Home | History | Annotate | Download | only in seccomp-bpf
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "sandbox/linux/seccomp-bpf/trap.h"
      6 
      7 #include <errno.h>
      8 #include <signal.h>
      9 #include <string.h>
     10 #include <sys/prctl.h>
     11 #include <sys/syscall.h>
     12 
     13 #include <limits>
     14 
     15 #include "base/logging.h"
     16 #include "sandbox/linux/seccomp-bpf/codegen.h"
     17 #include "sandbox/linux/seccomp-bpf/die.h"
     18 #include "sandbox/linux/seccomp-bpf/syscall.h"
     19 
     20 // Android's signal.h doesn't define ucontext etc.
     21 #if defined(OS_ANDROID)
     22 #include "sandbox/linux/services/android_ucontext.h"
     23 #endif
     24 
     25 namespace {
     26 
     27 const int kCapacityIncrement = 20;
     28 
     29 // Unsafe traps can only be turned on, if the user explicitly allowed them
     30 // by setting the CHROME_SANDBOX_DEBUGGING environment variable.
     31 const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";
     32 
     33 // We need to tell whether we are performing a "normal" callback, or
     34 // whether we were called recursively from within a UnsafeTrap() callback.
     35 // This is a little tricky to do, because we need to somehow get access to
     36 // per-thread data from within a signal context. Normal TLS storage is not
     37 // safely accessible at this time. We could roll our own, but that involves
     38 // a lot of complexity. Instead, we co-opt one bit in the signal mask.
     39 // If BUS is blocked, we assume that we have been called recursively.
     40 // There is a possibility for collision with other code that needs to do
     41 // this, but in practice the risks are low.
     42 // If SIGBUS turns out to be a problem, we could instead co-opt one of the
     43 // realtime signals. There are plenty of them. Unfortunately, there is no
     44 // way to mark a signal as allocated. So, the potential for collision is
     45 // possibly even worse.
     46 bool GetIsInSigHandler(const ucontext_t* ctx) {
     47   // Note: on Android, sigismember does not take a pointer to const.
     48   return sigismember(const_cast<sigset_t*>(&ctx->uc_sigmask), SIGBUS);
     49 }
     50 
     51 void SetIsInSigHandler() {
     52   sigset_t mask;
     53   if (sigemptyset(&mask) || sigaddset(&mask, SIGBUS) ||
     54       sigprocmask(SIG_BLOCK, &mask, NULL)) {
     55     SANDBOX_DIE("Failed to block SIGBUS");
     56   }
     57 }
     58 
     59 bool IsDefaultSignalAction(const struct sigaction& sa) {
     60   if (sa.sa_flags & SA_SIGINFO || sa.sa_handler != SIG_DFL) {
     61     return false;
     62   }
     63   return true;
     64 }
     65 
     66 }  // namespace
     67 
     68 namespace sandbox {
     69 
     70 Trap::Trap()
     71     : trap_array_(NULL),
     72       trap_array_size_(0),
     73       trap_array_capacity_(0),
     74       has_unsafe_traps_(false) {
     75   // Set new SIGSYS handler
     76   struct sigaction sa = {};
     77   sa.sa_sigaction = SigSysAction;
     78   sa.sa_flags = SA_SIGINFO | SA_NODEFER;
     79   struct sigaction old_sa;
     80   if (sigaction(SIGSYS, &sa, &old_sa) < 0) {
     81     SANDBOX_DIE("Failed to configure SIGSYS handler");
     82   }
     83 
     84   if (!IsDefaultSignalAction(old_sa)) {
     85     // TODO(jln): make this FATAL, at least in DEBUG mode.
     86     LOG(ERROR) << "Existing signal handler when trying to install SIGSYS";
     87   }
     88 
     89   // Unmask SIGSYS
     90   sigset_t mask;
     91   if (sigemptyset(&mask) || sigaddset(&mask, SIGSYS) ||
     92       sigprocmask(SIG_UNBLOCK, &mask, NULL)) {
     93     SANDBOX_DIE("Failed to configure SIGSYS handler");
     94   }
     95 }
     96 
     97 Trap* Trap::GetInstance() {
     98   // Note: This class is not thread safe. It is the caller's responsibility
     99   // to avoid race conditions. Normally, this is a non-issue as the sandbox
    100   // can only be initialized if there are no other threads present.
