 2467 RelocInfo::Mode rmode, 2468 Condition cond, 2469 Register rs, 2470 const Operand& rt, 2471 BranchDelaySlot bd) { 2472 BlockTrampolinePoolScope block_trampoline_pool(this); 2473 Label start; 2474 bind(&start); 2475 int32_t target_int = reinterpret_cast<int32_t>(target); 2476 // Must record previous source positions before the 2477 // li() generates a new code target. 2478 positions_recorder()->WriteRecordedPositions(); 2479 li(t9, Operand(target_int, rmode), CONSTANT_SIZE); 2480 Call(t9, cond, rs, rt, bd); 2481 ASSERT_EQ(CallSize(target, rmode, cond, rs, rt, bd), 2482 SizeOfCodeGeneratedSince(&start)); 2483 } 2484 2485 2486 int MacroAssembler::CallSize(Handle<Code> code, 2487 RelocInfo::Mode rmode, 2488 TypeFeedbackId ast_id, 2489 Condition cond, 2490 Register rs, 2491 const Operand& rt, 2492 BranchDelaySlot bd) { 2493 AllowDeferredHandleDereference using_raw_address; 2494 return CallSize(reinterpret_cast<Address>(code.location()), 2495 rmode, cond, rs, rt, bd); 2496 } 2497 2498 2499 void MacroAssembler::Call(Handle<Code> code, 2500 RelocInfo::Mode rmode, 2501 TypeFeedbackId ast_id, 2502 Condition cond, 2503 Register rs, 2504 const Operand& rt, 2505 BranchDelaySlot bd) { 2506 BlockTrampolinePoolScope block_trampoline_pool(this); 2507 Label start; 2508 bind(&start); 2509 ASSERT(RelocInfo::IsCodeTarget(rmode)); 2510 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { 2511 SetRecordedAstId(ast_id); 2512 rmode = RelocInfo::CODE_TARGET_WITH_ID; 2513 } 2514 AllowDeferredHandleDereference embedding_raw_address; 2515 Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); 2516 ASSERT_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), 2517 SizeOfCodeGeneratedSince(&start)); 2518 } 2519 2520 2521 void MacroAssembler::Ret(Condition cond, 2522 Register rs, 2523 const Operand& rt, 2524 BranchDelaySlot bd) { 2525 Jump(ra, cond, rs, rt, bd); 2526 } 2527 2528 2529 void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { 2530 BlockTrampolinePoolScope block_trampoline_pool(this); 2531 2532 uint32_t imm28; 2533 imm28 = jump_address(L); 2534 imm28 &= kImm28Mask; 2535 { BlockGrowBufferScope block_buf_growth(this); 2536 // Buffer growth (and relocation) must be blocked for internal references 2537 // until associated instructions are emitted and available to be patched. 2538 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 2539 j(imm28); 2540 } 2541 // Emit a nop in the branch delay slot if required. 2542 if (bdslot == PROTECT) 2543 nop(); 2544 } 2545 2546 2547 void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { 2548 BlockTrampolinePoolScope block_trampoline_pool(this); 2549 2550 uint32_t imm32; 2551 imm32 = jump_address(L); 2552 { BlockGrowBufferScope block_buf_growth(this); 2553 // Buffer growth (and relocation) must be blocked for internal references 2554 // until associated instructions are emitted and available to be patched. 2555 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 2556 lui(at, (imm32 & kHiMask) >> kLuiShift); 2557 ori(at, at, (imm32 & kImm16Mask)); 2558 } 2559 jr(at); 2560 2561 // Emit a nop in the branch delay slot if required. 2562 if (bdslot == PROTECT) 2563 nop(); 2564 } 2565 2566 2567 void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { 2568 BlockTrampolinePoolScope block_trampoline_pool(this); 2569 2570 uint32_t imm32; 2571 imm32 = jump_address(L); 2572 { BlockGrowBufferScope block_buf_growth(this); 2573 // Buffer growth (and relocation) must be blocked for internal references 2574 // until associated instructions are emitted and available to be patched. 2575 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 2576 lui(at, (imm32 & kHiMask) >> kLuiShift); 2577 ori(at, at, (imm32 & kImm16Mask)); 2578 } 2579 jalr(at); 2580 2581 // Emit a nop in the branch delay slot if required. 2582 if (bdslot == PROTECT) 2583 nop(); 2584 } 2585 2586 2587 void MacroAssembler::DropAndRet(int drop) { 2588 Ret(USE_DELAY_SLOT); 2589 addiu(sp, sp, drop * kPointerSize); 2590 } 2591 2592 void MacroAssembler::DropAndRet(int drop, 2593 Condition cond, 2594 Register r1, 2595 const Operand& r2) { 2596 // Both Drop and Ret need to be conditional. 2597 Label skip; 2598 if (cond != cc_always) { 2599 Branch(&skip, NegateCondition(cond), r1, r2); 2600 } 2601 2602 Drop(drop); 2603 Ret(); 2604 2605 if (cond != cc_always) { 2606 bind(&skip); 2607 } 2608 } 2609 2610 2611 void MacroAssembler::Drop(int count, 2612 Condition cond, 2613 Register reg, 2614 const Operand& op) { 2615 if (count <= 0) { 2616 return; 2617 } 2618 2619 Label skip; 2620 2621 if (cond != al) { 2622 Branch(&skip, NegateCondition(cond), reg, op); 2623 } 2624 2625 addiu(sp, sp, count * kPointerSize); 2626 2627 if (cond != al) { 2628 bind(&skip); 2629 } 2630 } 2631 2632 2633 2634 void MacroAssembler::Swap(Register reg1, 2635 Register reg2, 2636 Register scratch) { 2637 if (scratch.is(no_reg)) { 2638 Xor(reg1, reg1, Operand(reg2)); 2639 Xor(reg2, reg2, Operand(reg1)); 2640 Xor(reg1, reg1, Operand(reg2)); 2641 } else { 2642 mov(scratch, reg1); 2643 mov(reg1, reg2); 2644 mov(reg2, scratch); 2645 } 2646 } 2647 2648 2649 void MacroAssembler::Call(Label* target) { 2650 BranchAndLink(target); 2651 } 2652 2653 2654 void MacroAssembler::Push(Handle<Object> handle) { 2655 li(at, Operand(handle)); 2656 push(at); 2657 } 2658 2659 2660 #ifdef ENABLE_DEBUGGER_SUPPORT 2661 2662 void MacroAssembler::DebugBreak() { 2663 PrepareCEntryArgs(0); 2664 PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); 2665 CEntryStub ces(1); 2666 ASSERT(AllowThisStubCall(&ces)); 2667 Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK); 2668 } 2669 2670 #endif // ENABLE_DEBUGGER_SUPPORT 2671 2672 2673 // --------------------------------------------------------------------------- 2674 // Exception handling. 2675 2676 void MacroAssembler::PushTryHandler(StackHandler::Kind kind, 2677 int handler_index) { 2678 // Adjust this code if not the case. 2679 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 2680 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); 2681 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 2682 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 2683 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 2684 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 2685 2686 // For the JSEntry handler, we must preserve a0-a3 and s0. 2687 // t1-t3 are available. We will build up the handler from the bottom by 2688 // pushing on the stack. 2689 // Set up the code object (t1) and the state (t2) for pushing. 2690 unsigned state = 2691 StackHandler::IndexField::encode(handler_index) | 2692 StackHandler::KindField::encode(kind); 2693 li(t1, Operand(CodeObject()), CONSTANT_SIZE); 2694 li(t2, Operand(state)); 2695 2696 // Push the frame pointer, context, state, and code object. 2697 if (kind == StackHandler::JS_ENTRY) { 2698 ASSERT_EQ(Smi::FromInt(0), 0); 2699 // The second zero_reg indicates no context. 2700 // The first zero_reg is the NULL frame pointer. 2701 // The operands are reversed to match the order of MultiPush/Pop. 2702 Push(zero_reg, zero_reg, t2, t1); 2703 } else { 2704 MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit()); 2705 } 2706 2707 // Link the current handler as the next handler. 2708 li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 2709 lw(t1, MemOperand(t2)); 2710 push(t1); 2711 // Set this new handler as the current one. 2712 sw(sp, MemOperand(t2)); 2713 } 2714 2715 2716 void MacroAssembler::PopTryHandler() { 2717 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 2718 pop(a1); 2719 Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); 2720 li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 2721 sw(a1, MemOperand(at)); 2722 } 2723 2724 2725 void MacroAssembler::JumpToHandlerEntry() { 2726 // Compute the handler entry address and jump to it. The handler table is 2727 // a fixed array of (smi-tagged) code offsets. 2728 // v0 = exception, a1 = code object, a2 = state. 2729 lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset)); // Handler table. 2730 Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 2731 srl(a2, a2, StackHandler::kKindWidth); // Handler index. 2732 sll(a2, a2, kPointerSizeLog2); 2733 Addu(a2, a3, a2); 2734 lw(a2, MemOperand(a2)); // Smi-tagged offset. 2735 Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. 2736 sra(t9, a2, kSmiTagSize); 2737 Addu(t9, t9, a1); 2738 Jump(t9); // Jump. 2739 } 2740 2741 2742 void MacroAssembler::Throw(Register value) { 2743 // Adjust this code if not the case. 2744 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 2745 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 2746 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 2747 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 2748 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 2749 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 2750 2751 // The exception is expected in v0. 2752 Move(v0, value); 2753 2754 // Drop the stack pointer to the top of the top handler. 2755 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, 2756 isolate()))); 2757 lw(sp, MemOperand(a3)); 2758 2759 // Restore the next handler. 2760 pop(a2); 2761 sw(a2, MemOperand(a3)); 2762 2763 // Get the code object (a1) and state (a2). Restore the context and frame 2764 // pointer. 2765 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); 2766 2767 // If the handler is a JS frame, restore the context to the frame. 2768 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp 2769 // or cp. 2770 Label done; 2771 Branch(&done, eq, cp, Operand(zero_reg)); 2772 sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2773 bind(&done); 2774 2775 JumpToHandlerEntry(); 2776 } 2777 2778 2779 void MacroAssembler::ThrowUncatchable(Register value) { 2780 // Adjust this code if not the case. 2781 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 2782 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); 2783 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 2784 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 2785 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 2786 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 2787 2788 // The exception is expected in v0. 2789 if (!value.is(v0)) { 2790 mov(v0, value); 2791 } 2792 // Drop the stack pointer to the top of the top stack handler. 2793 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 2794 lw(sp, MemOperand(a3)); 2795 2796 // Unwind the handlers until the ENTRY handler is found. 2797 Label fetch_next, check_kind; 2798 jmp(&check_kind); 2799 bind(&fetch_next); 2800 lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); 2801 2802 bind(&check_kind); 2803 STATIC_ASSERT(StackHandler::JS_ENTRY == 0); 2804 lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); 2805 And(a2, a2, Operand(StackHandler::KindField::kMask)); 2806 Branch(&fetch_next, ne, a2, Operand(zero_reg)); 2807 2808 // Set the top handler address to next handler past the top ENTRY handler. 2809 pop(a2); 2810 sw(a2, MemOperand(a3)); 2811 2812 // Get the code object (a1) and state (a2). Clear the context and frame 2813 // pointer (0 was saved in the handler). 2814 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); 2815 2816 JumpToHandlerEntry(); 2817 } 2818 2819 2820 void MacroAssembler::Allocate(int object_size, 2821 Register result, 2822 Register scratch1, 2823 Register scratch2, 2824 Label* gc_required, 2825 AllocationFlags flags) { 2826 ASSERT(object_size <= Page::kMaxNonCodeHeapObjectSize); 2827 if (!FLAG_inline_new) { 2828 if (emit_debug_code()) { 2829 // Trash the registers to simulate an allocation failure. 2830 li(result, 0x7091); 2831 li(scratch1, 0x7191); 2832 li(scratch2, 0x7291); 2833 } 2834 jmp(gc_required); 2835 return; 2836 } 2837 2838 ASSERT(!result.is(scratch1)); 2839 ASSERT(!result.is(scratch2)); 2840 ASSERT(!scratch1.is(scratch2)); 2841 ASSERT(!scratch1.is(t9)); 2842 ASSERT(!scratch2.is(t9)); 2843 ASSERT(!result.is(t9)); 2844 2845 // Make object size into bytes. 2846 if ((flags & SIZE_IN_WORDS) != 0) { 2847 object_size *= kPointerSize; 2848 } 2849 ASSERT_EQ(0, object_size & kObjectAlignmentMask); 2850 2851 // Check relative positions of allocation top and limit addresses. 2852 // ARM adds additional checks to make sure the ldm instruction can be 2853 // used. On MIPS we don't have ldm so we don't need additional checks either. 2854 ExternalReference allocation_top = 2855 AllocationUtils::GetAllocationTopReference(isolate(), flags); 2856 ExternalReference allocation_limit = 2857 AllocationUtils::GetAllocationLimitReference(isolate(), flags); 2858 2859 intptr_t top = 2860 reinterpret_cast<intptr_t>(allocation_top.address()); 2861 intptr_t limit = 2862 reinterpret_cast<intptr_t>(allocation_limit.address()); 2863 ASSERT((limit - top) == kPointerSize); 2864 2865 // Set up allocation top address and object size registers. 2866 Register topaddr = scratch1; 2867 li(topaddr, Operand(allocation_top)); 2868 2869 // This code stores a temporary value in t9. 2870 if ((flags & RESULT_CONTAINS_TOP) == 0) { 2871 // Load allocation top into result and allocation limit into t9. 2872 lw(result, MemOperand(topaddr)); 2873 lw(t9, MemOperand(topaddr, kPointerSize)); 2874 } else { 2875 if (emit_debug_code()) { 2876 // Assert that result actually contains top on entry. t9 is used 2877 // immediately below so this use of t9 does not cause difference with 2878 // respect to register content between debug and release mode. 2879 lw(t9, MemOperand(topaddr)); 2880 Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); 2881 } 2882 // Load allocation limit into t9. Result already contains allocation top. 2883 lw(t9, MemOperand(topaddr, limit - top)); 2884 } 2885 2886 if ((flags & DOUBLE_ALIGNMENT) != 0) { 2887 // Align the next allocation. Storing the filler map without checking top is 2888 // safe in new-space because the limit of the heap is aligned there. 