Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "dyld"
     15 #include "RuntimeDyldELF.h"
     16 #include "JITRegistrar.h"
     17 #include "ObjectImageCommon.h"
     18 #include "llvm/ADT/IntervalMap.h"
     19 #include "llvm/ADT/OwningPtr.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/ExecutionEngine/ObjectBuffer.h"
     24 #include "llvm/ExecutionEngine/ObjectImage.h"
     25 #include "llvm/Object/ELF.h"
     26 #include "llvm/Object/ObjectFile.h"
     27 #include "llvm/Support/ELF.h"
     28 using namespace llvm;
     29 using namespace llvm::object;
     30 
     31 namespace {
     32 
     33 static inline
     34 error_code check(error_code Err) {
     35   if (Err) {
     36     report_fatal_error(Err.message());
     37   }
     38   return Err;
     39 }
     40 
     41 template<class ELFT>
     42 class DyldELFObject
     43   : public ELFObjectFile<ELFT> {
     44   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
     45 
     46   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
     47   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
     48   typedef
     49     Elf_Rel_Impl<ELFT, false> Elf_Rel;
     50   typedef
     51     Elf_Rel_Impl<ELFT, true> Elf_Rela;
     52 
     53   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
     54 
     55   typedef typename ELFDataTypeTypedefHelper<
     56           ELFT>::value_type addr_type;
     57 
     58 public:
     59   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
     60 
     61   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
     62   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
     63 
     64   // Methods for type inquiry through isa, cast and dyn_cast
     65   static inline bool classof(const Binary *v) {
     66     return (isa<ELFObjectFile<ELFT> >(v)
     67             && classof(cast<ELFObjectFile
     68                 <ELFT> >(v)));
     69   }
     70   static inline bool classof(
     71       const ELFObjectFile<ELFT> *v) {
     72     return v->isDyldType();
     73   }
     74 };
     75 
     76 template<class ELFT>
     77 class ELFObjectImage : public ObjectImageCommon {
     78   protected:
     79     DyldELFObject<ELFT> *DyldObj;
     80     bool Registered;
     81 
     82   public:
     83     ELFObjectImage(ObjectBuffer *Input,
     84                  DyldELFObject<ELFT> *Obj)
     85     : ObjectImageCommon(Input, Obj),
     86       DyldObj(Obj),
     87       Registered(false) {}
     88 
     89     virtual ~ELFObjectImage() {
     90       if (Registered)
     91         deregisterWithDebugger();
     92     }
     93 
     94     // Subclasses can override these methods to update the image with loaded
     95     // addresses for sections and common symbols
     96     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
     97     {
     98       DyldObj->updateSectionAddress(Sec, Addr);
     99     }
    100 
    101     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
    102     {
    103       DyldObj->updateSymbolAddress(Sym, Addr);
    104     }
    105 
    106     virtual void registerWithDebugger()
    107     {
    108       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
    109       Registered = true;
    110     }
    111     virtual void deregisterWithDebugger()
    112     {
    113       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
    114     }
    115 };
    116 
    117 // The MemoryBuffer passed into this constructor is just a wrapper around the
    118 // actual memory.  Ultimately, the Binary parent class will take ownership of
    119 // this MemoryBuffer object but not the underlying memory.
    120 template<class ELFT>
    121 DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
    122   : ELFObjectFile<ELFT>(Wrapper, ec) {
    123   this->isDyldELFObject = true;
    124 }
    125 
    126 template<class ELFT>
    127 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
    128                                                uint64_t Addr) {
    129   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
    130   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
    131                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
    132 
    133   // This assumes the address passed in matches the target address bitness
    134   // The template-based type cast handles everything else.
    135   shdr->sh_addr = static_cast<addr_type>(Addr);
    136 }
    137 
    138 template<class ELFT>
    139 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
    140                                               uint64_t Addr) {
    141 
    142   Elf_Sym *sym = const_cast<Elf_Sym*>(
    143     ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
    144 
    145   // This assumes the address passed in matches the target address bitness
    146   // The template-based type cast handles everything else.