    101   // Also, this is not a normal singleton. Once created, the global trap
    102   // object must never be destroyed again.
    103   if (!global_trap_) {
    104     global_trap_ = new Trap();
    105     if (!global_trap_) {
    106       SANDBOX_DIE("Failed to allocate global trap handler");
    107     }
    108   }
    109   return global_trap_;
    110 }
    111 
    112 void Trap::SigSysAction(int nr, siginfo_t* info, void* void_context) {
    113   if (!global_trap_) {
    114     RAW_SANDBOX_DIE(
    115         "This can't happen. Found no global singleton instance "
    116         "for Trap() handling.");
    117   }
    118   global_trap_->SigSys(nr, info, void_context);
    119 }
    120 
    121 void Trap::SigSys(int nr, siginfo_t* info, void* void_context) {
    122   // Signal handlers should always preserve "errno". Otherwise, we could
    123   // trigger really subtle bugs.
    124   const int old_errno = errno;
    125 
    126   // Various sanity checks to make sure we actually received a signal
    127   // triggered by a BPF filter. If something else triggered SIGSYS
    128   // (e.g. kill()), there is really nothing we can do with this signal.
    129   if (nr != SIGSYS || info->si_code != SYS_SECCOMP || !void_context ||
    130       info->si_errno <= 0 ||
    131       static_cast<size_t>(info->si_errno) > trap_array_size_) {
    132     // ATI drivers seem to send SIGSYS, so this cannot be FATAL.
    133     // See crbug.com/178166.
    134     // TODO(jln): add a DCHECK or move back to FATAL.
    135     RAW_LOG(ERROR, "Unexpected SIGSYS received.");
    136     errno = old_errno;
    137     return;
    138   }
    139 
    140   // Obtain the signal context. This, most notably, gives us access to
    141   // all CPU registers at the time of the signal.
    142   ucontext_t* ctx = reinterpret_cast<ucontext_t*>(void_context);
    143 
    144   // Obtain the siginfo information that is specific to SIGSYS. Unfortunately,
    145   // most versions of glibc don't include this information in siginfo_t. So,
    146   // we need to explicitly copy it into a arch_sigsys structure.
    147   struct arch_sigsys sigsys;
    148   memcpy(&sigsys, &info->_sifields, sizeof(sigsys));
    149 
    150   // Some more sanity checks.
    151   if (sigsys.ip != reinterpret_cast<void*>(SECCOMP_IP(ctx)) ||
    152       sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx)) ||
    153       sigsys.arch != SECCOMP_ARCH) {
    154     // TODO(markus):
    155     // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
    156     // safe and can lead to bugs. We should eventually implement a different
    157     // logging and reporting mechanism that is safe to be called from
    158     // the sigSys() handler.
    159     RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
    160   }
    161 
    162   intptr_t rc;
    163   if (has_unsafe_traps_ && GetIsInSigHandler(ctx)) {
    164     errno = old_errno;
    165     if (sigsys.nr == __NR_clone) {
    166       RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
    167     }
    168     rc = SandboxSyscall(sigsys.nr,
    169                         SECCOMP_PARM1(ctx),
    170                         SECCOMP_PARM2(ctx),
    171                         SECCOMP_PARM3(ctx),
    172                         SECCOMP_PARM4(ctx),
    173                         SECCOMP_PARM5(ctx),
    174                         SECCOMP_PARM6(ctx));
    175   } else {
    176     const ErrorCode& err = trap_array_[info->si_errno - 1];
    177     if (!err.safe_) {
    178       SetIsInSigHandler();
    179     }
    180 
    181     // Copy the seccomp-specific data into a arch_seccomp_data structure. This
    182     // is what we are showing to TrapFnc callbacks that the system call
    183     // evaluator registered with the sandbox.