2889 ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0); 2890 ASSERT(kPointerAlignment * 2 == kDoubleAlignment); 2891 And(scratch2, result, Operand(kDoubleAlignmentMask)); 2892 Label aligned; 2893 Branch(&aligned, eq, scratch2, Operand(zero_reg)); 2894 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { 2895 Branch(gc_required, Ugreater_equal, result, Operand(t9)); 2896 } 2897 li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); 2898 sw(scratch2, MemOperand(result)); 2899 Addu(result, result, Operand(kDoubleSize / 2)); 2900 bind(&aligned); 2901 } 2902 2903 // Calculate new top and bail out if new space is exhausted. Use result 2904 // to calculate the new top. 2905 Addu(scratch2, result, Operand(object_size)); 2906 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 2907 sw(scratch2, MemOperand(topaddr)); 2908 2909 // Tag object if requested. 2910 if ((flags & TAG_OBJECT) != 0) { 2911 Addu(result, result, Operand(kHeapObjectTag)); 2912 } 2913 } 2914 2915 2916 void MacroAssembler::Allocate(Register object_size, 2917 Register result, 2918 Register scratch1, 2919 Register scratch2, 2920 Label* gc_required, 2921 AllocationFlags flags) { 2922 if (!FLAG_inline_new) { 2923 if (emit_debug_code()) { 2924 // Trash the registers to simulate an allocation failure. 2925 li(result, 0x7091); 2926 li(scratch1, 0x7191); 2927 li(scratch2, 0x7291); 2928 } 2929 jmp(gc_required); 2930 return; 2931 } 2932 2933 ASSERT(!result.is(scratch1)); 2934 ASSERT(!result.is(scratch2)); 2935 ASSERT(!scratch1.is(scratch2)); 2936 ASSERT(!object_size.is(t9)); 2937 ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); 2938 2939 // Check relative positions of allocation top and limit addresses. 2940 // ARM adds additional checks to make sure the ldm instruction can be 2941 // used. On MIPS we don't have ldm so we don't need additional checks either. 2942 ExternalReference allocation_top = 2943 AllocationUtils::GetAllocationTopReference(isolate(), flags); 2944 ExternalReference allocation_limit = 2945 AllocationUtils::GetAllocationLimitReference(isolate(), flags); 2946 intptr_t top = 2947 reinterpret_cast<intptr_t>(allocation_top.address()); 2948 intptr_t limit = 2949 reinterpret_cast<intptr_t>(allocation_limit.address()); 2950 ASSERT((limit - top) == kPointerSize); 2951 2952 // Set up allocation top address and object size registers. 2953 Register topaddr = scratch1; 2954 li(topaddr, Operand(allocation_top)); 2955 2956 // This code stores a temporary value in t9. 2957 if ((flags & RESULT_CONTAINS_TOP) == 0) { 2958 // Load allocation top into result and allocation limit into t9. 2959 lw(result, MemOperand(topaddr)); 2960 lw(t9, MemOperand(topaddr, kPointerSize)); 2961 } else { 2962 if (emit_debug_code()) { 2963 // Assert that result actually contains top on entry. t9 is used 2964 // immediately below so this use of t9 does not cause difference with 2965 // respect to register content between debug and release mode. 2966 lw(t9, MemOperand(topaddr)); 2967 Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); 2968 } 2969 // Load allocation limit into t9. Result already contains allocation top. 2970 lw(t9, MemOperand(topaddr, limit - top)); 2971 } 2972 2973 if ((flags & DOUBLE_ALIGNMENT) != 0) { 2974 // Align the next allocation. Storing the filler map without checking top is 2975 // safe in new-space because the limit of the heap is aligned there. 2976 ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0); 2977 ASSERT(kPointerAlignment * 2 == kDoubleAlignment); 2978 And(scratch2, result, Operand(kDoubleAlignmentMask)); 2979 Label aligned; 2980 Branch(&aligned, eq, scratch2, Operand(zero_reg)); 2981 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { 2982 Branch(gc_required, Ugreater_equal, result, Operand(t9)); 2983 } 2984 li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); 2985 sw(scratch2, MemOperand(result)); 2986 Addu(result, result, Operand(kDoubleSize / 2)); 2987 bind(&aligned); 2988 } 2989 2990 // Calculate new top and bail out if new space is exhausted. Use result 2991 // to calculate the new top. Object size may be in words so a shift is 2992 // required to get the number of bytes. 2993 if ((flags & SIZE_IN_WORDS) != 0) { 2994 sll(scratch2, object_size, kPointerSizeLog2); 2995 Addu(scratch2, result, scratch2); 2996 } else { 2997 Addu(scratch2, result, Operand(object_size)); 2998 } 2999 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 3000 3001 // Update allocation top. result temporarily holds the new top. 3002 if (emit_debug_code()) { 3003 And(t9, scratch2, Operand(kObjectAlignmentMask)); 3004 Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg)); 3005 } 3006 sw(scratch2, MemOperand(topaddr)); 3007 3008 // Tag object if requested. 3009 if ((flags & TAG_OBJECT) != 0) { 3010 Addu(result, result, Operand(kHeapObjectTag)); 3011 } 3012 } 3013 3014 3015 void MacroAssembler::UndoAllocationInNewSpace(Register object, 3016 Register scratch) { 3017 ExternalReference new_space_allocation_top = 3018 ExternalReference::new_space_allocation_top_address(isolate()); 3019 3020 // Make sure the object has no tag before resetting top. 3021 And(object, object, Operand(~kHeapObjectTagMask)); 3022 #ifdef DEBUG 3023 // Check that the object un-allocated is below the current top. 3024 li(scratch, Operand(new_space_allocation_top)); 3025 lw(scratch, MemOperand(scratch)); 3026 Check(less, kUndoAllocationOfNonAllocatedMemory, 3027 object, Operand(scratch)); 3028 #endif 3029 // Write the address of the object to un-allocate as the current top. 3030 li(scratch, Operand(new_space_allocation_top)); 3031 sw(object, MemOperand(scratch)); 3032 } 3033 3034 3035 void MacroAssembler::AllocateTwoByteString(Register result, 3036 Register length, 3037 Register scratch1, 3038 Register scratch2, 3039 Register scratch3, 3040 Label* gc_required) { 3041 // Calculate the number of bytes needed for the characters in the string while 3042 // observing object alignment. 3043 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3044 sll(scratch1, length, 1); // Length in bytes, not chars. 3045 addiu(scratch1, scratch1, 3046 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); 3047 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 3048 3049 // Allocate two-byte string in new space. 3050 Allocate(scratch1, 3051 result, 3052 scratch2, 3053 scratch3, 3054 gc_required, 3055 TAG_OBJECT); 3056 3057 // Set the map, length and hash field. 3058 InitializeNewString(result, 3059 length, 3060 Heap::kStringMapRootIndex, 3061 scratch1, 3062 scratch2); 3063 } 3064 3065 3066 void MacroAssembler::AllocateAsciiString(Register result, 3067 Register length, 3068 Register scratch1, 3069 Register scratch2, 3070 Register scratch3, 3071 Label* gc_required) { 3072 // Calculate the number of bytes needed for the characters in the string 3073 // while observing object alignment. 3074 ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3075 ASSERT(kCharSize == 1); 3076 addiu(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); 3077 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 3078 3079 // Allocate ASCII string in new space. 3080 Allocate(scratch1, 3081 result, 3082 scratch2, 3083 scratch3, 3084 gc_required, 3085 TAG_OBJECT); 3086 3087 // Set the map, length and hash field. 3088 InitializeNewString(result, 3089 length, 3090 Heap::kAsciiStringMapRootIndex, 3091 scratch1, 3092 scratch2); 3093 } 3094 3095 3096 void MacroAssembler::AllocateTwoByteConsString(Register result, 3097 Register length, 3098 Register scratch1, 3099 Register scratch2, 3100 Label* gc_required) { 3101 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, 3102 TAG_OBJECT); 3103 InitializeNewString(result, 3104 length, 3105 Heap::kConsStringMapRootIndex, 3106 scratch1, 3107 scratch2); 3108 } 3109 3110 3111 void MacroAssembler::AllocateAsciiConsString(Register result, 3112 Register length, 3113 Register scratch1, 3114 Register scratch2, 3115 Label* gc_required) { 3116 Label allocate_new_space, install_map; 3117 AllocationFlags flags = TAG_OBJECT; 3118 3119 ExternalReference high_promotion_mode = ExternalReference:: 3120 new_space_high_promotion_mode_active_address(isolate()); 3121 li(scratch1, Operand(high_promotion_mode)); 3122 lw(scratch1, MemOperand(scratch1, 0)); 3123 Branch(&allocate_new_space, eq, scratch1, Operand(zero_reg)); 3124 3125 Allocate(ConsString::kSize, 3126 result, 3127 scratch1, 3128 scratch2, 3129 gc_required, 3130 static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE)); 3131 3132 jmp(&install_map); 3133 3134 bind(&allocate_new_space); 3135 Allocate(ConsString::kSize, 3136 result, 3137 scratch1, 3138 scratch2, 3139 gc_required, 3140 flags); 3141 3142 bind(&install_map); 3143 3144 InitializeNewString(result, 3145 length, 3146 Heap::kConsAsciiStringMapRootIndex, 3147 scratch1, 3148 scratch2); 3149 } 3150 3151 3152 void MacroAssembler::AllocateTwoByteSlicedString(Register result, 3153 Register length, 3154 Register scratch1, 3155 Register scratch2, 3156 Label* gc_required) { 3157 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, 3158 TAG_OBJECT); 3159 3160 InitializeNewString(result, 3161 length, 3162 Heap::kSlicedStringMapRootIndex, 3163 scratch1, 3164 scratch2); 3165 } 3166 3167 3168 void MacroAssembler::AllocateAsciiSlicedString(Register result, 3169 Register length, 3170 Register scratch1, 3171 Register scratch2, 3172 Label* gc_required) { 3173 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, 3174 TAG_OBJECT); 3175 3176 InitializeNewString(result, 3177 length, 3178 Heap::kSlicedAsciiStringMapRootIndex, 3179 scratch1, 3180 scratch2); 3181 } 3182 3183 3184 void MacroAssembler::JumpIfNotUniqueName(Register reg, 3185 Label* not_unique_name) { 3186 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 3187 Label succeed; 3188 And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); 3189 Branch(&succeed, eq, at, Operand(zero_reg)); 3190 Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE)); 3191 3192 bind(&succeed); 3193 } 3194 3195 3196 // Allocates a heap number or jumps to the label if the young space is full and 3197 // a scavenge is needed. 3198 void MacroAssembler::AllocateHeapNumber(Register result, 3199 Register scratch1, 3200 Register scratch2, 3201 Register heap_number_map, 3202 Label* need_gc, 3203 TaggingMode tagging_mode) { 3204 // Allocate an object in the heap for the heap number and tag it as a heap 3205 // object. 3206 Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc, 3207 tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); 3208 3209 // Store heap number map in the allocated object. 3210 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 3211 if (tagging_mode == TAG_RESULT) { 3212 sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); 3213 } else { 3214 sw(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); 3215 } 3216 } 3217 3218 3219 void MacroAssembler::AllocateHeapNumberWithValue(Register result, 3220 FPURegister value, 3221 Register scratch1, 3222 Register scratch2, 3223 Label* gc_required) { 3224 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 3225 AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); 3226 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); 3227 } 3228 3229 3230 // Copies a fixed number of fields of heap objects from src to dst. 3231 void MacroAssembler::CopyFields(Register dst, 3232 Register src, 3233 RegList temps, 3234 int field_count) { 3235 ASSERT((temps & dst.bit()) == 0); 3236 ASSERT((temps & src.bit()) == 0); 3237 // Primitive implementation using only one temporary register. 3238 3239 Register tmp = no_reg; 3240 // Find a temp register in temps list. 3241 for (int i = 0; i < kNumRegisters; i++) { 3242 if ((temps & (1 << i)) != 0) { 3243 tmp.code_ = i; 3244 break; 3245 } 3246 } 3247 ASSERT(!tmp.is(no_reg)); 3248 3249 for (int i = 0; i < field_count; i++) { 3250 lw(tmp, FieldMemOperand(src, i * kPointerSize)); 3251 sw(tmp, FieldMemOperand(dst, i * kPointerSize)); 3252 } 3253 } 3254 3255 3256 void MacroAssembler::CopyBytes(Register src, 3257 Register dst, 3258 Register length, 3259 Register scratch) { 3260 Label align_loop_1, word_loop, byte_loop, byte_loop_1, done; 3261 3262 // Align src before copying in word size chunks. 3263 Branch(&byte_loop, le, length, Operand(kPointerSize)); 3264 bind(&align_loop_1); 3265 And(scratch, src, kPointerSize - 1); 3266 Branch(&word_loop, eq, scratch, Operand(zero_reg)); 3267 lbu(scratch, MemOperand(src)); 3268 Addu(src, src, 1); 3269 sb(scratch, MemOperand(dst)); 3270 Addu(dst, dst, 1); 3271 Subu(length, length, Operand(1)); 3272 Branch(&align_loop_1, ne, length, Operand(zero_reg)); 3273 3274 // Copy bytes in word size chunks. 3275 bind(&word_loop); 3276 if (emit_debug_code()) { 3277 And(scratch, src, kPointerSize - 1); 3278 Assert(eq, kExpectingAlignmentForCopyBytes, 3279 scratch, Operand(zero_reg)); 3280 } 3281 Branch(&byte_loop, lt, length, Operand(kPointerSize)); 3282 lw(scratch, MemOperand(src)); 3283 Addu(src, src, kPointerSize); 3284 3285 // TODO(kalmard) check if this can be optimized to use sw in most cases. 