    147   sym->st_value = static_cast<addr_type>(Addr);
    148 }
    149 
    150 } // namespace
    151 
    152 namespace llvm {
    153 
    154 StringRef RuntimeDyldELF::getEHFrameSection() {
    155   for (int i = 0, e = Sections.size(); i != e; ++i) {
    156     if (Sections[i].Name == ".eh_frame")
    157       return StringRef((const char*)Sections[i].Address, Sections[i].Size);
    158   }
    159   return StringRef();
    160 }
    161 
    162 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
    163   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
    164     llvm_unreachable("Unexpected ELF object size");
    165   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
    166                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
    167                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
    168   error_code ec;
    169 
    170   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
    171     DyldELFObject<ELFType<support::little, 4, false> > *Obj =
    172       new DyldELFObject<ELFType<support::little, 4, false> >(
    173         Buffer->getMemBuffer(), ec);
    174     return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
    175   }
    176   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
    177     DyldELFObject<ELFType<support::big, 4, false> > *Obj =
    178       new DyldELFObject<ELFType<support::big, 4, false> >(
    179         Buffer->getMemBuffer(), ec);
    180     return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
    181   }
    182   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
    183     DyldELFObject<ELFType<support::big, 8, true> > *Obj =
    184       new DyldELFObject<ELFType<support::big, 8, true> >(
    185         Buffer->getMemBuffer(), ec);
    186     return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
    187   }
    188   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
    189     DyldELFObject<ELFType<support::little, 8, true> > *Obj =
    190       new DyldELFObject<ELFType<support::little, 8, true> >(
    191         Buffer->getMemBuffer(), ec);
    192     return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
    193   }
    194   else
    195     llvm_unreachable("Unexpected ELF format");
    196 }
    197 
    198 RuntimeDyldELF::~RuntimeDyldELF() {
    199 }
    200 
    201 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
    202                                              uint64_t Offset,
    203                                              uint64_t Value,
    204                                              uint32_t Type,
    205                                              int64_t Addend) {
    206   switch (Type) {
    207   default:
    208     llvm_unreachable("Relocation type not implemented yet!");
    209   break;
    210   case ELF::R_X86_64_64: {
    211     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
    212     *Target = Value + Addend;
    213     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
    214                  << " at " << format("%p\n",Target));
    215     break;
    216   }
    217   case ELF::R_X86_64_32:
    218   case ELF::R_X86_64_32S: {
    219     Value += Addend;
    220     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
    221            (Type == ELF::R_X86_64_32S &&
    222              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    223     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    224     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    225     *Target = TruncatedAddr;
    226     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
    227                  << " at " << format("%p\n",Target));
    228     break;
    229   }
    230   case ELF::R_X86_64_PC32: {
    231     // Get the placeholder value from the generated object since
    232     // a previous relocation attempt may have overwritten the loaded version
    233     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
    234                                                                    + Offset);
    235     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    236     uint64_t  FinalAddress = Section.LoadAddress + Offset;
    237     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    238     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
    239     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    240     *Target = TruncOffset;
    241     break;
    242   }
    243   }
    244 }
    245 
    246 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
    247                                           uint64_t Offset,
    248                                           uint32_t Value,
    249                                           uint32_t Type,
    250                                           int32_t Addend) {
    251   switch (Type) {
    252   case ELF::R_386_32: {
    253     // Get the placeholder value from the generated object since
    254     // a previous relocation attempt may have overwritten the loaded version
    255     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
    256                                                                    + Offset);
    257     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    258     *Target = *Placeholder + Value + Addend;
    259     break;
    260   }
    261   case ELF::R_386_PC32: {
    262     // Get the placeholder value from the generated object since
    263     // a previous relocation attempt may have overwritten the loaded version
    264     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
    265                                                                    + Offset);
    266     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    267     uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
    268     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    269     *Target = RealOffset;
    270     break;
    271     }
    272     default:
    273       // There are other relocation types, but it appears these are the
    274       // only ones currently used by the LLVM ELF object writer
    275       llvm_unreachable("Relocation type not implemented yet!");
    276       break;
    277   }
    278 }
    279 
    280 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
    281                                               uint64_t Offset,
    282                                               uint64_t Value,
    283                                               uint32_t Type,
    284                                               int64_t Addend) {
    285   uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    286   uint64_t FinalAddress = Section.LoadAddress + Offset;
    287 
    288   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
    289                << format("%llx", Section.Address + Offset)
    290                << " FinalAddress: 0x" << format("%llx",FinalAddress)
    291                << " Value: 0x" << format("%llx",Value)
    292                << " Type: 0x" << format("%x",Type)
    293                << " Addend: 0x" << format("%llx",Addend)
    294                << "\n");
    295 
    296   switch (Type) {
    297   default:
    298     llvm_unreachable("Relocation type not implemented yet!");
    299     break;
    300   case ELF::R_AARCH64_ABS64: {
    301     uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
    302     *TargetPtr = Value + Addend;
    303     break;
    304   }
    305   case ELF::R_AARCH64_PREL32: {
    306     uint64_t Result = Value + Addend - FinalAddress;
    307     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
    308            static_cast<int64_t>(Result) <= UINT32_MAX);
    309     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
    310     break;
    311   }
    312   case ELF::R_AARCH64_CALL26: // fallthrough
    313   case ELF::R_AARCH64_JUMP26: {
    314     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    315     // calculation.
    316     uint64_t BranchImm = Value + Addend - FinalAddress;
    317 
    318     // "Check that -2^27 <= result < 2^27".
    319     assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
    320            static_cast<int64_t>(BranchImm) < (1LL << 27));
    321 
    322     // AArch64 code is emitted with .rela relocations. The data already in any
    323     // bits affected by the relocation on entry is garbage.
    324     *TargetPtr &= 0xfc000000U;
    325     // Immediate goes in bits 25:0 of B and BL.
    326     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
    327     break;
    328   }
    329   case ELF::R_AARCH64_MOVW_UABS_G3: {
    330     uint64_t Result = Value + Addend;
    331 
    332     // AArch64 code is emitted with .rela relocations. The data already in any
    333     // bits affected by the relocation on entry is garbage.