    184     struct arch_seccomp_data data = {
    185         sigsys.nr, SECCOMP_ARCH, reinterpret_cast<uint64_t>(sigsys.ip),
    186         {static_cast<uint64_t>(SECCOMP_PARM1(ctx)),
    187          static_cast<uint64_t>(SECCOMP_PARM2(ctx)),
    188          static_cast<uint64_t>(SECCOMP_PARM3(ctx)),
    189          static_cast<uint64_t>(SECCOMP_PARM4(ctx)),
    190          static_cast<uint64_t>(SECCOMP_PARM5(ctx)),
    191          static_cast<uint64_t>(SECCOMP_PARM6(ctx))}};
    192 
    193     // Now call the TrapFnc callback associated with this particular instance
    194     // of SECCOMP_RET_TRAP.
    195     rc = err.fnc_(data, err.aux_);
    196   }
    197 
    198   // Update the CPU register that stores the return code of the system call
    199   // that we just handled, and restore "errno" to the value that it had
    200   // before entering the signal handler.
    201   SECCOMP_RESULT(ctx) = static_cast<greg_t>(rc);
    202   errno = old_errno;
    203 
    204   return;
    205 }
    206 
    207 bool Trap::TrapKey::operator<(const TrapKey& o) const {
    208   if (fnc != o.fnc) {
    209     return fnc < o.fnc;
    210   } else if (aux != o.aux) {
    211     return aux < o.aux;
    212   } else {
    213     return safe < o.safe;
    214   }
    215 }
    216 
    217 ErrorCode Trap::MakeTrap(TrapFnc fnc, const void* aux, bool safe) {
    218   return GetInstance()->MakeTrapImpl(fnc, aux, safe);
    219 }
    220 
    221 ErrorCode Trap::MakeTrapImpl(TrapFnc fnc, const void* aux, bool safe) {
    222   if (!safe && !SandboxDebuggingAllowedByUser()) {
    223     // Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
    224     // we never return an ErrorCode that is marked as "unsafe". This also
    225     // means, the BPF compiler will never emit code that allow unsafe system
    226     // calls to by-pass the filter (because they use the magic return address
    227     // from SandboxSyscall(-1)).
    228 
    229     // This SANDBOX_DIE() can optionally be removed. It won't break security,
    230     // but it might make error messages from the BPF compiler a little harder
    231     // to understand. Removing the SANDBOX_DIE() allows callers to easyly check
    232     // whether unsafe traps are supported (by checking whether the returned
    233     // ErrorCode is ET_INVALID).
    234     SANDBOX_DIE(
    235         "Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
    236         "is enabled");
    237 
    238     return ErrorCode();
    239   }
    240 
    241   // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
    242   // of a SECCOMP_RET_TRAP.
    243   TrapKey key(fnc, aux, safe);
    244   TrapIds::const_iterator iter = trap_ids_.find(key);
    245 
    246   // We return unique identifiers together with SECCOMP_RET_TRAP. This allows
    247   // us to associate trap with the appropriate handler. The kernel allows us
    248   // identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
    249   // avoid 0, as it could be confused for a trap without any specific id.
    250   // The nice thing about sequentially numbered identifiers is that we can also
    251   // trivially look them up from our signal handler without making any system
    252   // calls that might be async-signal-unsafe.
    253   // In order to do so, we store all of our traps in a C-style trap_array_.
    254   uint16_t id;
    255   if (iter != trap_ids_.end()) {
    256     // We have seen this pair before. Return the same id that we assigned
    257     // earlier.
    258     id = iter->second;
    259   } else {
    260     // This is a new pair. Remember it and assign a new id.
    261     if (trap_array_size_ >= SECCOMP_RET_DATA /* 0xFFFF */ ||
    262         trap_array_size_ >= std::numeric_limits<typeof(id)>::max()) {
    263       // In practice, this is pretty much impossible to trigger, as there
    264       // are other kernel limitations that restrict overall BPF program sizes.
    265       SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
    266     }
    267     id = trap_array_size_ + 1;
    268 
    269     // Our callers ensure that there are no other threads accessing trap_array_
    270     // concurrently (typically this is done by ensuring that we are single-
    271     // threaded while the sandbox is being set up). But we nonetheless are
    272     // modifying a life data structure that could be accessed any time a
    273     // system call is made; as system calls could be triggering SIGSYS.
