Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.android.layoutlib.bridge.util;
     18 
     19 
     20 import com.android.internal.util.ArrayUtils;
     21 
     22 import android.util.SparseArray;
     23 
     24 import java.lang.ref.WeakReference;
     25 
     26 /**
     27  * This is a custom {@link SparseArray} that uses {@link WeakReference} around the objects added
     28  * to it. When the array is compacted, not only deleted indices but also empty references
     29  * are removed, making the array efficient at removing references that were reclaimed.
     30  *
     31  * The code is taken from {@link SparseArray} directly and adapted to use weak references.
     32  *
     33  * Because our usage means that we never actually call {@link #remove(int)} or {@link #delete(int)},
     34  * we must manually check if there are reclaimed references to trigger an internal compact step
     35  * (which is normally only triggered when an item is manually removed).
     36  *
     37  * SparseArrays map integers to Objects.  Unlike a normal array of Objects,
     38  * there can be gaps in the indices.  It is intended to be more efficient
     39  * than using a HashMap to map Integers to Objects.
     40  */
     41 @SuppressWarnings("unchecked")
     42 public class SparseWeakArray<E> {
     43 
     44     private static final Object DELETED_REF = new Object();
     45     private static final WeakReference<?> DELETED = new WeakReference(DELETED_REF);
     46     private boolean mGarbage = false;
     47 
     48     /**
     49      * Creates a new SparseArray containing no mappings.
     50      */
     51     public SparseWeakArray() {
     52         this(10);
     53     }
     54 
     55     /**
     56      * Creates a new SparseArray containing no mappings that will not
     57      * require any additional memory allocation to store the specified
     58      * number of mappings.
     59      */
     60     public SparseWeakArray(int initialCapacity) {
     61         initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
     62 
     63         mKeys = new int[initialCapacity];
     64         mValues = new WeakReference[initialCapacity];
     65         mSize = 0;
     66     }
     67 
     68     /**
     69      * Gets the Object mapped from the specified key, or <code>null</code>
     70      * if no such mapping has been made.
     71      */
     72     public E get(int key) {
     73         return get(key, null);
     74     }
     75 
     76     /**
     77      * Gets the Object mapped from the specified key, or the specified Object
     78      * if no such mapping has been made.
     79      */
     80     public E get(int key, E valueIfKeyNotFound) {
     81         int i = binarySearch(mKeys, 0, mSize, key);
     82 
     83         if (i < 0 || mValues[i] == DELETED || mValues[i].get() == null) {
     84             return valueIfKeyNotFound;
     85         } else {
     86             return (E) mValues[i].get();
     87         }
     88     }
     89 
     90     /**
     91      * Removes the mapping from the specified key, if there was any.
     92      */
     93     public void delete(int key) {
     94         int i = binarySearch(mKeys, 0, mSize, key);
     95 
     96         if (i >= 0) {
     97             if (mValues[i] != DELETED) {
     98                 mValues[i] = DELETED;
     99                 mGarbage = true;
    100             }
    101         }
    102     }
    103 
    104     /**
    105      * Alias for {@link #delete(int)}.
    106      */
    107     public void remove(int key) {
    108         delete(key);
    109     }
    110 
    111     /**
    112      * Removes the mapping at the specified index.
    113      */
    114     public void removeAt(int index) {
    115         if (mValues[index] != DELETED) {
    116             mValues[index] = DELETED;
    117             mGarbage = true;
    118         }
    119     }
    120 
    121     private void gc() {
    122         int n = mSize;
    123         int o = 0;
    124         int[] keys = mKeys;
    125         WeakReference<?>[] values = mValues;
    126 
    127         for (int i = 0; i < n; i++) {
    128             WeakReference<?> val = values[i];
    129 
    130             // Don't keep any non DELETED values, but only the one that still have a valid
    131             // reference.
    132             if (val != DELETED && val.get() != null) {
    133                 if (i != o) {
    134                     keys[o] = keys[i];
    135                     values[o] = val;
    136                 }
    137 
    138                 o++;
    139             }
    140         }
    141 
    142         mGarbage = false;
    143         mSize = o;
    144 
    145         int newSize = ArrayUtils.idealIntArraySize(mSize);
    146         if (newSize < mKeys.length) {
    147             int[] nkeys = new int[newSize];
    148             WeakReference<?>[] nvalues = new WeakReference[newSize];
    149 
    150             System.arraycopy(mKeys, 0, nkeys, 0, newSize);
    151             System.arraycopy(mValues, 0, nvalues, 0, newSize);
    152 
    153             mKeys = nkeys;
    154             mValues = nvalues;
    155         }
    156     }
    157 
    158     /**
    159      * Adds a mapping from the specified key to the specified value,
    160      * replacing the previous mapping from the specified key if there
    161      * was one.
    162      */
    163     public void put(int key, E value) {
    164         int i = binarySearch(mKeys, 0, mSize, key);
    165 
    166         if (i >= 0) {
    167             mValues[i] = new WeakReference(value);
    168         } else {
    169             i = ~i;
    170 
    171             if (i < mSize && (mValues[i] == DELETED || mValues[i].get() == null)) {
    172                 mKeys[i] = key;
    173                 mValues[i] = new WeakReference(value);
    174                 return;
    175             }
    176 
    177             if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) {
    178                 gc();
    179 
    180                 // Search again because indices may have changed.