    334     *TargetPtr &= 0xffe0001fU;
    335     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    336     *TargetPtr |= Result >> (48 - 5);
    337     // Shift must be "lsl #48", in bits 22:21
    338     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
    339     break;
    340   }
    341   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
    342     uint64_t Result = Value + Addend;
    343 
    344 
    345     // AArch64 code is emitted with .rela relocations. The data already in any
    346     // bits affected by the relocation on entry is garbage.
    347     *TargetPtr &= 0xffe0001fU;
    348     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    349     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
    350     // Shift must be "lsl #32", in bits 22:21
    351     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
    352     break;
    353   }
    354   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
    355     uint64_t Result = Value + Addend;
    356 
    357     // AArch64 code is emitted with .rela relocations. The data already in any
    358     // bits affected by the relocation on entry is garbage.
    359     *TargetPtr &= 0xffe0001fU;
    360     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    361     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
    362     // Shift must be "lsl #16", in bits 22:2
    363     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
    364     break;
    365   }
    366   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
    367     uint64_t Result = Value + Addend;
    368 
    369     // AArch64 code is emitted with .rela relocations. The data already in any
    370     // bits affected by the relocation on entry is garbage.
    371     *TargetPtr &= 0xffe0001fU;
    372     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    373     *TargetPtr |= ((Result & 0xffffU) << 5);
    374     // Shift must be "lsl #0", in bits 22:21.
    375     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
    376     break;
    377   }
    378   }
    379 }
    380 
    381 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
    382                                           uint64_t Offset,
    383                                           uint32_t Value,
    384                                           uint32_t Type,
    385                                           int32_t Addend) {
    386   // TODO: Add Thumb relocations.
    387   uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
    388                                                       Offset);
    389   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
    390   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
    391   Value += Addend;
    392 
    393   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
    394                << Section.Address + Offset
    395                << " FinalAddress: " << format("%p",FinalAddress)
    396                << " Value: " << format("%x",Value)
    397                << " Type: " << format("%x",Type)
    398                << " Addend: " << format("%x",Addend)
    399                << "\n");
    400 
    401   switch(Type) {
    402   default:
    403     llvm_unreachable("Not implemented relocation type!");
    404 
    405   // Write a 32bit value to relocation address, taking into account the
    406   // implicit addend encoded in the target.
    407   case ELF::R_ARM_TARGET1:
    408   case ELF::R_ARM_ABS32:
    409     *TargetPtr = *Placeholder + Value;
    410     break;
    411   // Write first 16 bit of 32 bit value to the mov instruction.
    412   // Last 4 bit should be shifted.
    413   case ELF::R_ARM_MOVW_ABS_NC:
    414     // We are not expecting any other addend in the relocation address.
    415     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
    416     // non-contiguous fields.
    417     assert((*Placeholder & 0x000F0FFF) == 0);
    418     Value = Value & 0xFFFF;
    419     *TargetPtr = *Placeholder | (Value & 0xFFF);
    420     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    421     break;
    422   // Write last 16 bit of 32 bit value to the mov instruction.
    423   // Last 4 bit should be shifted.
    424   case ELF::R_ARM_MOVT_ABS:
    425     // We are not expecting any other addend in the relocation address.
    426     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
    427     assert((*Placeholder & 0x000F0FFF) == 0);
    428 
    429     Value = (Value >> 16) & 0xFFFF;
    430     *TargetPtr = *Placeholder | (Value & 0xFFF);
    431     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    432     break;
    433   // Write 24 bit relative value to the branch instruction.
    434   case ELF::R_ARM_PC24 :    // Fall through.
    435   case ELF::R_ARM_CALL :    // Fall through.
    436   case ELF::R_ARM_JUMP24: {
    437     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    438     RelValue = (RelValue & 0x03FFFFFC) >> 2;
    439     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
    440     *TargetPtr &= 0xFF000000;
    441     *TargetPtr |= RelValue;
    442     break;
    443   }
    444   case ELF::R_ARM_PRIVATE_0:
    445     // This relocation is reserved by the ARM ELF ABI for internal use. We
    446     // appropriate it here to act as an R_ARM_ABS32 without any addend for use
    447     // in the stubs created during JIT (which can't put an addend into the
    448     // original object file).
    449     *TargetPtr = Value;
    450     break;
    451   }
    452 }
    453 
    454 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
    455                                            uint64_t Offset,
    456                                            uint32_t Value,
    457                                            uint32_t Type,
    458                                            int32_t Addend) {
    459   uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
    460                                                       Offset);
    461   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
    462   Value += Addend;
    463 
    464   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
    465                << Section.Address + Offset
    466                << " FinalAddress: "
    467                << format("%p",Section.LoadAddress + Offset)
    468                << " Value: " << format("%x",Value)
    469                << " Type: " << format("%x",Type)
    470                << " Addend: " << format("%x",Addend)
    471                << "\n");
    472 
    473   switch(Type) {
    474   default:
    475     llvm_unreachable("Not implemented relocation type!");
    476     break;
    477   case ELF::R_MIPS_32:
    478     *TargetPtr = Value + (*Placeholder);
    479     break;
    480   case ELF::R_MIPS_26:
    481     *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
    482     break;
    483   case ELF::R_MIPS_HI16:
    484     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    485     Value += ((*Placeholder) & 0x0000ffff) << 16;
    486     *TargetPtr = ((*Placeholder) & 0xffff0000) |
    487                  (((Value + 0x8000) >> 16) & 0xffff);
    488     break;
    489   case ELF::R_MIPS_LO16:
    490     Value += ((*Placeholder) & 0x0000ffff);
    491     *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
    492     break;
    493   case ELF::R_MIPS_UNUSED1:
    494     // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
    495     // are used for internal JIT purpose. These relocations are similar to
    496     // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
    497     // account.
