Home | History | Annotate | Download | only in Analysis
      1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
     11 // conditions), based off of an annotation system.
     12 //
     13 // See http://clang.llvm.org/docs/LanguageExtensions.html#thread-safety-annotation-checking
     14 // for more information.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "clang/Analysis/Analyses/ThreadSafety.h"
     19 #include "clang/AST/Attr.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/StmtCXX.h"
     23 #include "clang/AST/StmtVisitor.h"
     24 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     25 #include "clang/Analysis/AnalysisContext.h"
     26 #include "clang/Analysis/CFG.h"
     27 #include "clang/Analysis/CFGStmtMap.h"
     28 #include "clang/Basic/OperatorKinds.h"
     29 #include "clang/Basic/SourceLocation.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/ADT/FoldingSet.h"
     33 #include "llvm/ADT/ImmutableMap.h"
     34 #include "llvm/ADT/PostOrderIterator.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/StringRef.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 #include <utility>
     40 #include <vector>
     41 
     42 using namespace clang;
     43 using namespace thread_safety;
     44 
     45 // Key method definition
     46 ThreadSafetyHandler::~ThreadSafetyHandler() {}
     47 
     48 namespace {
     49 
     50 /// SExpr implements a simple expression language that is used to store,
     51 /// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
     52 /// does not capture surface syntax, and it does not distinguish between
     53 /// C++ concepts, like pointers and references, that have no real semantic
     54 /// differences.  This simplicity allows SExprs to be meaningfully compared,
     55 /// e.g.
     56 ///        (x)          =  x
     57 ///        (*this).foo  =  this->foo
     58 ///        *&a          =  a
     59 ///
     60 /// Thread-safety analysis works by comparing lock expressions.  Within the
     61 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
     62 /// a particular mutex object at run-time.  Subsequent occurrences of the same
     63 /// expression (where "same" means syntactic equality) will refer to the same
     64 /// run-time object if three conditions hold:
     65 /// (1) Local variables in the expression, such as "x" have not changed.
     66 /// (2) Values on the heap that affect the expression have not changed.
     67 /// (3) The expression involves only pure function calls.
     68 ///
     69 /// The current implementation assumes, but does not verify, that multiple uses
     70 /// of the same lock expression satisfies these criteria.
     71 class SExpr {
     72 private:
     73   enum ExprOp {
     74     EOP_Nop,       ///< No-op
     75     EOP_Wildcard,  ///< Matches anything.
     76     EOP_Universal, ///< Universal lock.
     77     EOP_This,      ///< This keyword.
     78     EOP_NVar,      ///< Named variable.
     79     EOP_LVar,      ///< Local variable.
     80     EOP_Dot,       ///< Field access
     81     EOP_Call,      ///< Function call
     82     EOP_MCall,     ///< Method call
     83     EOP_Index,     ///< Array index
     84     EOP_Unary,     ///< Unary operation
     85     EOP_Binary,    ///< Binary operation
     86     EOP_Unknown    ///< Catchall for everything else
     87   };
     88 
     89 
     90   class SExprNode {
     91    private:
     92     unsigned char  Op;     ///< Opcode of the root node
     93     unsigned char  Flags;  ///< Additional opcode-specific data
     94     unsigned short Sz;     ///< Number of child nodes
     95     const void*    Data;   ///< Additional opcode-specific data
     96 
     97    public:
     98     SExprNode(ExprOp O, unsigned F, const void* D)
     99       : Op(static_cast<unsigned char>(O)),
    100         Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
    101     { }
    102 
    103     unsigned size() const        { return Sz; }
    104     void     setSize(unsigned S) { Sz = S;    }
    105 
    106     ExprOp   kind() const { return static_cast<ExprOp>(Op); }
    107 
    108     const NamedDecl* getNamedDecl() const {
    109       assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
    110       return reinterpret_cast<const NamedDecl*>(Data);
    111     }
    112 
    113     const NamedDecl* getFunctionDecl() const {
    114       assert(Op == EOP_Call || Op == EOP_MCall);
    115       return reinterpret_cast<const NamedDecl*>(Data);
    116     }
    117 
    118     bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
    119     void setArrow(bool A) { Flags = A ? 1 : 0; }
    120 
    121     unsigned arity() const {
    122       switch (Op) {
    123         case EOP_Nop:       return 0;
    124         case EOP_Wildcard:  return 0;
    125         case EOP_Universal: return 0;
    126         case EOP_NVar:      return 0;
    127         case EOP_LVar:      return 0;
    128         case EOP_This:      return 0;
    129         case EOP_Dot:       return 1;
    130         case EOP_Call:      return Flags+1;  // First arg is function.