3286 // Can't use unaligned access - copy byte by byte. 3287 sb(scratch, MemOperand(dst, 0)); 3288 srl(scratch, scratch, 8); 3289 sb(scratch, MemOperand(dst, 1)); 3290 srl(scratch, scratch, 8); 3291 sb(scratch, MemOperand(dst, 2)); 3292 srl(scratch, scratch, 8); 3293 sb(scratch, MemOperand(dst, 3)); 3294 Addu(dst, dst, 4); 3295 3296 Subu(length, length, Operand(kPointerSize)); 3297 Branch(&word_loop); 3298 3299 // Copy the last bytes if any left. 3300 bind(&byte_loop); 3301 Branch(&done, eq, length, Operand(zero_reg)); 3302 bind(&byte_loop_1); 3303 lbu(scratch, MemOperand(src)); 3304 Addu(src, src, 1); 3305 sb(scratch, MemOperand(dst)); 3306 Addu(dst, dst, 1); 3307 Subu(length, length, Operand(1)); 3308 Branch(&byte_loop_1, ne, length, Operand(zero_reg)); 3309 bind(&done); 3310 } 3311 3312 3313 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, 3314 Register end_offset, 3315 Register filler) { 3316 Label loop, entry; 3317 Branch(&entry); 3318 bind(&loop); 3319 sw(filler, MemOperand(start_offset)); 3320 Addu(start_offset, start_offset, kPointerSize); 3321 bind(&entry); 3322 Branch(&loop, lt, start_offset, Operand(end_offset)); 3323 } 3324 3325 3326 void MacroAssembler::CheckFastElements(Register map, 3327 Register scratch, 3328 Label* fail) { 3329 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3330 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3331 STATIC_ASSERT(FAST_ELEMENTS == 2); 3332 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 3333 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3334 Branch(fail, hi, scratch, 3335 Operand(Map::kMaximumBitField2FastHoleyElementValue)); 3336 } 3337 3338 3339 void MacroAssembler::CheckFastObjectElements(Register map, 3340 Register scratch, 3341 Label* fail) { 3342 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3343 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3344 STATIC_ASSERT(FAST_ELEMENTS == 2); 3345 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 3346 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3347 Branch(fail, ls, scratch, 3348 Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); 3349 Branch(fail, hi, scratch, 3350 Operand(Map::kMaximumBitField2FastHoleyElementValue)); 3351 } 3352 3353 3354 void MacroAssembler::CheckFastSmiElements(Register map, 3355 Register scratch, 3356 Label* fail) { 3357 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3358 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3359 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3360 Branch(fail, hi, scratch, 3361 Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); 3362 } 3363 3364 3365 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, 3366 Register key_reg, 3367 Register elements_reg, 3368 Register scratch1, 3369 Register scratch2, 3370 Register scratch3, 3371 Label* fail, 3372 int elements_offset) { 3373 Label smi_value, maybe_nan, have_double_value, is_nan, done; 3374 Register mantissa_reg = scratch2; 3375 Register exponent_reg = scratch3; 3376 3377 // Handle smi values specially. 3378 JumpIfSmi(value_reg, &smi_value); 3379 3380 // Ensure that the object is a heap number 3381 CheckMap(value_reg, 3382 scratch1, 3383 Heap::kHeapNumberMapRootIndex, 3384 fail, 3385 DONT_DO_SMI_CHECK); 3386 3387 // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 3388 // in the exponent. 3389 li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); 3390 lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); 3391 Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); 3392 3393 lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); 3394 3395 bind(&have_double_value); 3396 sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); 3397 Addu(scratch1, scratch1, elements_reg); 3398 sw(mantissa_reg, FieldMemOperand( 3399 scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); 3400 uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset + 3401 sizeof(kHoleNanLower32); 3402 sw(exponent_reg, FieldMemOperand(scratch1, offset)); 3403 jmp(&done); 3404 3405 bind(&maybe_nan); 3406 // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise 3407 // it's an Infinity, and the non-NaN code path applies. 3408 Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); 3409 lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); 3410 Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); 3411 bind(&is_nan); 3412 // Load canonical NaN for storing into the double array. 3413 uint64_t nan_int64 = BitCast<uint64_t>( 3414 FixedDoubleArray::canonical_not_the_hole_nan_as_double()); 3415 li(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64))); 3416 li(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32))); 3417 jmp(&have_double_value); 3418 3419 bind(&smi_value); 3420 Addu(scratch1, elements_reg, 3421 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag - 3422 elements_offset)); 3423 sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); 3424 Addu(scratch1, scratch1, scratch2); 3425 // scratch1 is now effective address of the double element 3426 3427 Register untagged_value = elements_reg; 3428 SmiUntag(untagged_value, value_reg); 3429 mtc1(untagged_value, f2); 3430 cvt_d_w(f0, f2); 3431 sdc1(f0, MemOperand(scratch1, 0)); 3432 bind(&done); 3433 } 3434 3435 3436 void MacroAssembler::CompareMapAndBranch(Register obj, 3437 Register scratch, 3438 Handle<Map> map, 3439 Label* early_success, 3440 Condition cond, 3441 Label* branch_to) { 3442 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3443 CompareMapAndBranch(scratch, map, early_success, cond, branch_to); 3444 } 3445 3446 3447 void MacroAssembler::CompareMapAndBranch(Register obj_map, 3448 Handle<Map> map, 3449 Label* early_success, 3450 Condition cond, 3451 Label* branch_to) { 3452 Branch(branch_to, cond, obj_map, Operand(map)); 3453 } 3454 3455 3456 void MacroAssembler::CheckMap(Register obj, 3457 Register scratch, 3458 Handle<Map> map, 3459 Label* fail, 3460 SmiCheckType smi_check_type) { 3461 if (smi_check_type == DO_SMI_CHECK) { 3462 JumpIfSmi(obj, fail); 3463 } 3464 Label success; 3465 CompareMapAndBranch(obj, scratch, map, &success, ne, fail); 3466 bind(&success); 3467 } 3468 3469 3470 void MacroAssembler::DispatchMap(Register obj, 3471 Register scratch, 3472 Handle<Map> map, 3473 Handle<Code> success, 3474 SmiCheckType smi_check_type) { 3475 Label fail; 3476 if (smi_check_type == DO_SMI_CHECK) { 3477 JumpIfSmi(obj, &fail); 3478 } 3479 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3480 Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); 3481 bind(&fail); 3482 } 3483 3484 3485 void MacroAssembler::CheckMap(Register obj, 3486 Register scratch, 3487 Heap::RootListIndex index, 3488 Label* fail, 3489 SmiCheckType smi_check_type) { 3490 if (smi_check_type == DO_SMI_CHECK) { 3491 JumpIfSmi(obj, fail); 3492 } 3493 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3494 LoadRoot(at, index); 3495 Branch(fail, ne, scratch, Operand(at)); 3496 } 3497 3498 3499 void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) { 3500 if (IsMipsSoftFloatABI) { 3501 Move(dst, v0, v1); 3502 } else { 3503 Move(dst, f0); // Reg f0 is o32 ABI FP return value. 3504 } 3505 } 3506 3507 3508 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) { 3509 if (!IsMipsSoftFloatABI) { 3510 Move(f12, dreg); 3511 } else { 3512 Move(a0, a1, dreg); 3513 } 3514 } 3515 3516 3517 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1, 3518 DoubleRegister dreg2) { 3519 if (!IsMipsSoftFloatABI) { 3520 if (dreg2.is(f12)) { 3521 ASSERT(!dreg1.is(f14)); 3522 Move(f14, dreg2); 3523 Move(f12, dreg1); 3524 } else { 3525 Move(f12, dreg1); 3526 Move(f14, dreg2); 3527 } 3528 } else { 3529 Move(a0, a1, dreg1); 3530 Move(a2, a3, dreg2); 3531 } 3532 } 3533 3534 3535 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg, 3536 Register reg) { 3537 if (!IsMipsSoftFloatABI) { 3538 Move(f12, dreg); 3539 Move(a2, reg); 3540 } else { 3541 Move(a2, reg); 3542 Move(a0, a1, dreg); 3543 } 3544 } 3545 3546 3547 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { 3548 // This macro takes the dst register to make the code more readable 3549 // at the call sites. However, the dst register has to be t1 to 3550 // follow the calling convention which requires the call type to be 3551 // in t1. 3552 ASSERT(dst.is(t1)); 3553 if (call_kind == CALL_AS_FUNCTION) { 3554 li(dst, Operand(Smi::FromInt(1))); 3555 } else { 3556 li(dst, Operand(Smi::FromInt(0))); 3557 } 3558 } 3559 3560 3561 // ----------------------------------------------------------------------------- 3562 // JavaScript invokes. 3563 3564 void MacroAssembler::InvokePrologue(const ParameterCount& expected, 3565 const ParameterCount& actual, 3566 Handle<Code> code_constant, 3567 Register code_reg, 3568 Label* done, 3569 bool* definitely_mismatches, 3570 InvokeFlag flag, 3571 const CallWrapper& call_wrapper, 3572 CallKind call_kind) { 3573 bool definitely_matches = false; 3574 *definitely_mismatches = false; 3575 Label regular_invoke; 3576 3577 // Check whether the expected and actual arguments count match. If not, 3578 // setup registers according to contract with ArgumentsAdaptorTrampoline: 3579 // a0: actual arguments count 3580 // a1: function (passed through to callee) 3581 // a2: expected arguments count 3582 // a3: callee code entry 3583 3584 // The code below is made a lot easier because the calling code already sets 3585 // up actual and expected registers according to the contract if values are 3586 // passed in registers. 3587 ASSERT(actual.is_immediate() || actual.reg().is(a0)); 3588 ASSERT(expected.is_immediate() || expected.reg().is(a2)); 3589 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); 3590 3591 if (expected.is_immediate()) { 3592 ASSERT(actual.is_immediate()); 3593 if (expected.immediate() == actual.immediate()) { 3594 definitely_matches = true; 3595 } else { 3596 li(a0, Operand(actual.immediate())); 3597 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 3598 if (expected.immediate() == sentinel) { 3599 // Don't worry about adapting arguments for builtins that 3600 // don't want that done. Skip adaption code by making it look 3601 // like we have a match between expected and actual number of 3602 // arguments. 3603 definitely_matches = true; 3604 } else { 3605 *definitely_mismatches = true; 3606 li(a2, Operand(expected.immediate())); 3607 } 3608 } 3609 } else if (actual.is_immediate()) { 3610 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); 3611 li(a0, Operand(actual.immediate())); 3612 } else { 3613 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); 3614 } 3615 3616 if (!definitely_matches) { 3617 if (!code_constant.is_null()) { 3618 li(a3, Operand(code_constant)); 3619 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); 3620 } 3621 3622 Handle<Code> adaptor = 3623 isolate()->builtins()->ArgumentsAdaptorTrampoline(); 3624 if (flag == CALL_FUNCTION) { 3625 call_wrapper.BeforeCall(CallSize(adaptor)); 3626 SetCallKind(t1, call_kind); 3627 Call(adaptor); 3628 call_wrapper.AfterCall(); 3629 if (!*definitely_mismatches) { 3630 Branch(done); 3631 } 3632 } else { 3633 SetCallKind(t1, call_kind); 3634 Jump(adaptor, RelocInfo::CODE_TARGET); 3635 } 3636 bind(®ular_invoke); 3637 } 3638 } 3639 3640 3641 void MacroAssembler::InvokeCode(Register code, 3642 const ParameterCount& expected, 3643 const ParameterCount& actual, 3644 InvokeFlag flag, 3645 const CallWrapper& call_wrapper, 3646 CallKind call_kind) { 3647 // You can't call a function without a valid frame. 3648 ASSERT(flag == JUMP_FUNCTION || has_frame()); 3649 3650 Label done; 3651 3652 bool definitely_mismatches = false; 3653 InvokePrologue(expected, actual, Handle<Code>::null(), code, 3654 &done, &definitely_mismatches, flag, 3655 call_wrapper, call_kind); 3656 if (!definitely_mismatches) { 3657 if (flag == CALL_FUNCTION) { 3658 call_wrapper.BeforeCall(CallSize(code)); 3659 SetCallKind(t1, call_kind); 3660 Call(code); 3661 call_wrapper.AfterCall(); 3662 } else { 3663 ASSERT(flag == JUMP_FUNCTION); 3664 SetCallKind(t1, call_kind); 3665 Jump(code); 3666 } 3667 // Continue here if InvokePrologue does handle the invocation due to 3668 // mismatched parameter counts. 3669 bind(&done); 3670 } 3671 } 3672 3673 3674 void MacroAssembler::InvokeCode(Handle<Code> code, 3675 const ParameterCount& expected, 3676 const ParameterCount& actual, 3677 RelocInfo::Mode rmode, 3678 InvokeFlag flag, 3679 CallKind call_kind) { 3680 // You can't call a function without a valid frame. 3681 ASSERT(flag == JUMP_FUNCTION || has_frame()); 3682 3683 Label done; 3684 3685 bool definitely_mismatches = false; 3686 InvokePrologue(expected, actual, code, no_reg, 3687 &done, &definitely_mismatches, flag, 3688 NullCallWrapper(), call_kind); 3689 if (!definitely_mismatches) { 3690 if (flag == CALL_FUNCTION) { 3691 SetCallKind(t1, call_kind); 3692 Call(code, rmode); 3693 } else { 3694 SetCallKind(t1, call_kind); 3695 Jump(code, rmode); 3696 } 3697 // Continue here if InvokePrologue does handle the invocation due to 3698 // mismatched parameter counts. 3699 bind(&done); 3700 } 3701 } 3702 3703 3704 void MacroAssembler::InvokeFunction(Register function, 3705 const ParameterCount& actual, 3706 InvokeFlag flag, 3707 const CallWrapper& call_wrapper, 3708 CallKind call_kind) { 3709 // You can't call a function without a valid frame. 3710 ASSERT(flag == JUMP_FUNCTION || has_frame()); 3711 3712 // Contract with called JS functions requires that function is passed in a1. 3713 ASSERT(function.is(a1)); 3714 Register expected_reg = a2; 3715 Register code_reg = a3; 3716 3717 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); 3718 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 3719 lw(expected_reg, 3720 FieldMemOperand(code_reg, 3721 SharedFunctionInfo::kFormalParameterCountOffset)); 3722 sra(expected_reg, expected_reg, kSmiTagSize); 3723 lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 3724 3725 ParameterCount expected(expected_reg); 3726 InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind); 3727 } 3728 3729 3730 void MacroAssembler::InvokeFunction(Register function, 3731 const ParameterCount& expected, 3732 const ParameterCount& actual, 3733 InvokeFlag flag, 3734 const CallWrapper& call_wrapper, 3735 CallKind call_kind) { 3736 // You can't call a function without a valid frame. 3737 ASSERT(flag == JUMP_FUNCTION || has_frame()); 3738 3739 // Contract with called JS functions requires that function is passed in a1. 3740 ASSERT(function.is(a1)); 3741 3742 // Get the function and setup the context. 3743 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 3744 3745 // We call indirectly through the code field in the function to 3746 // allow recompilation to take effect without changing any of the 3747 // call sites. 