    274     // So, we have to be extra careful that we update trap_array_ atomically.
    275     // In particular, this means we shouldn't be using realloc() to resize it.
    276     // Instead, we allocate a new array, copy the values, and then switch the
    277     // pointer. We only really care about the pointer being updated atomically
    278     // and the data that is pointed to being valid, as these are the only
    279     // values accessed from the signal handler. It is OK if trap_array_size_
    280     // is inconsistent with the pointer, as it is monotonously increasing.
    281     // Also, we only care about compiler barriers, as the signal handler is
    282     // triggered synchronously from a system call. We don't have to protect
    283     // against issues with the memory model or with completely asynchronous
    284     // events.
    285     if (trap_array_size_ >= trap_array_capacity_) {
    286       trap_array_capacity_ += kCapacityIncrement;
    287       ErrorCode* old_trap_array = trap_array_;
    288       ErrorCode* new_trap_array = new ErrorCode[trap_array_capacity_];
    289 
    290       // Language specs are unclear on whether the compiler is allowed to move
    291       // the "delete[]" above our preceding assignments and/or memory moves,
    292       // iff the compiler believes that "delete[]" doesn't have any other
    293       // global side-effects.
    294       // We insert optimization barriers to prevent this from happening.
    295       // The first barrier is probably not needed, but better be explicit in
    296       // what we want to tell the compiler.
    297       // The clang developer mailing list couldn't answer whether this is a
    298       // legitimate worry; but they at least thought that the barrier is
    299       // sufficient to prevent the (so far hypothetical) problem of re-ordering
    300       // of instructions by the compiler.
    301       memcpy(new_trap_array, trap_array_, trap_array_size_ * sizeof(ErrorCode));
    302       asm volatile("" : "=r"(new_trap_array) : "0"(new_trap_array) : "memory");
    303       trap_array_ = new_trap_array;
    304       asm volatile("" : "=r"(trap_array_) : "0"(trap_array_) : "memory");
    305 
    306       delete[] old_trap_array;
    307     }
    308     trap_ids_[key] = id;
    309     trap_array_[trap_array_size_] = ErrorCode(fnc, aux, safe, id);
    310     return trap_array_[trap_array_size_++];
    311   }
    312 
    313   return ErrorCode(fnc, aux, safe, id);
    314 }
    315 
    316 bool Trap::SandboxDebuggingAllowedByUser() const {
    317   const char* debug_flag = getenv(kSandboxDebuggingEnv);
    318   return debug_flag && *debug_flag;
    319 }
    320 
    321 bool Trap::EnableUnsafeTrapsInSigSysHandler() {
    322   Trap* trap = GetInstance();
    323   if (!trap->has_unsafe_traps_) {
    324     // Unsafe traps are a one-way fuse. Once enabled, they can never be turned
    325     // off again.
    326     // We only allow enabling unsafe traps, if the user explicitly set an
    327     // appropriate environment variable. This prevents bugs that accidentally
    328     // disable all sandboxing for all users.
    329     if (trap->SandboxDebuggingAllowedByUser()) {
    330       // We only ever print this message once, when we enable unsafe traps the
    331       // first time.
    332       SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
    333       trap->has_unsafe_traps_ = true;
    334     } else {
    335       SANDBOX_INFO(
    336           "Cannot disable sandbox and use unsafe traps unless "
    337           "CHROME_SANDBOX_DEBUGGING is turned on first");
    338     }
    339   }
    340   // Returns the, possibly updated, value of has_unsafe_traps_.
    341   return trap->has_unsafe_traps_;
    342 }
    343 
    344 ErrorCode Trap::ErrorCodeFromTrapId(uint16_t id) {
    345   if (global_trap_ && id > 0 && id <= global_trap_->trap_array_size_) {
    346     return global_trap_->trap_array_[id - 1];
    347   } else {
    348     return ErrorCode();
    349   }
    350 }
    351 
    352 Trap* Trap::global_trap_;
    353 
    354 }  // namespace sandbox
    355