    181                 i = ~binarySearch(mKeys, 0, mSize, key);
    182             }
    183 
    184             if (mSize >= mKeys.length) {
    185                 int n = ArrayUtils.idealIntArraySize(mSize + 1);
    186 
    187                 int[] nkeys = new int[n];
    188                 WeakReference<?>[] nvalues = new WeakReference[n];
    189 
    190                 // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
    191                 System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
    192                 System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
    193 
    194                 mKeys = nkeys;
    195                 mValues = nvalues;
    196             }
    197 
    198             if (mSize - i != 0) {
    199                 // Log.e("SparseArray", "move " + (mSize - i));
    200                 System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
    201                 System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
    202             }
    203 
    204             mKeys[i] = key;
    205             mValues[i] = new WeakReference(value);
    206             mSize++;
    207         }
    208     }
    209 
    210     /**
    211      * Returns the number of key-value mappings that this SparseArray
    212      * currently stores.
    213      */
    214     public int size() {
    215         if (mGarbage) {
    216             gc();
    217         }
    218 
    219         return mSize;
    220     }
    221 
    222     /**
    223      * Given an index in the range <code>0...size()-1</code>, returns
    224      * the key from the <code>index</code>th key-value mapping that this
    225      * SparseArray stores.
    226      */
    227     public int keyAt(int index) {
    228         if (mGarbage) {
    229             gc();
    230         }
    231 
    232         return mKeys[index];
    233     }
    234 
    235     /**
    236      * Given an index in the range <code>0...size()-1</code>, returns
    237      * the value from the <code>index</code>th key-value mapping that this
    238      * SparseArray stores.
    239      */
    240     public E valueAt(int index) {
    241         if (mGarbage) {
    242             gc();
    243         }
    244 
    245         return (E) mValues[index].get();
    246     }
    247 
    248     /**
    249      * Given an index in the range <code>0...size()-1</code>, sets a new
    250      * value for the <code>index</code>th key-value mapping that this
    251      * SparseArray stores.
    252      */
    253     public void setValueAt(int index, E value) {
    254         if (mGarbage) {
    255             gc();
    256         }
    257 
    258         mValues[index] = new WeakReference(value);
    259     }
    260 
    261     /**
    262      * Returns the index for which {@link #keyAt} would return the
    263      * specified key, or a negative number if the specified
    264      * key is not mapped.
    265      */
    266     public int indexOfKey(int key) {
    267         if (mGarbage) {
    268             gc();
    269         }
    270 
    271         return binarySearch(mKeys, 0, mSize, key);
    272     }
    273 
    274     /**
    275      * Returns an index for which {@link #valueAt} would return the
    276      * specified key, or a negative number if no keys map to the
    277      * specified value.
    278      * Beware that this is a linear search, unlike lookups by key,
    279      * and that multiple keys can map to the same value and this will
    280      * find only one of them.
    281      */
    282     public int indexOfValue(E value) {
    283         if (mGarbage) {
    284             gc();
    285         }
    286 
    287         for (int i = 0; i < mSize; i++)
    288             if (mValues[i].get() == value)
    289                 return i;
    290 
    291         return -1;
    292     }
    293 
    294     /**
    295      * Removes all key-value mappings from this SparseArray.
    296      */
    297     public void clear() {
    298         int n = mSize;
    299         WeakReference<?>[] values = mValues;
    300 
    301         for (int i = 0; i < n; i++) {
    302             values[i] = null;
    303         }
    304 
    305         mSize = 0;
    306         mGarbage = false;
    307     }
    308 
    309     /**
    310      * Puts a key/value pair into the array, optimizing for the case where
    311      * the key is greater than all existing keys in the array.
    312      */
    313     public void append(int key, E value) {
    314         if (mSize != 0 && key <= mKeys[mSize - 1]) {
    315             put(key, value);
    316             return;
    317         }
    318 
    319         if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) {
    320             gc();
    321         }
    322 
    323         int pos = mSize;
    324         if (pos >= mKeys.length) {
    325             int n = ArrayUtils.idealIntArraySize(pos + 1);
    326 
    327             int[] nkeys = new int[n];
    328             WeakReference<?>[] nvalues = new WeakReference[n];
    329 
    330             // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
    331             System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
    332             System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
    333 
    334             mKeys = nkeys;
    335             mValues = nvalues;
    336         }
    337 
    338         mKeys[pos] = key;
    339         mValues[pos] = new WeakReference(value);
    340         mSize = pos + 1;
    341     }
    342 
    343     private boolean hasReclaimedRefs() {
    344         for (int i = 0 ; i < mSize ; i++) {
    345             if (mValues[i].get() == null) { // DELETED.get() never returns null.
    346                 return true;
    347             }
    348         }
    349 
    350         return false;
    351     }
    352 
    353     private static int binarySearch(int[] a, int start, int len, int key) {
    354         int high = start + len, low = start - 1, guess;
    355 
    356         while (high - low > 1) {
    357             guess = (high + low) / 2;
    358 
    359             if (a[guess] < key)
    360                 low = guess;
    361             else
    362                 high = guess;
    363         }
    364 
    365         if (high == start + len)
    366             return ~(start + len);
    367         else if (a[high] == key)
    368             return high;
    369         else
    370             return ~high;
    371     }
    372 
    373     private int[] mKeys;
    374     private WeakReference<?>[] mValues;
    375     private int mSize;
    376 }
    377