3748 lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 3749 InvokeCode(a3, expected, actual, flag, call_wrapper, call_kind); 3750 } 3751 3752 3753 void MacroAssembler::InvokeFunction(Handle<JSFunction> function, 3754 const ParameterCount& expected, 3755 const ParameterCount& actual, 3756 InvokeFlag flag, 3757 const CallWrapper& call_wrapper, 3758 CallKind call_kind) { 3759 li(a1, function); 3760 InvokeFunction(a1, expected, actual, flag, call_wrapper, call_kind); 3761 } 3762 3763 3764 void MacroAssembler::IsObjectJSObjectType(Register heap_object, 3765 Register map, 3766 Register scratch, 3767 Label* fail) { 3768 lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); 3769 IsInstanceJSObjectType(map, scratch, fail); 3770 } 3771 3772 3773 void MacroAssembler::IsInstanceJSObjectType(Register map, 3774 Register scratch, 3775 Label* fail) { 3776 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); 3777 Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 3778 Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 3779 } 3780 3781 3782 void MacroAssembler::IsObjectJSStringType(Register object, 3783 Register scratch, 3784 Label* fail) { 3785 ASSERT(kNotStringTag != 0); 3786 3787 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 3788 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3789 And(scratch, scratch, Operand(kIsNotStringMask)); 3790 Branch(fail, ne, scratch, Operand(zero_reg)); 3791 } 3792 3793 3794 void MacroAssembler::IsObjectNameType(Register object, 3795 Register scratch, 3796 Label* fail) { 3797 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 3798 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3799 Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE)); 3800 } 3801 3802 3803 // --------------------------------------------------------------------------- 3804 // Support functions. 3805 3806 3807 void MacroAssembler::TryGetFunctionPrototype(Register function, 3808 Register result, 3809 Register scratch, 3810 Label* miss, 3811 bool miss_on_bound_function) { 3812 // Check that the receiver isn't a smi. 3813 JumpIfSmi(function, miss); 3814 3815 // Check that the function really is a function. Load map into result reg. 3816 GetObjectType(function, result, scratch); 3817 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); 3818 3819 if (miss_on_bound_function) { 3820 lw(scratch, 3821 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); 3822 lw(scratch, 3823 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); 3824 And(scratch, scratch, 3825 Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); 3826 Branch(miss, ne, scratch, Operand(zero_reg)); 3827 } 3828 3829 // Make sure that the function has an instance prototype. 3830 Label non_instance; 3831 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); 3832 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); 3833 Branch(&non_instance, ne, scratch, Operand(zero_reg)); 3834 3835 // Get the prototype or initial map from the function. 3836 lw(result, 3837 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 3838 3839 // If the prototype or initial map is the hole, don't return it and 3840 // simply miss the cache instead. This will allow us to allocate a 3841 // prototype object on-demand in the runtime system. 3842 LoadRoot(t8, Heap::kTheHoleValueRootIndex); 3843 Branch(miss, eq, result, Operand(t8)); 3844 3845 // If the function does not have an initial map, we're done. 3846 Label done; 3847 GetObjectType(result, scratch, scratch); 3848 Branch(&done, ne, scratch, Operand(MAP_TYPE)); 3849 3850 // Get the prototype from the initial map. 3851 lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); 3852 jmp(&done); 3853 3854 // Non-instance prototype: Fetch prototype from constructor field 3855 // in initial map. 3856 bind(&non_instance); 3857 lw(result, FieldMemOperand(result, Map::kConstructorOffset)); 3858 3859 // All done. 3860 bind(&done); 3861 } 3862 3863 3864 void MacroAssembler::GetObjectType(Register object, 3865 Register map, 3866 Register type_reg) { 3867 lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); 3868 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); 3869 } 3870 3871 3872 // ----------------------------------------------------------------------------- 3873 // Runtime calls. 3874 3875 void MacroAssembler::CallStub(CodeStub* stub, 3876 TypeFeedbackId ast_id, 3877 Condition cond, 3878 Register r1, 3879 const Operand& r2, 3880 BranchDelaySlot bd) { 3881 ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. 3882 Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id, 3883 cond, r1, r2, bd); 3884 } 3885 3886 3887 void MacroAssembler::TailCallStub(CodeStub* stub) { 3888 Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET); 3889 } 3890 3891 3892 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { 3893 return ref0.address() - ref1.address(); 3894 } 3895 3896 3897 void MacroAssembler::CallApiFunctionAndReturn( 3898 ExternalReference function, 3899 Address function_address, 3900 ExternalReference thunk_ref, 3901 Register thunk_last_arg, 3902 int stack_space, 3903 MemOperand return_value_operand, 3904 MemOperand* context_restore_operand) { 3905 ExternalReference next_address = 3906 ExternalReference::handle_scope_next_address(isolate()); 3907 const int kNextOffset = 0; 3908 const int kLimitOffset = AddressOffset( 3909 ExternalReference::handle_scope_limit_address(isolate()), 3910 next_address); 3911 const int kLevelOffset = AddressOffset( 3912 ExternalReference::handle_scope_level_address(isolate()), 3913 next_address); 3914 3915 // Allocate HandleScope in callee-save registers. 3916 li(s3, Operand(next_address)); 3917 lw(s0, MemOperand(s3, kNextOffset)); 3918 lw(s1, MemOperand(s3, kLimitOffset)); 3919 lw(s2, MemOperand(s3, kLevelOffset)); 3920 Addu(s2, s2, Operand(1)); 3921 sw(s2, MemOperand(s3, kLevelOffset)); 3922 3923 if (FLAG_log_timer_events) { 3924 FrameScope frame(this, StackFrame::MANUAL); 3925 PushSafepointRegisters(); 3926 PrepareCallCFunction(1, a0); 3927 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 3928 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); 3929 PopSafepointRegisters(); 3930 } 3931 3932 Label profiler_disabled; 3933 Label end_profiler_check; 3934 bool* is_profiling_flag = 3935 isolate()->cpu_profiler()->is_profiling_address(); 3936 STATIC_ASSERT(sizeof(*is_profiling_flag) == 1); 3937 li(t9, reinterpret_cast<int32_t>(is_profiling_flag)); 3938 lb(t9, MemOperand(t9, 0)); 3939 beq(t9, zero_reg, &profiler_disabled); 3940 3941 // Third parameter is the address of the actual getter function. 3942 li(thunk_last_arg, reinterpret_cast<int32_t>(function_address)); 3943 li(t9, Operand(thunk_ref)); 3944 jmp(&end_profiler_check); 3945 3946 bind(&profiler_disabled); 3947 li(t9, Operand(function)); 3948 3949 bind(&end_profiler_check); 3950 3951 // Native call returns to the DirectCEntry stub which redirects to the 3952 // return address pushed on stack (could have moved after GC). 3953 // DirectCEntry stub itself is generated early and never moves. 3954 DirectCEntryStub stub; 3955 stub.GenerateCall(this, t9); 3956 3957 if (FLAG_log_timer_events) { 3958 FrameScope frame(this, StackFrame::MANUAL); 3959 PushSafepointRegisters(); 3960 PrepareCallCFunction(1, a0); 3961 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 3962 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); 3963 PopSafepointRegisters(); 3964 } 3965 3966 Label promote_scheduled_exception; 3967 Label exception_handled; 3968 Label delete_allocated_handles; 3969 Label leave_exit_frame; 3970 Label return_value_loaded; 3971 3972 // Load value from ReturnValue. 3973 lw(v0, return_value_operand); 3974 bind(&return_value_loaded); 3975 3976 // No more valid handles (the result handle was the last one). Restore 3977 // previous handle scope. 3978 sw(s0, MemOperand(s3, kNextOffset)); 3979 if (emit_debug_code()) { 3980 lw(a1, MemOperand(s3, kLevelOffset)); 3981 Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); 3982 } 3983 Subu(s2, s2, Operand(1)); 3984 sw(s2, MemOperand(s3, kLevelOffset)); 3985 lw(at, MemOperand(s3, kLimitOffset)); 3986 Branch(&delete_allocated_handles, ne, s1, Operand(at)); 3987 3988 // Check if the function scheduled an exception. 3989 bind(&leave_exit_frame); 3990 LoadRoot(t0, Heap::kTheHoleValueRootIndex); 3991 li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); 3992 lw(t1, MemOperand(at)); 3993 Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); 3994 bind(&exception_handled); 3995 3996 bool restore_context = context_restore_operand != NULL; 3997 if (restore_context) { 3998 lw(cp, *context_restore_operand); 3999 } 4000 li(s0, Operand(stack_space)); 4001 LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN); 4002 4003 bind(&promote_scheduled_exception); 4004 { 4005 FrameScope frame(this, StackFrame::INTERNAL); 4006 CallExternalReference( 4007 ExternalReference(Runtime::kPromoteScheduledException, isolate()), 4008 0); 4009 } 4010 jmp(&exception_handled); 4011 4012 // HandleScope limit has changed. Delete allocated extensions. 4013 bind(&delete_allocated_handles); 4014 sw(s1, MemOperand(s3, kLimitOffset)); 4015 mov(s0, v0); 4016 mov(a0, v0); 4017 PrepareCallCFunction(1, s1); 4018 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 4019 CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), 4020 1); 4021 mov(v0, s0); 4022 jmp(&leave_exit_frame); 4023 } 4024 4025 4026 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { 4027 return has_frame_ || !stub->SometimesSetsUpAFrame(); 4028 } 4029 4030 4031 void MacroAssembler::IllegalOperation(int num_arguments) { 4032 if (num_arguments > 0) { 4033 addiu(sp, sp, num_arguments * kPointerSize); 4034 } 4035 LoadRoot(v0, Heap::kUndefinedValueRootIndex); 4036 } 4037 4038 4039 void MacroAssembler::IndexFromHash(Register hash, 4040 Register index) { 4041 // If the hash field contains an array index pick it out. The assert checks 4042 // that the constants for the maximum number of digits for an array index 4043 // cached in the hash field and the number of bits reserved for it does not 4044 // conflict. 4045 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < 4046 (1 << String::kArrayIndexValueBits)); 4047 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in 4048 // the low kHashShift bits. 4049 STATIC_ASSERT(kSmiTag == 0); 4050 Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits); 4051 sll(index, hash, kSmiTagSize); 4052 } 4053 4054 4055 void MacroAssembler::ObjectToDoubleFPURegister(Register object, 4056 FPURegister result, 4057 Register scratch1, 4058 Register scratch2, 4059 Register heap_number_map, 4060 Label* not_number, 4061 ObjectToDoubleFlags flags) { 4062 Label done; 4063 if ((flags & OBJECT_NOT_SMI) == 0) { 4064 Label not_smi; 4065 JumpIfNotSmi(object, ¬_smi); 4066 // Remove smi tag and convert to double. 4067 sra(scratch1, object, kSmiTagSize); 4068 mtc1(scratch1, result); 4069 cvt_d_w(result, result); 4070 Branch(&done); 4071 bind(¬_smi); 4072 } 4073 // Check for heap number and load double value from it. 4074 lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); 4075 Branch(not_number, ne, scratch1, Operand(heap_number_map)); 4076 4077 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { 4078 // If exponent is all ones the number is either a NaN or +/-Infinity. 4079 Register exponent = scratch1; 4080 Register mask_reg = scratch2; 4081 lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); 4082 li(mask_reg, HeapNumber::kExponentMask); 4083 4084 And(exponent, exponent, mask_reg); 4085 Branch(not_number, eq, exponent, Operand(mask_reg)); 4086 } 4087 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); 4088 bind(&done); 4089 } 4090 4091 4092 void MacroAssembler::SmiToDoubleFPURegister(Register smi, 4093 FPURegister value, 4094 Register scratch1) { 4095 sra(scratch1, smi, kSmiTagSize); 4096 mtc1(scratch1, value); 4097 cvt_d_w(value, value); 4098 } 4099 4100 4101 void MacroAssembler::AdduAndCheckForOverflow(Register dst, 4102 Register left, 4103 Register right, 4104 Register overflow_dst, 4105 Register scratch) { 4106 ASSERT(!dst.is(overflow_dst)); 4107 ASSERT(!dst.is(scratch)); 4108 ASSERT(!overflow_dst.is(scratch)); 4109 ASSERT(!overflow_dst.is(left)); 4110 ASSERT(!overflow_dst.is(right)); 4111 4112 if (left.is(right) && dst.is(left)) { 4113 ASSERT(!dst.is(t9)); 4114 ASSERT(!scratch.is(t9)); 4115 ASSERT(!left.is(t9)); 4116 ASSERT(!right.is(t9)); 4117 ASSERT(!overflow_dst.is(t9)); 4118 mov(t9, right); 4119 right = t9; 4120 } 4121 4122 if (dst.is(left)) { 4123 mov(scratch, left); // Preserve left. 4124 addu(dst, left, right); // Left is overwritten. 4125 xor_(scratch, dst, scratch); // Original left. 4126 xor_(overflow_dst, dst, right); 4127 and_(overflow_dst, overflow_dst, scratch); 4128 } else if (dst.is(right)) { 4129 mov(scratch, right); // Preserve right. 4130 addu(dst, left, right); // Right is overwritten. 4131 xor_(scratch, dst, scratch); // Original right. 4132 xor_(overflow_dst, dst, left); 4133 and_(overflow_dst, overflow_dst, scratch); 4134 } else { 4135 addu(dst, left, right); 4136 xor_(overflow_dst, dst, left); 4137 xor_(scratch, dst, right); 4138 and_(overflow_dst, scratch, overflow_dst); 4139 } 4140 } 4141 4142 4143 void MacroAssembler::SubuAndCheckForOverflow(Register dst, 4144 Register left, 4145 Register right, 4146 Register overflow_dst, 4147 Register scratch) { 4148 ASSERT(!dst.is(overflow_dst)); 4149 ASSERT(!dst.is(scratch)); 4150 ASSERT(!overflow_dst.is(scratch)); 4151 ASSERT(!overflow_dst.is(left)); 4152 ASSERT(!overflow_dst.is(right)); 4153 ASSERT(!scratch.is(left)); 4154 ASSERT(!scratch.is(right)); 4155 4156 // This happens with some crankshaft code. Since Subu works fine if 4157 // left == right, let's not make that restriction here. 4158 if (left.is(right)) { 4159 mov(dst, zero_reg); 4160 mov(overflow_dst, zero_reg); 4161 return; 4162 } 4163 4164 if (dst.is(left)) { 4165 mov(scratch, left); // Preserve left. 4166 subu(dst, left, right); // Left is overwritten. 