    498     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
    499                  (((Value + 0x8000) >> 16) & 0xffff);
    500     break;
    501   case ELF::R_MIPS_UNUSED2:
    502     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
    503     break;
    504    }
    505 }
    506 
    507 // Return the .TOC. section address to R_PPC64_TOC relocations.
    508 uint64_t RuntimeDyldELF::findPPC64TOC() const {
    509   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
    510   // order. The TOC starts where the first of these sections starts.
    511   SectionList::const_iterator it = Sections.begin();
    512   SectionList::const_iterator ite = Sections.end();
    513   for (; it != ite; ++it) {
    514     if (it->Name == ".got" ||
    515         it->Name == ".toc" ||
    516         it->Name == ".tocbss" ||
    517         it->Name == ".plt")
    518       break;
    519   }
    520   if (it == ite) {
    521     // This may happen for
    522     // * references to TOC base base (sym@toc, .odp relocation) without
    523     // a .toc directive.
    524     // In this case just use the first section (which is usually
    525     // the .odp) since the code won't reference the .toc base
    526     // directly.
    527     it = Sections.begin();
    528   }
    529   assert (it != ite);
    530   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
    531   // thus permitting a full 64 Kbytes segment.
    532   return it->LoadAddress + 0x8000;
    533 }
    534 
    535 // Returns the sections and offset associated with the ODP entry referenced
    536 // by Symbol.
    537 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
    538                                          ObjSectionToIDMap &LocalSections,
    539                                          RelocationValueRef &Rel) {
    540   // Get the ELF symbol value (st_value) to compare with Relocation offset in
    541   // .opd entries
    542 
    543   error_code err;
    544   for (section_iterator si = Obj.begin_sections(),
    545      se = Obj.end_sections(); si != se; si.increment(err)) {
    546     section_iterator RelSecI = si->getRelocatedSection();
    547     if (RelSecI == Obj.end_sections())
    548       continue;
    549 
    550     StringRef RelSectionName;
    551     check(RelSecI->getName(RelSectionName));
    552     if (RelSectionName != ".opd")
    553       continue;
    554 
    555     for (relocation_iterator i = si->begin_relocations(),
    556          e = si->end_relocations(); i != e;) {
    557       check(err);
    558 
    559       // The R_PPC64_ADDR64 relocation indicates the first field
    560       // of a .opd entry
    561       uint64_t TypeFunc;
    562       check(i->getType(TypeFunc));
    563       if (TypeFunc != ELF::R_PPC64_ADDR64) {
    564         i.increment(err);
    565         continue;
    566       }
    567 
    568       uint64_t TargetSymbolOffset;
    569       symbol_iterator TargetSymbol = i->getSymbol();
    570       check(i->getOffset(TargetSymbolOffset));
    571       int64_t Addend;
    572       check(getELFRelocationAddend(*i, Addend));
    573 
    574       i = i.increment(err);
    575       if (i == e)
    576         break;
    577       check(err);
    578 
    579       // Just check if following relocation is a R_PPC64_TOC
    580       uint64_t TypeTOC;
    581       check(i->getType(TypeTOC));
    582       if (TypeTOC != ELF::R_PPC64_TOC)
    583         continue;
    584 
    585       // Finally compares the Symbol value and the target symbol offset
    586       // to check if this .opd entry refers to the symbol the relocation
    587       // points to.
    588       if (Rel.Addend != (intptr_t)TargetSymbolOffset)
    589         continue;
    590 
    591       section_iterator tsi(Obj.end_sections());
    592       check(TargetSymbol->getSection(tsi));
    593       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
    594       Rel.Addend = (intptr_t)Addend;
    595       return;
    596     }
    597   }
    598   llvm_unreachable("Attempting to get address of ODP entry!");
    599 }
    600 
    601 // Relocation masks following the #lo(value), #hi(value), #higher(value),
    602 // and #highest(value) macros defined in section 4.5.1. Relocation Types
    603 // in PPC-elf64abi document.