    131         case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
    132         case EOP_Index:     return 2;
    133         case EOP_Unary:     return 1;
    134         case EOP_Binary:    return 2;
    135         case EOP_Unknown:   return Flags;
    136       }
    137       return 0;
    138     }
    139 
    140     bool operator==(const SExprNode& Other) const {
    141       // Ignore flags and size -- they don't matter.
    142       return (Op == Other.Op &&
    143               Data == Other.Data);
    144     }
    145 
    146     bool operator!=(const SExprNode& Other) const {
    147       return !(*this == Other);
    148     }
    149 
    150     bool matches(const SExprNode& Other) const {
    151       return (*this == Other) ||
    152              (Op == EOP_Wildcard) ||
    153              (Other.Op == EOP_Wildcard);
    154     }
    155   };
    156 
    157 
    158   /// \brief Encapsulates the lexical context of a function call.  The lexical
    159   /// context includes the arguments to the call, including the implicit object
    160   /// argument.  When an attribute containing a mutex expression is attached to
    161   /// a method, the expression may refer to formal parameters of the method.
    162   /// Actual arguments must be substituted for formal parameters to derive
    163   /// the appropriate mutex expression in the lexical context where the function
    164   /// is called.  PrevCtx holds the context in which the arguments themselves
    165   /// should be evaluated; multiple calling contexts can be chained together
    166   /// by the lock_returned attribute.
    167   struct CallingContext {
    168     const NamedDecl*   AttrDecl;   // The decl to which the attribute is attached.
    169     const Expr*        SelfArg;    // Implicit object argument -- e.g. 'this'
    170     bool               SelfArrow;  // is Self referred to with -> or .?
    171     unsigned           NumArgs;    // Number of funArgs
    172     const Expr* const* FunArgs;    // Function arguments
    173     CallingContext*    PrevCtx;    // The previous context; or 0 if none.
    174 
    175     CallingContext(const NamedDecl *D = 0, const Expr *S = 0,
    176                    unsigned N = 0, const Expr* const *A = 0,
    177                    CallingContext *P = 0)
    178       : AttrDecl(D), SelfArg(S), SelfArrow(false),
    179         NumArgs(N), FunArgs(A), PrevCtx(P)
    180     { }
    181   };
    182 
    183   typedef SmallVector<SExprNode, 4> NodeVector;
    184 
    185 private:
    186   // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
    187   // the list to be traversed as a tree.
    188   NodeVector NodeVec;
    189 
    190 private:
    191   unsigned makeNop() {
    192     NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
    193     return NodeVec.size()-1;
    194   }
    195 
    196   unsigned makeWildcard() {
    197     NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
    198     return NodeVec.size()-1;
    199   }
    200 
    201   unsigned makeUniversal() {
    202     NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
    203     return NodeVec.size()-1;
    204   }
    205 
    206   unsigned makeNamedVar(const NamedDecl *D) {
    207     NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
    208     return NodeVec.size()-1;
    209   }
    210 
    211   unsigned makeLocalVar(const NamedDecl *D) {
    212     NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
    213     return NodeVec.size()-1;
    214   }
    215 
    216   unsigned makeThis() {
    217     NodeVec.push_back(SExprNode(EOP_This, 0, 0));
    218     return NodeVec.size()-1;
    219   }
    220 
    221   unsigned makeDot(const NamedDecl *D, bool Arrow) {
    222     NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
    223     return NodeVec.size()-1;
    224   }
    225 
    226   unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
    227     NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
    228     return NodeVec.size()-1;
    229   }
    230 
    231   // Grab the very first declaration of virtual method D
    232   const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
    233     while (true) {
    234       D = D->getCanonicalDecl();
    235       CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
    236                                      E = D->end_overridden_methods();
    237       if (I == E)