4167 xor_(overflow_dst, dst, scratch); // scratch is original left. 4168 xor_(scratch, scratch, right); // scratch is original left. 4169 and_(overflow_dst, scratch, overflow_dst); 4170 } else if (dst.is(right)) { 4171 mov(scratch, right); // Preserve right. 4172 subu(dst, left, right); // Right is overwritten. 4173 xor_(overflow_dst, dst, left); 4174 xor_(scratch, left, scratch); // Original right. 4175 and_(overflow_dst, scratch, overflow_dst); 4176 } else { 4177 subu(dst, left, right); 4178 xor_(overflow_dst, dst, left); 4179 xor_(scratch, left, right); 4180 and_(overflow_dst, scratch, overflow_dst); 4181 } 4182 } 4183 4184 4185 void MacroAssembler::CallRuntime(const Runtime::Function* f, 4186 int num_arguments, 4187 SaveFPRegsMode save_doubles) { 4188 // All parameters are on the stack. v0 has the return value after call. 4189 4190 // If the expected number of arguments of the runtime function is 4191 // constant, we check that the actual number of arguments match the 4192 // expectation. 4193 if (f->nargs >= 0 && f->nargs != num_arguments) { 4194 IllegalOperation(num_arguments); 4195 return; 4196 } 4197 4198 // TODO(1236192): Most runtime routines don't need the number of 4199 // arguments passed in because it is constant. At some point we 4200 // should remove this need and make the runtime routine entry code 4201 // smarter. 4202 PrepareCEntryArgs(num_arguments); 4203 PrepareCEntryFunction(ExternalReference(f, isolate())); 4204 CEntryStub stub(1, save_doubles); 4205 CallStub(&stub); 4206 } 4207 4208 4209 void MacroAssembler::CallExternalReference(const ExternalReference& ext, 4210 int num_arguments, 4211 BranchDelaySlot bd) { 4212 PrepareCEntryArgs(num_arguments); 4213 PrepareCEntryFunction(ext); 4214 4215 CEntryStub stub(1); 4216 CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); 4217 } 4218 4219 4220 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, 4221 int num_arguments, 4222 int result_size) { 4223 // TODO(1236192): Most runtime routines don't need the number of 4224 // arguments passed in because it is constant. At some point we 4225 // should remove this need and make the runtime routine entry code 4226 // smarter. 4227 PrepareCEntryArgs(num_arguments); 4228 JumpToExternalReference(ext); 4229 } 4230 4231 4232 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, 4233 int num_arguments, 4234 int result_size) { 4235 TailCallExternalReference(ExternalReference(fid, isolate()), 4236 num_arguments, 4237 result_size); 4238 } 4239 4240 4241 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, 4242 BranchDelaySlot bd) { 4243 PrepareCEntryFunction(builtin); 4244 CEntryStub stub(1); 4245 Jump(stub.GetCode(isolate()), 4246 RelocInfo::CODE_TARGET, 4247 al, 4248 zero_reg, 4249 Operand(zero_reg), 4250 bd); 4251 } 4252 4253 4254 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, 4255 InvokeFlag flag, 4256 const CallWrapper& call_wrapper) { 4257 // You can't call a builtin without a valid frame. 4258 ASSERT(flag == JUMP_FUNCTION || has_frame()); 4259 4260 GetBuiltinEntry(t9, id); 4261 if (flag == CALL_FUNCTION) { 4262 call_wrapper.BeforeCall(CallSize(t9)); 4263 SetCallKind(t1, CALL_AS_METHOD); 4264 Call(t9); 4265 call_wrapper.AfterCall(); 4266 } else { 4267 ASSERT(flag == JUMP_FUNCTION); 4268 SetCallKind(t1, CALL_AS_METHOD); 4269 Jump(t9); 4270 } 4271 } 4272 4273 4274 void MacroAssembler::GetBuiltinFunction(Register target, 4275 Builtins::JavaScript id) { 4276 // Load the builtins object into target register. 4277 lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4278 lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); 4279 // Load the JavaScript builtin function from the builtins object. 4280 lw(target, FieldMemOperand(target, 4281 JSBuiltinsObject::OffsetOfFunctionWithId(id))); 4282 } 4283 4284 4285 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { 4286 ASSERT(!target.is(a1)); 4287 GetBuiltinFunction(a1, id); 4288 // Load the code entry point from the builtins object. 4289 lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 4290 } 4291 4292 4293 void MacroAssembler::SetCounter(StatsCounter* counter, int value, 4294 Register scratch1, Register scratch2) { 4295 if (FLAG_native_code_counters && counter->Enabled()) { 4296 li(scratch1, Operand(value)); 4297 li(scratch2, Operand(ExternalReference(counter))); 4298 sw(scratch1, MemOperand(scratch2)); 4299 } 4300 } 4301 4302 4303 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, 4304 Register scratch1, Register scratch2) { 4305 ASSERT(value > 0); 4306 if (FLAG_native_code_counters && counter->Enabled()) { 4307 li(scratch2, Operand(ExternalReference(counter))); 4308 lw(scratch1, MemOperand(scratch2)); 4309 Addu(scratch1, scratch1, Operand(value)); 4310 sw(scratch1, MemOperand(scratch2)); 4311 } 4312 } 4313 4314 4315 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, 4316 Register scratch1, Register scratch2) { 4317 ASSERT(value > 0); 4318 if (FLAG_native_code_counters && counter->Enabled()) { 4319 li(scratch2, Operand(ExternalReference(counter))); 4320 lw(scratch1, MemOperand(scratch2)); 4321 Subu(scratch1, scratch1, Operand(value)); 4322 sw(scratch1, MemOperand(scratch2)); 4323 } 4324 } 4325 4326 4327 // ----------------------------------------------------------------------------- 4328 // Debugging. 4329 4330 void MacroAssembler::Assert(Condition cc, BailoutReason reason, 4331 Register rs, Operand rt) { 4332 if (emit_debug_code()) 4333 Check(cc, reason, rs, rt); 4334 } 4335 4336 4337 void MacroAssembler::AssertFastElements(Register elements) { 4338 if (emit_debug_code()) { 4339 ASSERT(!elements.is(at)); 4340 Label ok; 4341 push(elements); 4342 lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); 4343 LoadRoot(at, Heap::kFixedArrayMapRootIndex); 4344 Branch(&ok, eq, elements, Operand(at)); 4345 LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); 4346 Branch(&ok, eq, elements, Operand(at)); 4347 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); 4348 Branch(&ok, eq, elements, Operand(at)); 4349 Abort(kJSObjectWithFastElementsMapHasSlowElements); 4350 bind(&ok); 4351 pop(elements); 4352 } 4353 } 4354 4355 4356 void MacroAssembler::Check(Condition cc, BailoutReason reason, 4357 Register rs, Operand rt) { 4358 Label L; 4359 Branch(&L, cc, rs, rt); 4360 Abort(reason); 4361 // Will not return here. 4362 bind(&L); 4363 } 4364 4365 4366 void MacroAssembler::Abort(BailoutReason reason) { 4367 Label abort_start; 4368 bind(&abort_start); 4369 // We want to pass the msg string like a smi to avoid GC 4370 // problems, however msg is not guaranteed to be aligned 4371 // properly. Instead, we pass an aligned pointer that is 4372 // a proper v8 smi, but also pass the alignment difference 4373 // from the real pointer as a smi. 4374 const char* msg = GetBailoutReason(reason); 4375 intptr_t p1 = reinterpret_cast<intptr_t>(msg); 4376 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; 4377 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); 4378 #ifdef DEBUG 4379 if (msg != NULL) { 4380 RecordComment("Abort message: "); 4381 RecordComment(msg); 4382 } 4383 4384 if (FLAG_trap_on_abort) { 4385 stop(msg); 4386 return; 4387 } 4388 #endif 4389 4390 li(a0, Operand(p0)); 4391 push(a0); 4392 li(a0, Operand(Smi::FromInt(p1 - p0))); 4393 push(a0); 4394 // Disable stub call restrictions to always allow calls to abort. 4395 if (!has_frame_) { 4396 // We don't actually want to generate a pile of code for this, so just 4397 // claim there is a stack frame, without generating one. 4398 FrameScope scope(this, StackFrame::NONE); 4399 CallRuntime(Runtime::kAbort, 2); 4400 } else { 4401 CallRuntime(Runtime::kAbort, 2); 4402 } 4403 // Will not return here. 4404 if (is_trampoline_pool_blocked()) { 4405 // If the calling code cares about the exact number of 4406 // instructions generated, we insert padding here to keep the size 4407 // of the Abort macro constant. 4408 // Currently in debug mode with debug_code enabled the number of 4409 // generated instructions is 14, so we use this as a maximum value. 4410 static const int kExpectedAbortInstructions = 14; 4411 int abort_instructions = InstructionsGeneratedSince(&abort_start); 4412 ASSERT(abort_instructions <= kExpectedAbortInstructions); 4413 while (abort_instructions++ < kExpectedAbortInstructions) { 4414 nop(); 4415 } 4416 } 4417 } 4418 4419 4420 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { 4421 if (context_chain_length > 0) { 4422 // Move up the chain of contexts to the context containing the slot. 4423 lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); 4424 for (int i = 1; i < context_chain_length; i++) { 4425 lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); 4426 } 4427 } else { 4428 // Slot is in the current function context. Move it into the 4429 // destination register in case we store into it (the write barrier 4430 // cannot be allowed to destroy the context in esi). 4431 Move(dst, cp); 4432 } 4433 } 4434 4435 4436 void MacroAssembler::LoadTransitionedArrayMapConditional( 4437 ElementsKind expected_kind, 4438 ElementsKind transitioned_kind, 4439 Register map_in_out, 4440 Register scratch, 4441 Label* no_map_match) { 4442 // Load the global or builtins object from the current context. 4443 lw(scratch, 4444 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4445 lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); 4446 4447 // Check that the function's map is the same as the expected cached map. 4448 lw(scratch, 4449 MemOperand(scratch, 4450 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); 4451 size_t offset = expected_kind * kPointerSize + 4452 FixedArrayBase::kHeaderSize; 4453 lw(at, FieldMemOperand(scratch, offset)); 4454 Branch(no_map_match, ne, map_in_out, Operand(at)); 4455 4456 // Use the transitioned cached map. 4457 offset = transitioned_kind * kPointerSize + 4458 FixedArrayBase::kHeaderSize; 4459 lw(map_in_out, FieldMemOperand(scratch, offset)); 4460 } 4461 4462 4463 void MacroAssembler::LoadInitialArrayMap( 4464 Register function_in, Register scratch, 4465 Register map_out, bool can_have_holes) { 4466 ASSERT(!function_in.is(map_out)); 4467 Label done; 4468 lw(map_out, FieldMemOperand(function_in, 4469 JSFunction::kPrototypeOrInitialMapOffset)); 4470 if (!FLAG_smi_only_arrays) { 4471 ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; 4472 LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, 4473 kind, 4474 map_out, 4475 scratch, 4476 &done); 4477 } else if (can_have_holes) { 4478 LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, 4479 FAST_HOLEY_SMI_ELEMENTS, 4480 map_out, 4481 scratch, 4482 &done); 4483 } 4484 bind(&done); 4485 } 4486 4487 4488 void MacroAssembler::LoadGlobalFunction(int index, Register function) { 4489 // Load the global or builtins object from the current context. 4490 lw(function, 4491 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4492 // Load the native context from the global or builtins object. 4493 lw(function, FieldMemOperand(function, 4494 GlobalObject::kNativeContextOffset)); 4495 // Load the function from the native context. 4496 lw(function, MemOperand(function, Context::SlotOffset(index))); 4497 } 4498 4499 4500 void MacroAssembler::LoadArrayFunction(Register function) { 4501 // Load the global or builtins object from the current context. 4502 lw(function, 4503 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4504 // Load the global context from the global or builtins object. 4505 lw(function, 4506 FieldMemOperand(function, GlobalObject::kGlobalContextOffset)); 4507 // Load the array function from the native context. 4508 lw(function, 4509 MemOperand(function, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); 4510 } 4511 4512 4513 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, 4514 Register map, 4515 Register scratch) { 4516 // Load the initial map. The global functions all have initial maps. 4517 lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 4518 if (emit_debug_code()) { 4519 Label ok, fail; 4520 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); 4521 Branch(&ok); 4522 bind(&fail); 4523 Abort(kGlobalFunctionsMustHaveInitialMap); 4524 bind(&ok); 4525 } 4526 } 4527 4528 4529 void MacroAssembler::Prologue(PrologueFrameMode frame_mode) { 4530 if (frame_mode == BUILD_STUB_FRAME) { 4531 Push(ra, fp, cp); 4532 Push(Smi::FromInt(StackFrame::STUB)); 4533 // Adjust FP to point to saved FP. 4534 Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 4535 } else { 4536 PredictableCodeSizeScope predictible_code_size_scope( 4537 this, kNoCodeAgeSequenceLength * Assembler::kInstrSize); 4538 // The following three instructions must remain together and unmodified 4539 // for code aging to work properly. 4540 if (isolate()->IsCodePreAgingActive()) { 4541 // Pre-age the code. 4542 Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); 4543 nop(Assembler::CODE_AGE_MARKER_NOP); 4544 // Load the stub address to t9 and call it, 4545 // GetCodeAgeAndParity() extracts the stub address from this instruction. 4546 li(t9, 4547 Operand(reinterpret_cast<uint32_t>(stub->instruction_start())), 4548 CONSTANT_SIZE); 4549 nop(); // Prevent jalr to jal optimization. 4550 jalr(t9, a0); 4551 nop(); // Branch delay slot nop. 4552 nop(); // Pad the empty space. 