Home | History | Annotate | Download | only in src
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_TYPES_H_
     29 #define V8_TYPES_H_
     30 
     31 #include "v8.h"
     32 
     33 #include "objects.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 
     39 // A simple type system for compiler-internal use. It is based entirely on
     40 // union types, and all subtyping hence amounts to set inclusion. Besides the
     41 // obvious primitive types and some predefined unions, the type language also
     42 // can express class types (a.k.a. specific maps) and singleton types (i.e.,
     43 // concrete constants).
     44 //
     45 // The following equations and inequations hold:
     46 //
     47 //   None <= T
     48 //   T <= Any
     49 //
     50 //   Oddball = Boolean \/ Null \/ Undefined
     51 //   Number = Signed32 \/ Unsigned32 \/ Double
     52 //   Smi <= Signed32
     53 //   Name = String \/ Symbol
     54 //   UniqueName = InternalizedString \/ Symbol
     55 //   InternalizedString < String
     56 //
     57 //   Allocated = Receiver \/ Number \/ Name
     58 //   Detectable = Allocated - Undetectable
     59 //   Undetectable < Object
     60 //   Receiver = Object \/ Proxy
     61 //   Array < Object
     62 //   Function < Object
     63 //   RegExp < Object
     64 //
     65 //   Class(map) < T   iff instance_type(map) < T
     66 //   Constant(x) < T  iff instance_type(map(x)) < T
     67 //
     68 // Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
     69 // change! (Its instance type cannot, however.)
     70 // TODO(rossberg): the latter is not currently true for proxies, because of fix,
     71 // but will hold once we implement direct proxies.
     72 //
     73 // There are two main functions for testing types:
     74 //
     75 //   T1->Is(T2)     -- tests whether T1 is included in T2 (i.e., T1 <= T2)
     76 //   T1->Maybe(T2)  -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
     77 //
     78 // Typically, the former is to be used to select representations (e.g., via
     79 // T->Is(Integer31())), and the to check whether a specific case needs handling
     80 // (e.g., via T->Maybe(Number())).
     81 //
     82 // There is no functionality to discover whether a type is a leaf in the
     83 // lattice. That is intentional. It should always be possible to refine the
     84 // lattice (e.g., splitting up number types further) without invalidating any
     85 // existing assumptions or tests.
     86 //
     87 // Consequently, do not use pointer equality for type tests, always use Is!
     88 //
     89 // Internally, all 'primitive' types, and their unions, are represented as
     90 // bitsets via smis. Class is a heap pointer to the respective map. Only
     91 // Constant's, or unions containing Class'es or Constant's, require allocation.
     92 // Note that the bitset representation is closed under both Union and Intersect.
     93 //
     94 // The type representation is heap-allocated, so cannot (currently) be used in
     95 // a concurrent compilation context.
     96 
     97 
     98 #define BITSET_TYPE_LIST(V)              \
     99   V(None,                0)              \
    100   V(Null,                1 << 0)         \
    101   V(Undefined,           1 << 1)         \
    102   V(Boolean,             1 << 2)         \
    103   V(Smi,                 1 << 3)         \
    104   V(OtherSigned32,       1 << 4)         \
    105   V(Unsigned32,          1 << 5)         \
    106   V(Double,              1 << 6)         \
    107   V(Symbol,              1 << 7)         \
    108   V(InternalizedString,  1 << 8)         \
    109   V(OtherString,         1 << 9)         \
    110   V(Undetectable,        1 << 10)        \
    111   V(Array,               1 << 11)        \
    112   V(Function,            1 << 12)        \
    113   V(RegExp,              1 << 13)        \
    114   V(OtherObject,         1 << 14)        \
    115   V(Proxy,               1 << 15)        \
    116   V(Internal,            1 << 16)        \
    117   \
    118   V(Oddball,         kBoolean | kNull | kUndefined)                 \
    119   V(Signed32,        kSmi | kOtherSigned32)                         \
    120   V(Number,          kSigned32 | kUnsigned32 | kDouble)             \
    121   V(String,          kInternalizedString | kOtherString)            \