    238         return D;  // Method does not override anything
    239       D = *I;      // FIXME: this does not work with multiple inheritance.
    240     }
    241     return 0;
    242   }
    243 
    244   unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
    245     NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
    246     return NodeVec.size()-1;
    247   }
    248 
    249   unsigned makeIndex() {
    250     NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
    251     return NodeVec.size()-1;
    252   }
    253 
    254   unsigned makeUnary() {
    255     NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
    256     return NodeVec.size()-1;
    257   }
    258 
    259   unsigned makeBinary() {
    260     NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
    261     return NodeVec.size()-1;
    262   }
    263 
    264   unsigned makeUnknown(unsigned Arity) {
    265     NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
    266     return NodeVec.size()-1;
    267   }
    268 
    269   /// Build an SExpr from the given C++ expression.
    270   /// Recursive function that terminates on DeclRefExpr.
    271   /// Note: this function merely creates a SExpr; it does not check to
    272   /// ensure that the original expression is a valid mutex expression.
    273   ///
    274   /// NDeref returns the number of Derefence and AddressOf operations
    275   /// preceeding the Expr; this is used to decide whether to pretty-print
    276   /// SExprs with . or ->.
    277   unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx,
    278                       int* NDeref = 0) {
    279     if (!Exp)
    280       return 0;
    281 
    282     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
    283       const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
    284       const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
    285       if (PV) {
    286         const FunctionDecl *FD =
    287           cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
    288         unsigned i = PV->getFunctionScopeIndex();
    289 
    290         if (CallCtx && CallCtx->FunArgs &&
    291             FD == CallCtx->AttrDecl->getCanonicalDecl()) {
    292           // Substitute call arguments for references to function parameters
    293           assert(i < CallCtx->NumArgs);
    294           return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
    295         }
    296         // Map the param back to the param of the original function declaration.
    297         makeNamedVar(FD->getParamDecl(i));
    298         return 1;
    299       }
    300       // Not a function parameter -- just store the reference.
    301       makeNamedVar(ND);
    302       return 1;
    303     } else if (isa<CXXThisExpr>(Exp)) {
    304       // Substitute parent for 'this'
    305       if (CallCtx && CallCtx->SelfArg) {
    306         if (!CallCtx->SelfArrow && NDeref)
    307           // 'this' is a pointer, but self is not, so need to take address.
    308           --(*NDeref);
    309         return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
    310       }
    311       else {
    312         makeThis();
    313         return 1;
    314       }
    315     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
    316       const NamedDecl *ND = ME->getMemberDecl();
    317       int ImplicitDeref = ME->isArrow() ? 1 : 0;
    318       unsigned Root = makeDot(ND, false);
    319       unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
    320       NodeVec[Root].setArrow(ImplicitDeref > 0);
    321       NodeVec[Root].setSize(Sz + 1);
    322       return Sz + 1;
    323     } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
    324       // When calling a function with a lock_returned attribute, replace
    325       // the function call with the expression in lock_returned.
    326       const CXXMethodDecl* MD =
    327         cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
    328       if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
    329         CallingContext LRCallCtx(CMCE->getMethodDecl());
    330         LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
    331         LRCallCtx.SelfArrow =
    332           dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
    333         LRCallCtx.NumArgs = CMCE->getNumArgs();
    334         LRCallCtx.FunArgs = CMCE->getArgs();
    335         LRCallCtx.PrevCtx = CallCtx;
    336         return buildSExpr(At->getArg(), &LRCallCtx);
    337       }
    338       // Hack to treat smart pointers and iterators as pointers;
    339       // ignore any method named get().