4553 } else { 4554 Push(ra, fp, cp, a1); 4555 nop(Assembler::CODE_AGE_SEQUENCE_NOP); 4556 // Adjust fp to point to caller's fp. 4557 Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 4558 } 4559 } 4560 } 4561 4562 4563 void MacroAssembler::EnterFrame(StackFrame::Type type) { 4564 addiu(sp, sp, -5 * kPointerSize); 4565 li(t8, Operand(Smi::FromInt(type))); 4566 li(t9, Operand(CodeObject()), CONSTANT_SIZE); 4567 sw(ra, MemOperand(sp, 4 * kPointerSize)); 4568 sw(fp, MemOperand(sp, 3 * kPointerSize)); 4569 sw(cp, MemOperand(sp, 2 * kPointerSize)); 4570 sw(t8, MemOperand(sp, 1 * kPointerSize)); 4571 sw(t9, MemOperand(sp, 0 * kPointerSize)); 4572 // Adjust FP to point to saved FP. 4573 Addu(fp, sp, 4574 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); 4575 } 4576 4577 4578 void MacroAssembler::LeaveFrame(StackFrame::Type type) { 4579 mov(sp, fp); 4580 lw(fp, MemOperand(sp, 0 * kPointerSize)); 4581 lw(ra, MemOperand(sp, 1 * kPointerSize)); 4582 addiu(sp, sp, 2 * kPointerSize); 4583 } 4584 4585 4586 void MacroAssembler::EnterExitFrame(bool save_doubles, 4587 int stack_space) { 4588 // Set up the frame structure on the stack. 4589 STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); 4590 STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); 4591 STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); 4592 4593 // This is how the stack will look: 4594 // fp + 2 (==kCallerSPDisplacement) - old stack's end 4595 // [fp + 1 (==kCallerPCOffset)] - saved old ra 4596 // [fp + 0 (==kCallerFPOffset)] - saved old fp 4597 // [fp - 1 (==kSPOffset)] - sp of the called function 4598 // [fp - 2 (==kCodeOffset)] - CodeObject 4599 // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the 4600 // new stack (will contain saved ra) 4601 4602 // Save registers. 4603 addiu(sp, sp, -4 * kPointerSize); 4604 sw(ra, MemOperand(sp, 3 * kPointerSize)); 4605 sw(fp, MemOperand(sp, 2 * kPointerSize)); 4606 addiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer. 4607 4608 if (emit_debug_code()) { 4609 sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4610 } 4611 4612 // Accessed from ExitFrame::code_slot. 4613 li(t8, Operand(CodeObject()), CONSTANT_SIZE); 4614 sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); 4615 4616 // Save the frame pointer and the context in top. 4617 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 4618 sw(fp, MemOperand(t8)); 4619 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 4620 sw(cp, MemOperand(t8)); 4621 4622 const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 4623 if (save_doubles) { 4624 // The stack must be allign to 0 modulo 8 for stores with sdc1. 4625 ASSERT(kDoubleSize == frame_alignment); 4626 if (frame_alignment > 0) { 4627 ASSERT(IsPowerOf2(frame_alignment)); 4628 And(sp, sp, Operand(-frame_alignment)); // Align stack. 4629 } 4630 int space = FPURegister::kMaxNumRegisters * kDoubleSize; 4631 Subu(sp, sp, Operand(space)); 4632 // Remember: we only need to save every 2nd double FPU value. 4633 for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { 4634 FPURegister reg = FPURegister::from_code(i); 4635 sdc1(reg, MemOperand(sp, i * kDoubleSize)); 4636 } 4637 } 4638 4639 // Reserve place for the return address, stack space and an optional slot 4640 // (used by the DirectCEntryStub to hold the return value if a struct is 4641 // returned) and align the frame preparing for calling the runtime function. 4642 ASSERT(stack_space >= 0); 4643 Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); 4644 if (frame_alignment > 0) { 4645 ASSERT(IsPowerOf2(frame_alignment)); 4646 And(sp, sp, Operand(-frame_alignment)); // Align stack. 4647 } 4648 4649 // Set the exit frame sp value to point just before the return address 4650 // location. 4651 addiu(at, sp, kPointerSize); 4652 sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4653 } 4654 4655 4656 void MacroAssembler::LeaveExitFrame(bool save_doubles, 4657 Register argument_count, 4658 bool restore_context, 4659 bool do_return) { 4660 // Optionally restore all double registers. 4661 if (save_doubles) { 4662 // Remember: we only need to restore every 2nd double FPU value. 4663 lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4664 for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { 4665 FPURegister reg = FPURegister::from_code(i); 4666 ldc1(reg, MemOperand(t8, i * kDoubleSize + kPointerSize)); 4667 } 4668 } 4669 4670 // Clear top frame. 4671 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 4672 sw(zero_reg, MemOperand(t8)); 4673 4674 // Restore current context from top and clear it in debug mode. 4675 if (restore_context) { 4676 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 4677 lw(cp, MemOperand(t8)); 4678 } 4679 #ifdef DEBUG 4680 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 4681 sw(a3, MemOperand(t8)); 4682 #endif 4683 4684 // Pop the arguments, restore registers, and return. 4685 mov(sp, fp); // Respect ABI stack constraint. 4686 lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); 4687 lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); 4688 4689 if (argument_count.is_valid()) { 4690 sll(t8, argument_count, kPointerSizeLog2); 4691 addu(sp, sp, t8); 4692 } 4693 4694 if (do_return) { 4695 Ret(USE_DELAY_SLOT); 4696 // If returning, the instruction in the delay slot will be the addiu below. 4697 } 4698 addiu(sp, sp, 8); 4699 } 4700 4701 4702 void MacroAssembler::InitializeNewString(Register string, 4703 Register length, 4704 Heap::RootListIndex map_index, 4705 Register scratch1, 4706 Register scratch2) { 4707 sll(scratch1, length, kSmiTagSize); 4708 LoadRoot(scratch2, map_index); 4709 sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); 4710 li(scratch1, Operand(String::kEmptyHashField)); 4711 sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); 4712 sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); 4713 } 4714 4715 4716 int MacroAssembler::ActivationFrameAlignment() { 4717 #if V8_HOST_ARCH_MIPS 4718 // Running on the real platform. Use the alignment as mandated by the local 4719 // environment. 4720 // Note: This will break if we ever start generating snapshots on one Mips 4721 // platform for another Mips platform with a different alignment. 4722 return OS::ActivationFrameAlignment(); 4723 #else // V8_HOST_ARCH_MIPS 4724 // If we are using the simulator then we should always align to the expected 4725 // alignment. As the simulator is used to generate snapshots we do not know 4726 // if the target platform will need alignment, so this is controlled from a 4727 // flag. 4728 return FLAG_sim_stack_alignment; 4729 #endif // V8_HOST_ARCH_MIPS 4730 } 4731 4732 4733 void MacroAssembler::AssertStackIsAligned() { 4734 if (emit_debug_code()) { 4735 const int frame_alignment = ActivationFrameAlignment(); 4736 const int frame_alignment_mask = frame_alignment - 1; 4737 4738 if (frame_alignment > kPointerSize) { 4739 Label alignment_as_expected; 4740 ASSERT(IsPowerOf2(frame_alignment)); 4741 andi(at, sp, frame_alignment_mask); 4742 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); 4743 // Don't use Check here, as it will call Runtime_Abort re-entering here. 4744 stop("Unexpected stack alignment"); 4745 bind(&alignment_as_expected); 4746 } 4747 } 4748 } 4749 4750 4751 void MacroAssembler::JumpIfNotPowerOfTwoOrZero( 4752 Register reg, 4753 Register scratch, 4754 Label* not_power_of_two_or_zero) { 4755 Subu(scratch, reg, Operand(1)); 4756 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, 4757 scratch, Operand(zero_reg)); 4758 and_(at, scratch, reg); // In the delay slot. 4759 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); 4760 } 4761 4762 4763 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { 4764 ASSERT(!reg.is(overflow)); 4765 mov(overflow, reg); // Save original value. 4766 SmiTag(reg); 4767 xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. 4768 } 4769 4770 4771 void MacroAssembler::SmiTagCheckOverflow(Register dst, 4772 Register src, 4773 Register overflow) { 4774 if (dst.is(src)) { 4775 // Fall back to slower case. 4776 SmiTagCheckOverflow(dst, overflow); 4777 } else { 4778 ASSERT(!dst.is(src)); 4779 ASSERT(!dst.is(overflow)); 4780 ASSERT(!src.is(overflow)); 4781 SmiTag(dst, src); 4782 xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. 4783 } 4784 } 4785 4786 4787 void MacroAssembler::UntagAndJumpIfSmi(Register dst, 4788 Register src, 4789 Label* smi_case) { 4790 JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); 4791 SmiUntag(dst, src); 4792 } 4793 4794 4795 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, 4796 Register src, 4797 Label* non_smi_case) { 4798 JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); 4799 SmiUntag(dst, src); 4800 } 4801 4802 void MacroAssembler::JumpIfSmi(Register value, 4803 Label* smi_label, 4804 Register scratch, 4805 BranchDelaySlot bd) { 4806 ASSERT_EQ(0, kSmiTag); 4807 andi(scratch, value, kSmiTagMask); 4808 Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); 4809 } 4810 4811 void MacroAssembler::JumpIfNotSmi(Register value, 4812 Label* not_smi_label, 4813 Register scratch, 4814 BranchDelaySlot bd) { 4815 ASSERT_EQ(0, kSmiTag); 4816 andi(scratch, value, kSmiTagMask); 4817 Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); 4818 } 4819 4820 4821 void MacroAssembler::JumpIfNotBothSmi(Register reg1, 4822 Register reg2, 4823 Label* on_not_both_smi) { 4824 STATIC_ASSERT(kSmiTag == 0); 4825 ASSERT_EQ(1, kSmiTagMask); 4826 or_(at, reg1, reg2); 4827 JumpIfNotSmi(at, on_not_both_smi); 4828 } 4829 4830 4831 void MacroAssembler::JumpIfEitherSmi(Register reg1, 4832 Register reg2, 4833 Label* on_either_smi) { 4834 STATIC_ASSERT(kSmiTag == 0); 4835 ASSERT_EQ(1, kSmiTagMask); 4836 // Both Smi tags must be 1 (not Smi). 4837 and_(at, reg1, reg2); 4838 JumpIfSmi(at, on_either_smi); 4839 } 4840 4841 4842 void MacroAssembler::AssertNotSmi(Register object) { 4843 if (emit_debug_code()) { 4844 STATIC_ASSERT(kSmiTag == 0); 4845 andi(at, object, kSmiTagMask); 4846 Check(ne, kOperandIsASmi, at, Operand(zero_reg)); 4847 } 4848 } 4849 4850 4851 void MacroAssembler::AssertSmi(Register object) { 4852 if (emit_debug_code()) { 4853 STATIC_ASSERT(kSmiTag == 0); 4854 andi(at, object, kSmiTagMask); 4855 Check(eq, kOperandIsASmi, at, Operand(zero_reg)); 4856 } 4857 } 4858 4859 4860 void MacroAssembler::AssertString(Register object) { 4861 if (emit_debug_code()) { 4862 STATIC_ASSERT(kSmiTag == 0); 4863 SmiTst(object, t0); 4864 Check(ne, kOperandIsASmiAndNotAString, t0, Operand(zero_reg)); 4865 push(object); 4866 lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); 4867 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); 4868 Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE)); 4869 pop(object); 4870 } 4871 } 4872 4873 4874 void MacroAssembler::AssertName(Register object) { 4875 if (emit_debug_code()) { 4876 STATIC_ASSERT(kSmiTag == 0); 4877 SmiTst(object, t0); 4878 Check(ne, kOperandIsASmiAndNotAName, t0, Operand(zero_reg)); 4879 push(object); 4880 lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); 4881 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); 4882 Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE)); 4883 pop(object); 4884 } 4885 } 4886 4887 4888 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { 4889 if (emit_debug_code()) { 4890 ASSERT(!reg.is(at)); 4891 LoadRoot(at, index); 4892 Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at)); 4893 } 4894 } 4895 4896 4897 void MacroAssembler::JumpIfNotHeapNumber(Register object, 4898 Register heap_number_map, 4899 Register scratch, 4900 Label* on_not_heap_number) { 4901 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 4902 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 4903 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); 4904 } 4905 4906 4907 void MacroAssembler::LookupNumberStringCache(Register object, 4908 Register result, 4909 Register scratch1, 4910 Register scratch2, 4911 Register scratch3, 4912 Label* not_found) { 4913 // Use of registers. Register result is used as a temporary. 4914 Register number_string_cache = result; 4915 Register mask = scratch3; 4916 4917 // Load the number string cache. 4918 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); 4919 4920 // Make the hash mask from the length of the number string cache. It 4921 // contains two elements (number and string) for each cache entry. 4922 lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); 4923 // Divide length by two (length is a smi). 4924 sra(mask, mask, kSmiTagSize + 1); 4925 Addu(mask, mask, -1); // Make mask. 4926 4927 // Calculate the entry in the number string cache. The hash value in the 4928 // number string cache for smis is just the smi value, and the hash for 4929 // doubles is the xor of the upper and lower words. See 4930 // Heap::GetNumberStringCache. 4931 Label is_smi; 4932 Label load_result_from_cache; 4933 JumpIfSmi(object, &is_smi); 4934 CheckMap(object, 4935 scratch1, 4936 Heap::kHeapNumberMapRootIndex, 4937 not_found, 4938 DONT_DO_SMI_CHECK); 4939 4940 STATIC_ASSERT(8 == kDoubleSize); 4941 Addu(scratch1, 4942 object, 4943 Operand(HeapNumber::kValueOffset - kHeapObjectTag)); 4944 lw(scratch2, MemOperand(scratch1, kPointerSize)); 4945 lw(scratch1, MemOperand(scratch1, 0)); 4946 Xor(scratch1, scratch1, Operand(scratch2)); 4947 And(scratch1, scratch1, Operand(mask)); 4948 4949 // Calculate address of entry in string cache: each entry consists 4950 // of two pointer sized fields. 4951 sll(scratch1, scratch1, kPointerSizeLog2 + 1); 4952 Addu(scratch1, number_string_cache, scratch1); 4953 4954 Register probe = mask; 4955 lw(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); 4956 JumpIfSmi(probe, not_found); 4957 ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); 4958 ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); 4959 BranchF(&load_result_from_cache, NULL, eq, f12, f14); 4960 Branch(not_found); 4961 4962 bind(&is_smi); 4963 Register scratch = scratch1; 4964 sra(scratch, object, 1); // Shift away the tag. 4965 And(scratch, mask, Operand(scratch)); 4966 4967 // Calculate address of entry in string cache: each entry consists 4968 // of two pointer sized fields. 4969 sll(scratch, scratch, kPointerSizeLog2 + 1); 4970 Addu(scratch, number_string_cache, scratch); 4971 4972 // Check if the entry is the smi we are looking for. 4973 lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 4974 Branch(not_found, ne, object, Operand(probe)); 4975 4976 // Get the result from the cache. 