    122   V(UniqueName,      kSymbol | kInternalizedString)                 \
    123   V(Name,            kSymbol | kString)                             \
    124   V(NumberOrString,  kNumber | kString)                             \
    125   V(Object,          kUndetectable | kArray | kFunction |           \
    126                      kRegExp | kOtherObject)                        \
    127   V(Receiver,        kObject | kProxy)                              \
    128   V(Allocated,       kDouble | kName | kReceiver)                   \
    129   V(Any,             kOddball | kNumber | kAllocated | kInternal)   \
    130   V(NonNumber,       kAny - kNumber)                                \
    131   V(Detectable,      kAllocated - kUndetectable)
    132 
    133 
    134 class Type : public Object {
    135  public:
    136   #define DEFINE_TYPE_CONSTRUCTOR(type, value)           \
    137     static Type* type() { return from_bitset(k##type); }
    138   BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
    139   #undef DEFINE_TYPE_CONSTRUCTOR
    140 
    141   static Type* Class(Handle<i::Map> map) { return from_handle(map); }
    142   static Type* Constant(Handle<i::HeapObject> value) {
    143     return Constant(value, value->GetIsolate());
    144   }
    145   static Type* Constant(Handle<i::Object> value, Isolate* isolate) {
    146     return from_handle(isolate->factory()->NewBox(value));
    147   }
    148 
    149   static Type* Union(Handle<Type> type1, Handle<Type> type2);
    150   static Type* Intersect(Handle<Type> type1, Handle<Type> type2);
    151   static Type* Optional(Handle<Type> type);  // type \/ Undefined
    152 
    153   static Type* Of(Handle<i::Object> value) {
    154     return from_bitset(LubBitset(*value));
    155   }
    156 
    157   bool Is(Type* that) { return this == that || SlowIs(that); }
    158   bool Is(Handle<Type> that) { return this->Is(*that); }
    159   bool Maybe(Type* that);
    160   bool Maybe(Handle<Type> that) { return this->Maybe(*that); }
    161 
    162   // State-dependent versions of Of and Is that consider subtyping between
    163   // a constant and its map class.
    164   static Type* OfCurrently(Handle<i::Object> value);
    165   bool IsCurrently(Type* that);
    166   bool IsCurrently(Handle<Type> that)  { return this->IsCurrently(*that); }
    167 
    168   bool IsClass() { return is_class(); }
    169   bool IsConstant() { return is_constant(); }
    170   Handle<i::Map> AsClass() { return as_class(); }
    171   Handle<i::Object> AsConstant() { return as_constant(); }
    172 
    173   int NumClasses();
    174   int NumConstants();
    175 
    176   template<class T>
    177   class Iterator {
    178    public:
    179     bool Done() const { return index_ < 0; }
    180     Handle<T> Current();
    181     void Advance();
    182 
    183    private:
    184     friend class Type;
    185 
    186     Iterator() : index_(-1) {}
    187     explicit Iterator(Handle<Type> type) : type_(type), index_(-1) {
    188       Advance();
    189     }
    190 
    191     inline bool matches(Handle<Type> type);
    192     inline Handle<Type> get_type();
    193 
    194     Handle<Type> type_;
    195     int index_;
    196   };
    197 
    198   Iterator<i::Map> Classes() {
    199     if (this->is_bitset()) return Iterator<i::Map>();
    200     return Iterator<i::Map>(this->handle());
    201   }
    202   Iterator<i::Object> Constants() {
    203     if (this->is_bitset()) return Iterator<i::Object>();
    204     return Iterator<i::Object>(this->handle());
    205   }
    206 
    207   static Type* cast(i::Object* object) {
    208     Type* t = static_cast<Type*>(object);
    209     ASSERT(t->is_bitset() || t->is_class() ||
    210            t->is_constant() || t->is_union());
    211     return t;
    212   }
    213 
    214 #ifdef OBJECT_PRINT
    215   void TypePrint();
    216   void TypePrint(FILE* out);
    217 #endif
    218 
    219  private:
    220   // A union is a fixed array containing types. Invariants:
    221   // - its length is at least 2
    222   // - at most one field is a bitset, and it must go into index 0
    223   // - no field is a union
    224   typedef FixedArray Unioned;
    225 
    226   enum {
    227     #define DECLARE_TYPE(type, value) k##type = (value),
    228     BITSET_TYPE_LIST(DECLARE_TYPE)
    229     #undef DECLARE_TYPE
    230     kUnusedEOL = 0