    340       if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
    341           CMCE->getNumArgs() == 0) {
    342         if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
    343           ++(*NDeref);
    344         return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
    345       }
    346       unsigned NumCallArgs = CMCE->getNumArgs();
    347       unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
    348       unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
    349       const Expr* const* CallArgs = CMCE->getArgs();
    350       for (unsigned i = 0; i < NumCallArgs; ++i) {
    351         Sz += buildSExpr(CallArgs[i], CallCtx);
    352       }
    353       NodeVec[Root].setSize(Sz + 1);
    354       return Sz + 1;
    355     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
    356       const FunctionDecl* FD =
    357         cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
    358       if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
    359         CallingContext LRCallCtx(CE->getDirectCallee());
    360         LRCallCtx.NumArgs = CE->getNumArgs();
    361         LRCallCtx.FunArgs = CE->getArgs();
    362         LRCallCtx.PrevCtx = CallCtx;
    363         return buildSExpr(At->getArg(), &LRCallCtx);
    364       }
    365       // Treat smart pointers and iterators as pointers;
    366       // ignore the * and -> operators.
    367       if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    368         OverloadedOperatorKind k = OE->getOperator();
    369         if (k == OO_Star) {
    370           if (NDeref) ++(*NDeref);
    371           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
    372         }
    373         else if (k == OO_Arrow) {
    374           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
    375         }
    376       }
    377       unsigned NumCallArgs = CE->getNumArgs();
    378       unsigned Root = makeCall(NumCallArgs, 0);
    379       unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
    380       const Expr* const* CallArgs = CE->getArgs();
    381       for (unsigned i = 0; i < NumCallArgs; ++i) {
    382         Sz += buildSExpr(CallArgs[i], CallCtx);
    383       }
    384       NodeVec[Root].setSize(Sz+1);
    385       return Sz+1;
    386     } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
    387       unsigned Root = makeBinary();
    388       unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
    389       Sz += buildSExpr(BOE->getRHS(), CallCtx);
    390       NodeVec[Root].setSize(Sz);
    391       return Sz;
    392     } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
    393       // Ignore & and * operators -- they're no-ops.
    394       // However, we try to figure out whether the expression is a pointer,
    395       // so we can use . and -> appropriately in error messages.
    396       if (UOE->getOpcode() == UO_Deref) {
    397         if (NDeref) ++(*NDeref);
    398         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
    399       }
    400       if (UOE->getOpcode() == UO_AddrOf) {
    401         if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
    402           if (DRE->getDecl()->isCXXInstanceMember()) {
    403             // This is a pointer-to-member expression, e.g. &MyClass::mu_.
    404             // We interpret this syntax specially, as a wildcard.
    405             unsigned Root = makeDot(DRE->getDecl(), false);
    406             makeWildcard();
    407             NodeVec[Root].setSize(2);
    408             return 2;
    409           }
    410         }
    411         if (NDeref) --(*NDeref);
    412         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
    413       }
    414       unsigned Root = makeUnary();
    415       unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
    416       NodeVec[Root].setSize(Sz);
    417       return Sz;
    418     } else if (const ArraySubscriptExpr *ASE =
    419                dyn_cast<ArraySubscriptExpr>(Exp)) {
    420       unsigned Root = makeIndex();
    421       unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
    422       Sz += buildSExpr(ASE->getIdx(), CallCtx);
    423       NodeVec[Root].setSize(Sz);
    424       return Sz;
    425     } else if (const AbstractConditionalOperator *CE =
    426                dyn_cast<AbstractConditionalOperator>(Exp)) {
    427       unsigned Root = makeUnknown(3);
    428       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
    429       Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
    430       Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
    431       NodeVec[Root].setSize(Sz);
    432       return Sz;
    433     } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
    434       unsigned Root = makeUnknown(3);
    435       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
    436       Sz += buildSExpr(CE->getLHS(), CallCtx);
    437       Sz += buildSExpr(CE->getRHS(), CallCtx);
    438       NodeVec[Root].setSize(Sz);
    439       return Sz;
    440     } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
    441       return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
    442     } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
    443       return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
    444     } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
    445       return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
    446     } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
    447       return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
    448     } else if (isa<CharacterLiteral>(Exp) ||
    449                isa<CXXNullPtrLiteralExpr>(Exp) ||
    450                isa<GNUNullExpr>(Exp) ||
    451                isa<CXXBoolLiteralExpr>(Exp) ||
    452                isa<FloatingLiteral>(Exp) ||
    453                isa<ImaginaryLiteral>(Exp) ||
    454                isa<IntegerLiteral>(Exp) ||
    455                isa<StringLiteral>(Exp) ||
    456                isa<ObjCStringLiteral>(Exp)) {
    457       makeNop();
    458       return 1;  // FIXME: Ignore literals for now
    459     } else {
    460       makeNop();
    461       return 1;  // Ignore.  FIXME: mark as invalid expression?