    604 //
    605 static inline
    606 uint16_t applyPPClo (uint64_t value)
    607 {
    608   return value & 0xffff;
    609 }
    610 
    611 static inline
    612 uint16_t applyPPChi (uint64_t value)
    613 {
    614   return (value >> 16) & 0xffff;
    615 }
    616 
    617 static inline
    618 uint16_t applyPPChigher (uint64_t value)
    619 {
    620   return (value >> 32) & 0xffff;
    621 }
    622 
    623 static inline
    624 uint16_t applyPPChighest (uint64_t value)
    625 {
    626   return (value >> 48) & 0xffff;
    627 }
    628 
    629 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
    630                                             uint64_t Offset,
    631                                             uint64_t Value,
    632                                             uint32_t Type,
    633                                             int64_t Addend) {
    634   uint8_t* LocalAddress = Section.Address + Offset;
    635   switch (Type) {
    636   default:
    637     llvm_unreachable("Relocation type not implemented yet!");
    638   break;
    639   case ELF::R_PPC64_ADDR16_LO :
    640     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
    641     break;
    642   case ELF::R_PPC64_ADDR16_HI :
    643     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
    644     break;
    645   case ELF::R_PPC64_ADDR16_HIGHER :
    646     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
    647     break;
    648   case ELF::R_PPC64_ADDR16_HIGHEST :
    649     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
    650     break;
    651   case ELF::R_PPC64_ADDR14 : {
    652     assert(((Value + Addend) & 3) == 0);
    653     // Preserve the AA/LK bits in the branch instruction
    654     uint8_t aalk = *(LocalAddress+3);
    655     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
    656   } break;
    657   case ELF::R_PPC64_ADDR32 : {
    658     int32_t Result = static_cast<int32_t>(Value + Addend);
    659     if (SignExtend32<32>(Result) != Result)
    660       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
    661     writeInt32BE(LocalAddress, Result);
    662   } break;
    663   case ELF::R_PPC64_REL24 : {
    664     uint64_t FinalAddress = (Section.LoadAddress + Offset);
    665     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    666     if (SignExtend32<24>(delta) != delta)
    667       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    668     // Generates a 'bl <address>' instruction
    669     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
    670   } break;
    671   case ELF::R_PPC64_REL32 : {
    672     uint64_t FinalAddress = (Section.LoadAddress + Offset);
    673     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    674     if (SignExtend32<32>(delta) != delta)
    675       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
    676     writeInt32BE(LocalAddress, delta);
    677   } break;
    678   case ELF::R_PPC64_REL64: {
    679     uint64_t FinalAddress = (Section.LoadAddress + Offset);
    680     uint64_t Delta = Value - FinalAddress + Addend;
    681     writeInt64BE(LocalAddress, Delta);
    682   } break;
    683   case ELF::R_PPC64_ADDR64 :
    684     writeInt64BE(LocalAddress, Value + Addend);
    685     break;
    686   case ELF::R_PPC64_TOC :
    687     writeInt64BE(LocalAddress, findPPC64TOC());
    688     break;
    689   case ELF::R_PPC64_TOC16 : {
    690     uint64_t TOCStart = findPPC64TOC();
    691     Value = applyPPClo((Value + Addend) - TOCStart);
    692     writeInt16BE(LocalAddress, applyPPClo(Value));
    693   } break;
    694   case ELF::R_PPC64_TOC16_DS : {
    695     uint64_t TOCStart = findPPC64TOC();
    696     Value = ((Value + Addend) - TOCStart);
    697     writeInt16BE(LocalAddress, applyPPClo(Value));
    698   } break;
    699   }
    700 }
    701 
    702 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
    703                                               uint64_t Offset,
    704                                               uint64_t Value,
    705                                               uint32_t Type,
    706                                               int64_t Addend) {
    707   uint8_t *LocalAddress = Section.Address + Offset;
    708   switch (Type) {
    709   default:
    710     llvm_unreachable("Relocation type not implemented yet!");
    711     break;
    712   case ELF::R_390_PC16DBL:
    713   case ELF::R_390_PLT16DBL: {
    714     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    715     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
    716     writeInt16BE(LocalAddress, Delta / 2);
    717     break;
    718   }
    719   case ELF::R_390_PC32DBL:
    720   case ELF::R_390_PLT32DBL: {
    721     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    722     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
    723     writeInt32BE(LocalAddress, Delta / 2);
    724     break;
    725   }
    726   case ELF::R_390_PC32: {
    727     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    728     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
    729     writeInt32BE(LocalAddress, Delta);
    730     break;
    731   }
    732   case ELF::R_390_64:
    733     writeInt64BE(LocalAddress, Value + Addend);
    734     break;
    735   }
    736 }
    737 
    738 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
    739 				       uint64_t Value) {
    740   const SectionEntry &Section = Sections[RE.SectionID];
    741   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend);
    742 }
    743 
    744 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
    745                                        uint64_t Offset,
    746                                        uint64_t Value,
    747                                        uint32_t Type,
    748                                        int64_t Addend) {
    749   switch (Arch) {
    750   case Triple::x86_64:
    751     resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
    752     break;
    753   case Triple::x86:
    754     resolveX86Relocation(Section, Offset,
    755                          (uint32_t)(Value & 0xffffffffL), Type,
    756                          (uint32_t)(Addend & 0xffffffffL));
    757     break;
    758   case Triple::aarch64:
    759     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
    760     break;
    761   case Triple::arm:    // Fall through.
    762   case Triple::thumb:
    763     resolveARMRelocation(Section, Offset,
    764                          (uint32_t)(Value & 0xffffffffL), Type,
    765                          (uint32_t)(Addend & 0xffffffffL));
    766     break;
    767   case Triple::mips:    // Fall through.
    768   case Triple::mipsel:
    769     resolveMIPSRelocation(Section, Offset,
    770                           (uint32_t)(Value & 0xffffffffL), Type,
    771                           (uint32_t)(Addend & 0xffffffffL));
    772     break;
    773   case Triple::ppc64:   // Fall through.