    231   };
    232 
    233   bool is_none() { return this == None(); }
    234   bool is_bitset() { return this->IsSmi(); }
    235   bool is_class() { return this->IsMap(); }
    236   bool is_constant() { return this->IsBox(); }
    237   bool is_union() { return this->IsFixedArray(); }
    238 
    239   bool SlowIs(Type* that);
    240 
    241   int as_bitset() { return Smi::cast(this)->value(); }
    242   Handle<i::Map> as_class() { return Handle<i::Map>::cast(handle()); }
    243   Handle<i::Object> as_constant() {
    244     Handle<i::Box> box = Handle<i::Box>::cast(handle());
    245     return i::handle(box->value(), box->GetIsolate());
    246   }
    247   Handle<Unioned> as_union() { return Handle<Unioned>::cast(handle()); }
    248 
    249   Handle<Type> handle() { return handle_via_isolate_of(this); }
    250   Handle<Type> handle_via_isolate_of(Type* type) {
    251     ASSERT(type->IsHeapObject());
    252     return i::handle(this, i::HeapObject::cast(type)->GetIsolate());
    253   }
    254 
    255   static Type* from_bitset(int bitset) {
    256     return static_cast<Type*>(i::Object::cast(i::Smi::FromInt(bitset)));
    257   }
    258   static Type* from_handle(Handle<i::HeapObject> handle) {
    259     return static_cast<Type*>(i::Object::cast(*handle));
    260   }
    261 
    262   static Handle<Type> union_get(Handle<Unioned> unioned, int i) {
    263     Type* type = static_cast<Type*>(unioned->get(i));
    264     ASSERT(!type->is_union());
    265     return type->handle_via_isolate_of(from_handle(unioned));
    266   }
    267 
    268   int LubBitset();  // least upper bound that's a bitset
    269   int GlbBitset();  // greatest lower bound that's a bitset
    270 
    271   static int LubBitset(i::Object* value);
    272   static int LubBitset(i::Map* map);
    273 
    274   bool InUnion(Handle<Unioned> unioned, int current_size);
    275   int ExtendUnion(Handle<Unioned> unioned, int current_size);
    276   int ExtendIntersection(
    277       Handle<Unioned> unioned, Handle<Type> type, int current_size);
    278 
    279   static const char* bitset_name(int bitset);
    280 };
    281 
    282 
    283 // A simple struct to represent a pair of lower/upper type bounds.
    284 struct Bounds {
    285   Handle<Type> lower;
    286   Handle<Type> upper;
    287 
    288   Bounds() {}
    289   Bounds(Handle<Type> l, Handle<Type> u) : lower(l), upper(u) {
    290     ASSERT(lower->Is(upper));
    291   }
    292   Bounds(Type* l, Type* u, Isolate* isl) : lower(l, isl), upper(u, isl) {
    293     ASSERT(lower->Is(upper));
    294   }
    295   explicit Bounds(Handle<Type> t) : lower(t), upper(t) {
    296     ASSERT(lower->Is(upper));
    297   }
    298   Bounds(Type* t, Isolate* isl) : lower(t, isl), upper(t, isl) {
    299     ASSERT(lower->Is(upper));
    300   }
    301 
    302   // Unrestricted bounds.
    303   static Bounds Unbounded(Isolate* isl) {
    304     return Bounds(Type::None(), Type::Any(), isl);
    305   }
    306 
    307   // Meet: both b1 and b2 are known to hold.
    308   static Bounds Both(Bounds b1, Bounds b2, Isolate* isl) {
    309     Handle<Type> lower(Type::Union(b1.lower, b2.lower), isl);
    310     Handle<Type> upper(Type::Intersect(b1.upper, b2.upper), isl);
    311     // Lower bounds are considered approximate, correct as necessary.
    312     lower = handle(Type::Intersect(lower, upper), isl);
    313     return Bounds(lower, upper);
    314   }
    315 
    316   // Join: either b1 or b2 is known to hold.
    317   static Bounds Either(Bounds b1, Bounds b2, Isolate* isl) {
    318     return Bounds(
    319         handle(Type::Intersect(b1.lower, b2.lower), isl),
    320         handle(Type::Union(b1.upper, b2.upper), isl));
    321   }
    322 
    323   static Bounds NarrowLower(Bounds b, Handle<Type> t, Isolate* isl) {
    324     // Lower bounds are considered approximate, correct as necessary.
    325     t = handle(Type::Intersect(t, b.upper), isl);
    326     return Bounds(handle(Type::Union(b.lower, t), isl), b.upper);
    327   }
    328   static Bounds NarrowUpper(Bounds b, Handle<Type> t, Isolate* isl) {
    329     return Bounds(
    330         handle(Type::Intersect(b.lower, t), isl),
    331         handle(Type::Intersect(b.upper, t), isl));
    332   }
    333 };
    334 
    335 } }  // namespace v8::internal
    336 
    337 #endif  // V8_TYPES_H_
    338