    462     }
    463   }
    464 
    465   /// \brief Construct a SExpr from an expression.
    466   /// \param MutexExp The original mutex expression within an attribute
    467   /// \param DeclExp An expression involving the Decl on which the attribute
    468   ///        occurs.
    469   /// \param D  The declaration to which the lock/unlock attribute is attached.
    470   void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
    471                           const NamedDecl *D, VarDecl *SelfDecl = 0) {
    472     CallingContext CallCtx(D);
    473 
    474     if (MutexExp) {
    475       if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
    476         if (SLit->getString() == StringRef("*"))
    477           // The "*" expr is a universal lock, which essentially turns off
    478           // checks until it is removed from the lockset.
    479           makeUniversal();
    480         else
    481           // Ignore other string literals for now.
    482           makeNop();
    483         return;
    484       }
    485     }
    486 
    487     // If we are processing a raw attribute expression, with no substitutions.
    488     if (DeclExp == 0) {
    489       buildSExpr(MutexExp, 0);
    490       return;
    491     }
    492 
    493     // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
    494     // for formal parameters when we call buildMutexID later.
    495     if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
    496       CallCtx.SelfArg   = ME->getBase();
    497       CallCtx.SelfArrow = ME->isArrow();
    498     } else if (const CXXMemberCallExpr *CE =
    499                dyn_cast<CXXMemberCallExpr>(DeclExp)) {
    500       CallCtx.SelfArg   = CE->getImplicitObjectArgument();
    501       CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
    502       CallCtx.NumArgs   = CE->getNumArgs();
    503       CallCtx.FunArgs   = CE->getArgs();
    504     } else if (const CallExpr *CE =
    505                dyn_cast<CallExpr>(DeclExp)) {
    506       CallCtx.NumArgs = CE->getNumArgs();
    507       CallCtx.FunArgs = CE->getArgs();
    508     } else if (const CXXConstructExpr *CE =
    509                dyn_cast<CXXConstructExpr>(DeclExp)) {
    510       CallCtx.SelfArg = 0;  // Will be set below
    511       CallCtx.NumArgs = CE->getNumArgs();
    512       CallCtx.FunArgs = CE->getArgs();
    513     } else if (D && isa<CXXDestructorDecl>(D)) {
    514       // There's no such thing as a "destructor call" in the AST.
    515       CallCtx.SelfArg = DeclExp;
    516     }
    517 
    518     // Hack to handle constructors, where self cannot be recovered from
    519     // the expression.
    520     if (SelfDecl && !CallCtx.SelfArg) {
    521       DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
    522                           SelfDecl->getLocation());
    523       CallCtx.SelfArg = &SelfDRE;
    524 
    525       // If the attribute has no arguments, then assume the argument is "this".
    526       if (MutexExp == 0)
    527         buildSExpr(CallCtx.SelfArg, 0);
    528       else  // For most attributes.
    529         buildSExpr(MutexExp, &CallCtx);
    530       return;
    531     }
    532 
    533     // If the attribute has no arguments, then assume the argument is "this".
    534     if (MutexExp == 0)
    535       buildSExpr(CallCtx.SelfArg, 0);
    536     else  // For most attributes.
    537       buildSExpr(MutexExp, &CallCtx);
    538   }
    539 
    540   /// \brief Get index of next sibling of node i.