4977 bind(&load_result_from_cache); 4978 lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); 4979 4980 IncrementCounter(isolate()->counters()->number_to_string_native(), 4981 1, 4982 scratch1, 4983 scratch2); 4984 } 4985 4986 4987 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( 4988 Register first, 4989 Register second, 4990 Register scratch1, 4991 Register scratch2, 4992 Label* failure) { 4993 // Test that both first and second are sequential ASCII strings. 4994 // Assume that they are non-smis. 4995 lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); 4996 lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); 4997 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); 4998 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); 4999 5000 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, 5001 scratch2, 5002 scratch1, 5003 scratch2, 5004 failure); 5005 } 5006 5007 5008 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, 5009 Register second, 5010 Register scratch1, 5011 Register scratch2, 5012 Label* failure) { 5013 // Check that neither is a smi. 5014 STATIC_ASSERT(kSmiTag == 0); 5015 And(scratch1, first, Operand(second)); 5016 JumpIfSmi(scratch1, failure); 5017 JumpIfNonSmisNotBothSequentialAsciiStrings(first, 5018 second, 5019 scratch1, 5020 scratch2, 5021 failure); 5022 } 5023 5024 5025 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( 5026 Register first, 5027 Register second, 5028 Register scratch1, 5029 Register scratch2, 5030 Label* failure) { 5031 const int kFlatAsciiStringMask = 5032 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 5033 const int kFlatAsciiStringTag = 5034 kStringTag | kOneByteStringTag | kSeqStringTag; 5035 ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed. 5036 andi(scratch1, first, kFlatAsciiStringMask); 5037 Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag)); 5038 andi(scratch2, second, kFlatAsciiStringMask); 5039 Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag)); 5040 } 5041 5042 5043 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, 5044 Register scratch, 5045 Label* failure) { 5046 const int kFlatAsciiStringMask = 5047 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 5048 const int kFlatAsciiStringTag = 5049 kStringTag | kOneByteStringTag | kSeqStringTag; 5050 And(scratch, type, Operand(kFlatAsciiStringMask)); 5051 Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag)); 5052 } 5053 5054 5055 static const int kRegisterPassedArguments = 4; 5056 5057 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, 5058 int num_double_arguments) { 5059 int stack_passed_words = 0; 5060 num_reg_arguments += 2 * num_double_arguments; 5061 5062 // Up to four simple arguments are passed in registers a0..a3. 5063 if (num_reg_arguments > kRegisterPassedArguments) { 5064 stack_passed_words += num_reg_arguments - kRegisterPassedArguments; 5065 } 5066 stack_passed_words += kCArgSlotCount; 5067 return stack_passed_words; 5068 } 5069 5070 5071 void MacroAssembler::EmitSeqStringSetCharCheck(Register string, 5072 Register index, 5073 Register value, 5074 Register scratch, 5075 uint32_t encoding_mask) { 5076 Label is_object; 5077 SmiTst(string, at); 5078 ThrowIf(eq, kNonObject, at, Operand(zero_reg)); 5079 5080 lw(at, FieldMemOperand(string, HeapObject::kMapOffset)); 5081 lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset)); 5082 5083 andi(at, at, kStringRepresentationMask | kStringEncodingMask); 5084 li(scratch, Operand(encoding_mask)); 5085 ThrowIf(ne, kUnexpectedStringType, at, Operand(scratch)); 5086 5087 // The index is assumed to be untagged coming in, tag it to compare with the 5088 // string length without using a temp register, it is restored at the end of 5089 // this function. 5090 Label index_tag_ok, index_tag_bad; 5091 TrySmiTag(index, scratch, &index_tag_bad); 5092 Branch(&index_tag_ok); 5093 bind(&index_tag_bad); 5094 Throw(kIndexIsTooLarge); 5095 bind(&index_tag_ok); 5096 5097 lw(at, FieldMemOperand(string, String::kLengthOffset)); 5098 ThrowIf(ge, kIndexIsTooLarge, index, Operand(at)); 5099 5100 ASSERT(Smi::FromInt(0) == 0); 5101 ThrowIf(lt, kIndexIsNegative, index, Operand(zero_reg)); 5102 5103 SmiUntag(index, index); 5104 } 5105 5106 5107 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, 5108 int num_double_arguments, 5109 Register scratch) { 5110 int frame_alignment = ActivationFrameAlignment(); 5111 5112 // Up to four simple arguments are passed in registers a0..a3. 5113 // Those four arguments must have reserved argument slots on the stack for 5114 // mips, even though those argument slots are not normally used. 5115 // Remaining arguments are pushed on the stack, above (higher address than) 5116 // the argument slots. 5117 int stack_passed_arguments = CalculateStackPassedWords( 5118 num_reg_arguments, num_double_arguments); 5119 if (frame_alignment > kPointerSize) { 5120 // Make stack end at alignment and make room for num_arguments - 4 words 5121 // and the original value of sp. 5122 mov(scratch, sp); 5123 Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); 5124 ASSERT(IsPowerOf2(frame_alignment)); 5125 And(sp, sp, Operand(-frame_alignment)); 5126 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); 5127 } else { 5128 Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); 5129 } 5130 } 5131 5132 5133 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, 5134 Register scratch) { 5135 PrepareCallCFunction(num_reg_arguments, 0, scratch); 5136 } 5137 5138 5139 void MacroAssembler::CallCFunction(ExternalReference function, 5140 int num_reg_arguments, 5141 int num_double_arguments) { 5142 li(t8, Operand(function)); 5143 CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); 5144 } 5145 5146 5147 void MacroAssembler::CallCFunction(Register function, 5148 int num_reg_arguments, 5149 int num_double_arguments) { 5150 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); 5151 } 5152 5153 5154 void MacroAssembler::CallCFunction(ExternalReference function, 5155 int num_arguments) { 5156 CallCFunction(function, num_arguments, 0); 5157 } 5158 5159 5160 void MacroAssembler::CallCFunction(Register function, 5161 int num_arguments) { 5162 CallCFunction(function, num_arguments, 0); 5163 } 5164 5165 5166 void MacroAssembler::CallCFunctionHelper(Register function, 5167 int num_reg_arguments, 5168 int num_double_arguments) { 5169 ASSERT(has_frame()); 5170 // Make sure that the stack is aligned before calling a C function unless 5171 // running in the simulator. The simulator has its own alignment check which 5172 // provides more information. 5173 // The argument stots are presumed to have been set up by 5174 // PrepareCallCFunction. The C function must be called via t9, for mips ABI. 5175 5176 #if V8_HOST_ARCH_MIPS 5177 if (emit_debug_code()) { 5178 int frame_alignment = OS::ActivationFrameAlignment(); 5179 int frame_alignment_mask = frame_alignment - 1; 5180 if (frame_alignment > kPointerSize) { 5181 ASSERT(IsPowerOf2(frame_alignment)); 5182 Label alignment_as_expected; 5183 And(at, sp, Operand(frame_alignment_mask)); 5184 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); 5185 // Don't use Check here, as it will call Runtime_Abort possibly 5186 // re-entering here. 5187 stop("Unexpected alignment in CallCFunction"); 5188 bind(&alignment_as_expected); 5189 } 5190 } 5191 #endif // V8_HOST_ARCH_MIPS 5192 5193 // Just call directly. The function called cannot cause a GC, or 5194 // allow preemption, so the return address in the link register 5195 // stays correct. 5196 5197 if (!function.is(t9)) { 5198 mov(t9, function); 5199 function = t9; 5200 } 5201 5202 Call(function); 5203 5204 int stack_passed_arguments = CalculateStackPassedWords( 5205 num_reg_arguments, num_double_arguments); 5206 5207 if (OS::ActivationFrameAlignment() > kPointerSize) { 5208 lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); 5209 } else { 5210 Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); 5211 } 5212 } 5213 5214 5215 #undef BRANCH_ARGS_CHECK 5216 5217 5218 void MacroAssembler::PatchRelocatedValue(Register li_location, 5219 Register scratch, 5220 Register new_value) { 5221 lw(scratch, MemOperand(li_location)); 5222 // At this point scratch is a lui(at, ...) instruction. 5223 if (emit_debug_code()) { 5224 And(scratch, scratch, kOpcodeMask); 5225 Check(eq, kTheInstructionToPatchShouldBeALui, 5226 scratch, Operand(LUI)); 5227 lw(scratch, MemOperand(li_location)); 5228 } 5229 srl(t9, new_value, kImm16Bits); 5230 Ins(scratch, t9, 0, kImm16Bits); 5231 sw(scratch, MemOperand(li_location)); 5232 5233 lw(scratch, MemOperand(li_location, kInstrSize)); 5234 // scratch is now ori(at, ...). 5235 if (emit_debug_code()) { 5236 And(scratch, scratch, kOpcodeMask); 5237 Check(eq, kTheInstructionToPatchShouldBeAnOri, 5238 scratch, Operand(ORI)); 5239 lw(scratch, MemOperand(li_location, kInstrSize)); 5240 } 5241 Ins(scratch, new_value, 0, kImm16Bits); 5242 sw(scratch, MemOperand(li_location, kInstrSize)); 5243 5244 // Update the I-cache so the new lui and ori can be executed. 5245 FlushICache(li_location, 2); 5246 } 5247 5248 void MacroAssembler::GetRelocatedValue(Register li_location, 5249 Register value, 5250 Register scratch) { 5251 lw(value, MemOperand(li_location)); 5252 if (emit_debug_code()) { 5253 And(value, value, kOpcodeMask); 5254 Check(eq, kTheInstructionShouldBeALui, 5255 value, Operand(LUI)); 5256 lw(value, MemOperand(li_location)); 5257 } 5258 5259 // value now holds a lui instruction. Extract the immediate. 5260 sll(value, value, kImm16Bits); 5261 5262 lw(scratch, MemOperand(li_location, kInstrSize)); 5263 if (emit_debug_code()) { 5264 And(scratch, scratch, kOpcodeMask); 5265 Check(eq, kTheInstructionShouldBeAnOri, 5266 scratch, Operand(ORI)); 5267 lw(scratch, MemOperand(li_location, kInstrSize)); 5268 } 5269 // "scratch" now holds an ori instruction. Extract the immediate. 5270 andi(scratch, scratch, kImm16Mask); 5271 5272 // Merge the results. 5273 or_(value, value, scratch); 5274 } 5275 5276 5277 void MacroAssembler::CheckPageFlag( 5278 Register object, 5279 Register scratch, 5280 int mask, 5281 Condition cc, 5282 Label* condition_met) { 5283 And(scratch, object, Operand(~Page::kPageAlignmentMask)); 5284 lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); 5285 And(scratch, scratch, Operand(mask)); 5286 Branch(condition_met, cc, scratch, Operand(zero_reg)); 5287 } 5288 5289 5290 void MacroAssembler::CheckMapDeprecated(Handle<Map> map, 5291 Register scratch, 5292 Label* if_deprecated) { 5293 if (map->CanBeDeprecated()) { 5294 li(scratch, Operand(map)); 5295 lw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset)); 5296 And(scratch, scratch, Operand(Smi::FromInt(Map::Deprecated::kMask))); 5297 Branch(if_deprecated, ne, scratch, Operand(zero_reg)); 5298 } 5299 } 5300 5301 5302 void MacroAssembler::JumpIfBlack(Register object, 5303 Register scratch0, 5304 Register scratch1, 5305 Label* on_black) { 5306 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. 5307 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); 5308 } 5309 5310 5311 void MacroAssembler::HasColor(Register object, 5312 Register bitmap_scratch, 5313 Register mask_scratch, 5314 Label* has_color, 5315 int first_bit, 5316 int second_bit) { 5317 ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); 5318 ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); 5319 5320 GetMarkBits(object, bitmap_scratch, mask_scratch); 5321 5322 Label other_color, word_boundary; 5323 lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5324 And(t8, t9, Operand(mask_scratch)); 5325 Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); 5326 // Shift left 1 by adding. 5327 Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); 5328 Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); 5329 And(t8, t9, Operand(mask_scratch)); 5330 Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); 5331 jmp(&other_color); 5332 5333 bind(&word_boundary); 5334 lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); 5335 And(t9, t9, Operand(1)); 5336 Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); 5337 bind(&other_color); 5338 } 5339 5340 5341 // Detect some, but not all, common pointer-free objects. This is used by the 5342 // incremental write barrier which doesn't care about oddballs (they are always 5343 // marked black immediately so this code is not hit). 5344 void MacroAssembler::JumpIfDataObject(Register value, 5345 Register scratch, 5346 Label* not_data_object) { 5347 ASSERT(!AreAliased(value, scratch, t8, no_reg)); 5348 Label is_data_object; 5349 lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); 5350 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 5351 Branch(&is_data_object, eq, t8, Operand(scratch)); 5352 ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); 5353 ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); 5354 // If it's a string and it's not a cons string then it's an object containing 5355 // no GC pointers. 5356 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 5357 And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); 5358 Branch(not_data_object, ne, t8, Operand(zero_reg)); 5359 bind(&is_data_object); 5360 } 5361 5362 5363 void MacroAssembler::GetMarkBits(Register addr_reg, 5364 Register bitmap_reg, 5365 Register mask_reg) { 5366 ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); 5367 And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); 5368 Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); 5369 const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; 5370 Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); 5371 sll(t8, t8, kPointerSizeLog2); 5372 Addu(bitmap_reg, bitmap_reg, t8); 5373 li(t8, Operand(1)); 5374 sllv(mask_reg, t8, mask_reg); 5375 } 5376 5377 5378 void MacroAssembler::EnsureNotWhite( 5379 Register value, 5380 Register bitmap_scratch, 5381 Register mask_scratch, 5382 Register load_scratch, 5383 Label* value_is_white_and_not_data) { 5384 ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); 5385 GetMarkBits(value, bitmap_scratch, mask_scratch); 5386 5387 // If the value is black or grey we don't need to do anything. 