    774   case Triple::ppc64le:
    775     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
    776     break;
    777   case Triple::systemz:
    778     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
    779     break;
    780   default: llvm_unreachable("Unsupported CPU type!");
    781   }
    782 }
    783 
    784 void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
    785                                           RelocationRef RelI,
    786                                           ObjectImage &Obj,
    787                                           ObjSectionToIDMap &ObjSectionToID,
    788                                           const SymbolTableMap &Symbols,
    789                                           StubMap &Stubs) {
    790   uint64_t RelType;
    791   Check(RelI.getType(RelType));
    792   int64_t Addend;
    793   Check(getELFRelocationAddend(RelI, Addend));
    794   symbol_iterator Symbol = RelI.getSymbol();
    795 
    796   // Obtain the symbol name which is referenced in the relocation
    797   StringRef TargetName;
    798   if (Symbol != Obj.end_symbols())
    799     Symbol->getName(TargetName);
    800   DEBUG(dbgs() << "\t\tRelType: " << RelType
    801                << " Addend: " << Addend
    802                << " TargetName: " << TargetName
    803                << "\n");
    804   RelocationValueRef Value;
    805   // First search for the symbol in the local symbol table
    806   SymbolTableMap::const_iterator lsi = Symbols.end();
    807   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
    808   if (Symbol != Obj.end_symbols()) {
    809     lsi = Symbols.find(TargetName.data());
    810     Symbol->getType(SymType);
    811   }
    812   if (lsi != Symbols.end()) {
    813     Value.SectionID = lsi->second.first;
    814     Value.Addend = lsi->second.second + Addend;
    815   } else {
    816     // Search for the symbol in the global symbol table
    817     SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
    818     if (Symbol != Obj.end_symbols())
    819       gsi = GlobalSymbolTable.find(TargetName.data());
    820     if (gsi != GlobalSymbolTable.end()) {
    821       Value.SectionID = gsi->second.first;
    822       Value.Addend = gsi->second.second + Addend;
    823     } else {
    824       switch (SymType) {
    825         case SymbolRef::ST_Debug: {
    826           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
    827           // and can be changed by another developers. Maybe best way is add
    828           // a new symbol type ST_Section to SymbolRef and use it.
    829           section_iterator si(Obj.end_sections());
    830           Symbol->getSection(si);
    831           if (si == Obj.end_sections())
    832             llvm_unreachable("Symbol section not found, bad object file format!");
    833           DEBUG(dbgs() << "\t\tThis is section symbol\n");
    834           // Default to 'true' in case isText fails (though it never does).
    835           bool isCode = true;
    836           si->isText(isCode);
    837           Value.SectionID = findOrEmitSection(Obj,
    838                                               (*si),
    839                                               isCode,
    840                                               ObjSectionToID);
    841           Value.Addend = Addend;
    842           break;
    843         }
    844         case SymbolRef::ST_Unknown: {
    845           Value.SymbolName = TargetName.data();
    846           Value.Addend = Addend;
    847           break;
    848         }
    849         default:
    850           llvm_unreachable("Unresolved symbol type!");
    851           break;
    852       }
    853     }
    854   }
    855   uint64_t Offset;
    856   Check(RelI.getOffset(Offset));
    857 
    858   DEBUG(dbgs() << "\t\tSectionID: " << SectionID
    859                << " Offset: " << Offset
    860                << "\n");
    861   if (Arch == Triple::aarch64 &&
    862       (RelType == ELF::R_AARCH64_CALL26 ||
    863        RelType == ELF::R_AARCH64_JUMP26)) {
    864     // This is an AArch64 branch relocation, need to use a stub function.
    865     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
    866     SectionEntry &Section = Sections[SectionID];
    867 
    868     // Look for an existing stub.
    869     StubMap::const_iterator i = Stubs.find(Value);
    870     if (i != Stubs.end()) {
    871         resolveRelocation(Section, Offset,
    872                           (uint64_t)Section.Address + i->second, RelType, 0);
    873       DEBUG(dbgs() << " Stub function found\n");
    874     } else {
    875       // Create a new stub function.
    876       DEBUG(dbgs() << " Create a new stub function\n");
    877       Stubs[Value] = Section.StubOffset;
    878       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
    879                                                    Section.StubOffset);
    880 
    881       RelocationEntry REmovz_g3(SectionID,
    882                                 StubTargetAddr - Section.Address,
    883                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
    884       RelocationEntry REmovk_g2(SectionID,
    885                                 StubTargetAddr - Section.Address + 4,
    886                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
    887       RelocationEntry REmovk_g1(SectionID,
    888                                 StubTargetAddr - Section.Address + 8,
    889                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
    890       RelocationEntry REmovk_g0(SectionID,
    891                                 StubTargetAddr - Section.Address + 12,
    892                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
    893 
    894       if (Value.SymbolName) {
    895         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
    896         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
    897         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
    898         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
    899       } else {
    900         addRelocationForSection(REmovz_g3, Value.SectionID);
    901         addRelocationForSection(REmovk_g2, Value.SectionID);
    902         addRelocationForSection(REmovk_g1, Value.SectionID);
    903         addRelocationForSection(REmovk_g0, Value.SectionID);
    904       }
    905       resolveRelocation(Section, Offset,
    906                         (uint64_t)Section.Address + Section.StubOffset,
    907                         RelType, 0);
    908       Section.StubOffset += getMaxStubSize();
    909     }
    910   } else if (Arch == Triple::arm &&
    911       (RelType == ELF::R_ARM_PC24 ||
    912        RelType == ELF::R_ARM_CALL ||
    913        RelType == ELF::R_ARM_JUMP24)) {
    914     // This is an ARM branch relocation, need to use a stub function.