    541   unsigned getNextSibling(unsigned i) const {
    542     return i + NodeVec[i].size();
    543   }
    544 
    545 public:
    546   explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
    547 
    548   /// \param MutexExp The original mutex expression within an attribute
    549   /// \param DeclExp An expression involving the Decl on which the attribute
    550   ///        occurs.
    551   /// \param D  The declaration to which the lock/unlock attribute is attached.
    552   /// Caller must check isValid() after construction.
    553   SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D,
    554         VarDecl *SelfDecl=0) {
    555     buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
    556   }
    557 
    558   /// Return true if this is a valid decl sequence.
    559   /// Caller must call this by hand after construction to handle errors.
    560   bool isValid() const {
    561     return !NodeVec.empty();
    562   }
    563 
    564   bool shouldIgnore() const {
    565     // Nop is a mutex that we have decided to deliberately ignore.
    566     assert(NodeVec.size() > 0 && "Invalid Mutex");
    567     return NodeVec[0].kind() == EOP_Nop;
    568   }
    569 
    570   bool isUniversal() const {
    571     assert(NodeVec.size() > 0 && "Invalid Mutex");
    572     return NodeVec[0].kind() == EOP_Universal;
    573   }
    574 
    575   /// Issue a warning about an invalid lock expression
    576   static void warnInvalidLock(ThreadSafetyHandler &Handler,
    577                               const Expr *MutexExp,
    578                               const Expr *DeclExp, const NamedDecl* D) {
    579     SourceLocation Loc;
    580     if (DeclExp)
    581       Loc = DeclExp->getExprLoc();
    582 
    583     // FIXME: add a note about the attribute location in MutexExp or D
    584     if (Loc.isValid())
    585       Handler.handleInvalidLockExp(Loc);
    586   }
    587 
    588   bool operator==(const SExpr &other) const {
    589     return NodeVec == other.NodeVec;
    590   }
    591 
    592   bool operator!=(const SExpr &other) const {
    593     return !(*this == other);
    594   }
    595 
    596   bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
    597     if (NodeVec[i].matches(Other.NodeVec[j])) {
    598       unsigned ni = NodeVec[i].arity();
    599       unsigned nj = Other.NodeVec[j].arity();
    600       unsigned n = (ni < nj) ? ni : nj;
    601       bool Result = true;
    602       unsigned ci = i+1;  // first child of i
    603       unsigned cj = j+1;  // first child of j
    604       for (unsigned k = 0; k < n;
    605            ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
    606         Result = Result && matches(Other, ci, cj);
    607       }
    608       return Result;
    609     }
    610     return false;
    611   }
    612 
    613   // A partial match between a.mu and b.mu returns true a and b have the same
    614   // type (and thus mu refers to the same mutex declaration), regardless of
    615   // whether a and b are different objects or not.
    616   bool partiallyMatches(const SExpr &Other) const {
    617     if (NodeVec[0].kind() == EOP_Dot)
    618       return NodeVec[0].matches(Other.NodeVec[0]);
    619     return false;
    620   }
    621 
    622   /// \brief Pretty print a lock expression for use in error messages.