5388 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); 5389 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); 5390 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); 5391 ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); 5392 5393 Label done; 5394 5395 // Since both black and grey have a 1 in the first position and white does 5396 // not have a 1 there we only need to check one bit. 5397 lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5398 And(t8, mask_scratch, load_scratch); 5399 Branch(&done, ne, t8, Operand(zero_reg)); 5400 5401 if (emit_debug_code()) { 5402 // Check for impossible bit pattern. 5403 Label ok; 5404 // sll may overflow, making the check conservative. 5405 sll(t8, mask_scratch, 1); 5406 And(t8, load_scratch, t8); 5407 Branch(&ok, eq, t8, Operand(zero_reg)); 5408 stop("Impossible marking bit pattern"); 5409 bind(&ok); 5410 } 5411 5412 // Value is white. We check whether it is data that doesn't need scanning. 5413 // Currently only checks for HeapNumber and non-cons strings. 5414 Register map = load_scratch; // Holds map while checking type. 5415 Register length = load_scratch; // Holds length of object after testing type. 5416 Label is_data_object; 5417 5418 // Check for heap-number 5419 lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); 5420 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 5421 { 5422 Label skip; 5423 Branch(&skip, ne, t8, Operand(map)); 5424 li(length, HeapNumber::kSize); 5425 Branch(&is_data_object); 5426 bind(&skip); 5427 } 5428 5429 // Check for strings. 5430 ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); 5431 ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); 5432 // If it's a string and it's not a cons string then it's an object containing 5433 // no GC pointers. 5434 Register instance_type = load_scratch; 5435 lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); 5436 And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); 5437 Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); 5438 // It's a non-indirect (non-cons and non-slice) string. 5439 // If it's external, the length is just ExternalString::kSize. 5440 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). 5441 // External strings are the only ones with the kExternalStringTag bit 5442 // set. 5443 ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); 5444 ASSERT_EQ(0, kConsStringTag & kExternalStringTag); 5445 And(t8, instance_type, Operand(kExternalStringTag)); 5446 { 5447 Label skip; 5448 Branch(&skip, eq, t8, Operand(zero_reg)); 5449 li(length, ExternalString::kSize); 5450 Branch(&is_data_object); 5451 bind(&skip); 5452 } 5453 5454 // Sequential string, either ASCII or UC16. 5455 // For ASCII (char-size of 1) we shift the smi tag away to get the length. 5456 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby 5457 // getting the length multiplied by 2. 5458 ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4); 5459 ASSERT(kSmiTag == 0 && kSmiTagSize == 1); 5460 lw(t9, FieldMemOperand(value, String::kLengthOffset)); 5461 And(t8, instance_type, Operand(kStringEncodingMask)); 5462 { 5463 Label skip; 5464 Branch(&skip, eq, t8, Operand(zero_reg)); 5465 srl(t9, t9, 1); 5466 bind(&skip); 5467 } 5468 Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); 5469 And(length, length, Operand(~kObjectAlignmentMask)); 5470 5471 bind(&is_data_object); 5472 // Value is a data object, and it is white. Mark it black. Since we know 5473 // that the object is white we can make it black by flipping one bit. 5474 lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5475 Or(t8, t8, Operand(mask_scratch)); 5476 sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5477 5478 And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); 5479 lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); 5480 Addu(t8, t8, Operand(length)); 5481 sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); 5482 5483 bind(&done); 5484 } 5485 5486 5487 void MacroAssembler::Throw(BailoutReason reason) { 5488 Label throw_start; 5489 bind(&throw_start); 5490 #ifdef DEBUG 5491 const char* msg = GetBailoutReason(reason); 5492 if (msg != NULL) { 5493 RecordComment("Throw message: "); 5494 RecordComment(msg); 5495 } 5496 #endif 5497 5498 li(a0, Operand(Smi::FromInt(reason))); 5499 push(a0); 5500 // Disable stub call restrictions to always allow calls to throw. 5501 if (!has_frame_) { 5502 // We don't actually want to generate a pile of code for this, so just 5503 // claim there is a stack frame, without generating one. 5504 FrameScope scope(this, StackFrame::NONE); 5505 CallRuntime(Runtime::kThrowMessage, 1); 5506 } else { 5507 CallRuntime(Runtime::kThrowMessage, 1); 5508 } 5509 // will not return here 5510 if (is_trampoline_pool_blocked()) { 5511 // If the calling code cares throw the exact number of 5512 // instructions generated, we insert padding here to keep the size 5513 // of the ThrowMessage macro constant. 5514 // Currently in debug mode with debug_code enabled the number of 5515 // generated instructions is 14, so we use this as a maximum value. 5516 static const int kExpectedThrowMessageInstructions = 14; 5517 int throw_instructions = InstructionsGeneratedSince(&throw_start); 5518 ASSERT(throw_instructions <= kExpectedThrowMessageInstructions); 5519 while (throw_instructions++ < kExpectedThrowMessageInstructions) { 5520 nop(); 5521 } 5522 } 5523 } 5524 5525 5526 void MacroAssembler::ThrowIf(Condition cc, 5527 BailoutReason reason, 5528 Register rs, 5529 Operand rt) { 5530 Label L; 5531 Branch(&L, NegateCondition(cc), rs, rt); 5532 Throw(reason); 5533 // will not return here 5534 bind(&L); 5535 } 5536 5537 5538 void MacroAssembler::LoadInstanceDescriptors(Register map, 5539 Register descriptors) { 5540 lw(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); 5541 } 5542 5543 5544 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { 5545 lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); 5546 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); 5547 } 5548 5549 5550 void MacroAssembler::EnumLength(Register dst, Register map) { 5551 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); 5552 lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); 5553 And(dst, dst, Operand(Smi::FromInt(Map::EnumLengthBits::kMask))); 5554 } 5555 5556 5557 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { 5558 Register empty_fixed_array_value = t2; 5559 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); 5560 Label next, start; 5561 mov(a2, a0); 5562 5563 // Check if the enum length field is properly initialized, indicating that 5564 // there is an enum cache. 5565 lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); 5566 5567 EnumLength(a3, a1); 5568 Branch( 5569 call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel))); 5570 5571 jmp(&start); 5572 5573 bind(&next); 5574 lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); 5575 5576 // For all objects but the receiver, check that the cache is empty. 5577 EnumLength(a3, a1); 5578 Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0))); 5579 5580 bind(&start); 5581 5582 // Check that there are no elements. Register r2 contains the current JS 5583 // object we've reached through the prototype chain. 5584 lw(a2, FieldMemOperand(a2, JSObject::kElementsOffset)); 5585 Branch(call_runtime, ne, a2, Operand(empty_fixed_array_value)); 5586 5587 lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); 5588 Branch(&next, ne, a2, Operand(null_value)); 5589 } 5590 5591 5592 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { 5593 ASSERT(!output_reg.is(input_reg)); 5594 Label done; 5595 li(output_reg, Operand(255)); 5596 // Normal branch: nop in delay slot. 5597 Branch(&done, gt, input_reg, Operand(output_reg)); 5598 // Use delay slot in this branch. 5599 Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); 5600 mov(output_reg, zero_reg); // In delay slot. 5601 mov(output_reg, input_reg); // Value is in range 0..255. 5602 bind(&done); 5603 } 5604 5605 5606 void MacroAssembler::ClampDoubleToUint8(Register result_reg, 5607 DoubleRegister input_reg, 5608 DoubleRegister temp_double_reg) { 5609 Label above_zero; 5610 Label done; 5611 Label in_bounds; 5612 5613 Move(temp_double_reg, 0.0); 5614 BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); 5615 5616 // Double value is less than zero, NaN or Inf, return 0. 5617 mov(result_reg, zero_reg); 5618 Branch(&done); 5619 5620 // Double value is >= 255, return 255. 5621 bind(&above_zero); 5622 Move(temp_double_reg, 255.0); 5623 BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); 5624 li(result_reg, Operand(255)); 5625 Branch(&done); 5626 5627 // In 0-255 range, round and truncate. 5628 bind(&in_bounds); 5629 cvt_w_d(temp_double_reg, input_reg); 5630 mfc1(result_reg, temp_double_reg); 5631 bind(&done); 5632 } 5633 5634 5635 void MacroAssembler::TestJSArrayForAllocationMemento( 5636 Register receiver_reg, 5637 Register scratch_reg, 5638 Label* no_memento_found, 5639 Condition cond, 5640 Label* allocation_memento_present) { 5641 ExternalReference new_space_start = 5642 ExternalReference::new_space_start(isolate()); 5643 ExternalReference new_space_allocation_top = 5644 ExternalReference::new_space_allocation_top_address(isolate()); 5645 Addu(scratch_reg, receiver_reg, 5646 Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); 5647 Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start)); 5648 li(at, Operand(new_space_allocation_top)); 5649 lw(at, MemOperand(at)); 5650 Branch(no_memento_found, gt, scratch_reg, Operand(at)); 5651 lw(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize)); 5652 if (allocation_memento_present) { 5653 Branch(allocation_memento_present, cond, scratch_reg, 5654 Operand(isolate()->factory()->allocation_memento_map())); 5655 } 5656 } 5657 5658 5659 Register GetRegisterThatIsNotOneOf(Register reg1, 5660 Register reg2, 5661 Register reg3, 5662 Register reg4, 5663 Register reg5, 5664 Register reg6) { 5665 RegList regs = 0; 5666 if (reg1.is_valid()) regs |= reg1.bit(); 5667 if (reg2.is_valid()) regs |= reg2.bit(); 5668 if (reg3.is_valid()) regs |= reg3.bit(); 5669 if (reg4.is_valid()) regs |= reg4.bit(); 5670 if (reg5.is_valid()) regs |= reg5.bit(); 5671 if (reg6.is_valid()) regs |= reg6.bit(); 5672 5673 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { 5674 Register candidate = Register::FromAllocationIndex(i); 5675 if (regs & candidate.bit()) continue; 5676 return candidate; 5677 } 5678 UNREACHABLE(); 5679 return no_reg; 5680 } 5681 5682 5683 void MacroAssembler::JumpIfDictionaryInPrototypeChain( 5684 Register object, 5685 Register scratch0, 5686 Register scratch1, 5687 Label* found) { 5688 ASSERT(!scratch1.is(scratch0)); 5689 Factory* factory = isolate()->factory(); 5690 Register current = scratch0; 5691 Label loop_again; 5692 5693 // Scratch contained elements pointer. 5694 Move(current, object); 5695 5696 // Loop based on the map going up the prototype chain. 5697 bind(&loop_again); 5698 lw(current, FieldMemOperand(current, HeapObject::kMapOffset)); 5699 lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); 5700 Ext(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount); 5701 Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS)); 5702 lw(current, FieldMemOperand(current, Map::kPrototypeOffset)); 5703 Branch(&loop_again, ne, current, Operand(factory->null_value())); 5704 } 5705 5706 5707 bool AreAliased(Register r1, Register r2, Register r3, Register r4) { 5708 if (r1.is(r2)) return true; 5709 if (r1.is(r3)) return true; 5710 if (r1.is(r4)) return true; 5711 if (r2.is(r3)) return true; 5712 if (r2.is(r4)) return true; 5713 if (r3.is(r4)) return true; 5714 return false; 5715 } 5716 5717 5718 CodePatcher::CodePatcher(byte* address, int instructions) 5719 : address_(address), 5720 size_(instructions * Assembler::kInstrSize), 5721 masm_(NULL, address, size_ + Assembler::kGap) { 5722 // Create a new macro assembler pointing to the address of the code to patch. 5723 // The size is adjusted with kGap on order for the assembler to generate size 5724 // bytes of instructions without failing with buffer size constraints. 5725 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 5726 } 5727 5728 5729 CodePatcher::~CodePatcher() { 5730 // Indicate that code has changed. 5731 CPU::FlushICache(address_, size_); 5732 5733 // Check that the code was patched as expected. 5734 ASSERT(masm_.pc_ == address_ + size_); 5735 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 5736 } 5737 5738 5739 void CodePatcher::Emit(Instr instr) { 5740 masm()->emit(instr); 5741 } 5742 5743 5744 void CodePatcher::Emit(Address addr) { 5745 masm()->emit(reinterpret_cast<Instr>(addr)); 5746 } 5747 5748 5749 void CodePatcher::ChangeBranchCondition(Condition cond) { 5750 Instr instr = Assembler::instr_at(masm_.pc_); 5751 ASSERT(Assembler::IsBranch(instr)); 5752 uint32_t opcode = Assembler::GetOpcodeField(instr); 5753 // Currently only the 'eq' and 'ne' cond values are supported and the simple 5754 // branch instructions (with opcode being the branch type). 5755 // There are some special cases (see Assembler::IsBranch()) so extending this 5756 // would be tricky. 5757 ASSERT(opcode == BEQ || 5758 opcode == BNE || 5759 opcode == BLEZ || 5760 opcode == BGTZ || 5761 opcode == BEQL || 5762 opcode == BNEL || 5763 opcode == BLEZL || 5764 opcode == BGTZL); 5765 opcode = (cond == eq) ? BEQ : BNE; 5766 instr = (instr & ~kOpcodeMask) | opcode; 5767 masm_.emit(instr); 5768 } 5769 5770 5771 } } // namespace v8::internal 5772 5773 #endif // V8_TARGET_ARCH_MIPS 5774