    915     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
    916     SectionEntry &Section = Sections[SectionID];
    917 
    918     // Look for an existing stub.
    919     StubMap::const_iterator i = Stubs.find(Value);
    920     if (i != Stubs.end()) {
    921         resolveRelocation(Section, Offset,
    922                           (uint64_t)Section.Address + i->second, RelType, 0);
    923       DEBUG(dbgs() << " Stub function found\n");
    924     } else {
    925       // Create a new stub function.
    926       DEBUG(dbgs() << " Create a new stub function\n");
    927       Stubs[Value] = Section.StubOffset;
    928       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
    929                                                    Section.StubOffset);
    930       RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
    931                          ELF::R_ARM_PRIVATE_0, Value.Addend);
    932       if (Value.SymbolName)
    933         addRelocationForSymbol(RE, Value.SymbolName);
    934       else
    935         addRelocationForSection(RE, Value.SectionID);
    936 
    937       resolveRelocation(Section, Offset,
    938                         (uint64_t)Section.Address + Section.StubOffset,
    939                         RelType, 0);
    940       Section.StubOffset += getMaxStubSize();
    941     }
    942   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
    943              RelType == ELF::R_MIPS_26) {
    944     // This is an Mips branch relocation, need to use a stub function.
    945     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    946     SectionEntry &Section = Sections[SectionID];
    947     uint8_t *Target = Section.Address + Offset;
    948     uint32_t *TargetAddress = (uint32_t *)Target;
    949 
    950     // Extract the addend from the instruction.
    951     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
    952 
    953     Value.Addend += Addend;
    954 
    955     //  Look up for existing stub.
    956     StubMap::const_iterator i = Stubs.find(Value);
    957     if (i != Stubs.end()) {
    958       resolveRelocation(Section, Offset,
    959                         (uint64_t)Section.Address + i->second, RelType, 0);
    960       DEBUG(dbgs() << " Stub function found\n");
    961     } else {
    962       // Create a new stub function.
    963       DEBUG(dbgs() << " Create a new stub function\n");
    964       Stubs[Value] = Section.StubOffset;
    965       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
    966                                                    Section.StubOffset);
    967 
    968       // Creating Hi and Lo relocations for the filled stub instructions.
    969       RelocationEntry REHi(SectionID,
    970                            StubTargetAddr - Section.Address,
    971                            ELF::R_MIPS_UNUSED1, Value.Addend);
    972       RelocationEntry RELo(SectionID,
    973                            StubTargetAddr - Section.Address + 4,
    974                            ELF::R_MIPS_UNUSED2, Value.Addend);
    975 
    976       if (Value.SymbolName) {
    977         addRelocationForSymbol(REHi, Value.SymbolName);
    978         addRelocationForSymbol(RELo, Value.SymbolName);
    979       } else {
    980         addRelocationForSection(REHi, Value.SectionID);
    981         addRelocationForSection(RELo, Value.SectionID);
    982       }
    983 
    984       resolveRelocation(Section, Offset,
    985                         (uint64_t)Section.Address + Section.StubOffset,
    986                         RelType, 0);
    987       Section.StubOffset += getMaxStubSize();
    988     }
    989   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    990     if (RelType == ELF::R_PPC64_REL24) {
    991       // A PPC branch relocation will need a stub function if the target is
    992       // an external symbol (Symbol::ST_Unknown) or if the target address
    993       // is not within the signed 24-bits branch address.
    994       SectionEntry &Section = Sections[SectionID];
    995       uint8_t *Target = Section.Address + Offset;
    996       bool RangeOverflow = false;
    997       if (SymType != SymbolRef::ST_Unknown) {
    998         // A function call may points to the .opd entry, so the final symbol value
    999         // in calculated based in the relocation values in .opd section.
   1000         findOPDEntrySection(Obj, ObjSectionToID, Value);
   1001         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
   1002         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
   1003         // If it is within 24-bits branch range, just set the branch target
   1004         if (SignExtend32<24>(delta) == delta) {
   1005           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1006           if (Value.SymbolName)
   1007             addRelocationForSymbol(RE, Value.SymbolName);
   1008           else
   1009             addRelocationForSection(RE, Value.SectionID);
   1010         } else {
   1011           RangeOverflow = true;
   1012         }
   1013       }
   1014       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
   1015         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
   1016         // larger than 24-bits.
   1017         StubMap::const_iterator i = Stubs.find(Value);
   1018         if (i != Stubs.end()) {
   1019           // Symbol function stub already created, just relocate to it
   1020           resolveRelocation(Section, Offset,
   1021                             (uint64_t)Section.Address + i->second, RelType, 0);
   1022           DEBUG(dbgs() << " Stub function found\n");
   1023         } else {
   1024           // Create a new stub function.
   1025           DEBUG(dbgs() << " Create a new stub function\n");
   1026           Stubs[Value] = Section.StubOffset;
   1027           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
   1028                                                        Section.StubOffset);
   1029           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
   1030                              ELF::R_PPC64_ADDR64, Value.Addend);
   1031 
   1032           // Generates the 64-bits address loads as exemplified in section
   1033           // 4.5.1 in PPC64 ELF ABI.
   1034           RelocationEntry REhst(SectionID,
   1035                                 StubTargetAddr - Section.Address + 2,
   1036                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
   1037           RelocationEntry REhr(SectionID,
   1038                                StubTargetAddr - Section.Address + 6,
   1039                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
   1040           RelocationEntry REh(SectionID,
   1041                               StubTargetAddr - Section.Address + 14,
   1042                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
   1043           RelocationEntry REl(SectionID,
   1044                               StubTargetAddr - Section.Address + 18,
   1045                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
   1046 
   1047           if (Value.SymbolName) {
   1048             addRelocationForSymbol(REhst, Value.SymbolName);
   1049             addRelocationForSymbol(REhr,  Value.SymbolName);
   1050             addRelocationForSymbol(REh,   Value.SymbolName);
   1051             addRelocationForSymbol(REl,   Value.SymbolName);
   1052           } else {
   1053             addRelocationForSection(REhst, Value.SectionID);
   1054             addRelocationForSection(REhr,  Value.SectionID);
   1055             addRelocationForSection(REh,   Value.SectionID);
   1056             addRelocationForSection(REl,   Value.SectionID);
   1057           }
   1058 
   1059           resolveRelocation(Section, Offset,
   1060                             (uint64_t)Section.Address + Section.StubOffset,
   1061                             RelType, 0);
   1062           if (SymType == SymbolRef::ST_Unknown)
   1063             // Restore the TOC for external calls
   1064             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
   1065           Section.StubOffset += getMaxStubSize();
   1066         }
   1067       }
   1068     } else {
   1069       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1070       // Extra check to avoid relocation againt empty symbols (usually
   1071       // the R_PPC64_TOC).
   1072       if (Value.SymbolName && !TargetName.empty())
   1073         addRelocationForSymbol(RE, Value.SymbolName);
   1074       else
   1075         addRelocationForSection(RE, Value.SectionID);
   1076     }
   1077   } else if (Arch == Triple::systemz &&
   1078              (RelType == ELF::R_390_PLT32DBL ||
   1079               RelType == ELF::R_390_GOTENT)) {
   1080     // Create function stubs for both PLT and GOT references, regardless of
   1081     // whether the GOT reference is to data or code.  The stub contains the
   1082     // full address of the symbol, as needed by GOT references, and the
   1083     // executable part only adds an overhead of 8 bytes.
   1084     //
   1085     // We could try to conserve space by allocating the code and data
   1086     // parts of the stub separately.  However, as things stand, we allocate
   1087     // a stub for every relocation, so using a GOT in JIT code should be
   1088     // no less space efficient than using an explicit constant pool.
   1089     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
   1090     SectionEntry &Section = Sections[SectionID];
   1091 
   1092     // Look for an existing stub.
   1093     StubMap::const_iterator i = Stubs.find(Value);
   1094     uintptr_t StubAddress;
   1095     if (i != Stubs.end()) {
   1096       StubAddress = uintptr_t(Section.Address) + i->second;
   1097       DEBUG(dbgs() << " Stub function found\n");
   1098     } else {
   1099       // Create a new stub function.
   1100       DEBUG(dbgs() << " Create a new stub function\n");
   1101 
   1102       uintptr_t BaseAddress = uintptr_t(Section.Address);
   1103       uintptr_t StubAlignment = getStubAlignment();
   1104       StubAddress = (BaseAddress + Section.StubOffset +
   1105                      StubAlignment - 1) & -StubAlignment;
   1106       unsigned StubOffset = StubAddress - BaseAddress;
   1107 
   1108       Stubs[Value] = StubOffset;
   1109       createStubFunction((uint8_t *)StubAddress);
   1110       RelocationEntry RE(SectionID, StubOffset + 8,
   1111                          ELF::R_390_64, Value.Addend - Addend);
   1112       if (Value.SymbolName)
   1113         addRelocationForSymbol(RE, Value.SymbolName);
   1114       else
   1115         addRelocationForSection(RE, Value.SectionID);
   1116       Section.StubOffset = StubOffset + getMaxStubSize();
   1117     }
   1118 
   1119     if (RelType == ELF::R_390_GOTENT)
   1120       resolveRelocation(Section, Offset, StubAddress + 8,
   1121                         ELF::R_390_PC32DBL, Addend);
   1122     else
   1123       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
   1124   } else {
   1125     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1126     if (Value.SymbolName)
   1127       addRelocationForSymbol(RE, Value.SymbolName);
   1128     else
   1129       addRelocationForSection(RE, Value.SectionID);
   1130   }
   1131 }
   1132 
   1133 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
   1134   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
   1135     return false;
   1136   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
   1137 }
   1138 } // namespace llvm
   1139