    623   std::string toString(unsigned i = 0) const {
    624     assert(isValid());
    625     if (i >= NodeVec.size())
    626       return "";
    627 
    628     const SExprNode* N = &NodeVec[i];
    629     switch (N->kind()) {
    630       case EOP_Nop:
    631         return "_";
    632       case EOP_Wildcard:
    633         return "(?)";
    634       case EOP_Universal:
    635         return "*";
    636       case EOP_This:
    637         return "this";
    638       case EOP_NVar:
    639       case EOP_LVar: {
    640         return N->getNamedDecl()->getNameAsString();
    641       }
    642       case EOP_Dot: {
    643         if (NodeVec[i+1].kind() == EOP_Wildcard) {
    644           std::string S = "&";
    645           S += N->getNamedDecl()->getQualifiedNameAsString();
    646           return S;
    647         }
    648         std::string FieldName = N->getNamedDecl()->getNameAsString();
    649         if (NodeVec[i+1].kind() == EOP_This)
    650           return FieldName;
    651 
    652         std::string S = toString(i+1);
    653         if (N->isArrow())
    654           return S + "->" + FieldName;
    655         else
    656           return S + "." + FieldName;
    657       }
    658       case EOP_Call: {
    659         std::string S = toString(i+1) + "(";
    660         unsigned NumArgs = N->arity()-1;
    661         unsigned ci = getNextSibling(i+1);
    662         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
    663           S += toString(ci);
    664           if (k+1 < NumArgs) S += ",";
    665         }
    666         S += ")";
    667         return S;
    668       }
    669       case EOP_MCall: {
    670         std::string S = "";
    671         if (NodeVec[i+1].kind() != EOP_This)
    672           S = toString(i+1) + ".";
    673         if (const NamedDecl *D = N->getFunctionDecl())
    674           S += D->getNameAsString() + "(";
    675         else
    676           S += "#(";
    677         unsigned NumArgs = N->arity()-1;
    678         unsigned ci = getNextSibling(i+1);
    679         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
    680           S += toString(ci);
    681           if (k+1 < NumArgs) S += ",";
    682         }
    683         S += ")";
    684         return S;
    685       }
    686       case EOP_Index: {
    687         std::string S1 = toString(i+1);
    688         std::string S2 = toString(i+1 + NodeVec[i+1].size());
    689         return S1 + "[" + S2 + "]";
    690       }
    691       case EOP_Unary: {
    692         std::string S = toString(i+1);
    693         return "#" + S;
    694       }
    695       case EOP_Binary: {
    696         std::string S1 = toString(i+1);
    697         std::string S2 = toString(i+1 + NodeVec[i+1].size());
    698         return "(" + S1 + "#" + S2 + ")";
    699       }
    700       case EOP_Unknown: {
    701         unsigned NumChildren = N->arity();
    702         if (NumChildren == 0)
    703           return "(...)";
    704         std::string S = "(";
    705         unsigned ci = i+1;
    706         for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
    707           S += toString(ci);
    708           if (j+1 < NumChildren) S += "#";
    709         }
    710         S += ")";
    711         return S;
    712       }
    713     }
    714     return "";
    715   }
    716 };
    717 
    718 
    719 
    720 /// \brief A short list of SExprs
    721 class MutexIDList : public SmallVector<SExpr, 3> {
    722 public:
    723   /// \brief Return true if the list contains the specified SExpr
    724   /// Performs a linear search, because these lists are almost always very small.
    725   bool contains(const SExpr& M) {
    726     for (iterator I=begin(),E=end(); I != E; ++I)
    727       if ((*I) == M) return true;
    728     return false;
    729   }
    730 
    731   /// \brief Push M onto list, bud discard duplicates
    732   void push_back_nodup(const SExpr& M) {
    733     if (!contains(M)) push_back(M);
    734   }
    735 };
    736 
    737 
    738 
    739 /// \brief This is a helper class that stores info about the most recent
    740 /// accquire of a Lock.
    741 ///
    742 /// The main body of the analysis maps MutexIDs to LockDatas.
    743 struct LockData {
    744   SourceLocation AcquireLoc;
    745 
    746   /// \brief LKind stores whether a lock is held shared or exclusively.
    747   /// Note that this analysis does not currently support either re-entrant
    748   /// locking or lock "upgrading" and "downgrading" between exclusive and
    749   /// shared.
    750   ///
    751   /// FIXME: add support for re-entrant locking and lock up/downgrading
    752   LockKind LKind;
    753   bool     Asserted;           // for asserted locks
    754   bool     Managed;            // for ScopedLockable objects
    755   SExpr    UnderlyingMutex;    // for ScopedLockable objects
    756 
    757   LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
    758            bool Asrt=false)
    759     : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
    760       UnderlyingMutex(Decl::EmptyShell())
    761   {}
    762 
    763   LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
    764     : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false),
    765       UnderlyingMutex(Mu)
    766   {}
    767 
    768   bool operator==(const LockData &other) const {
    769     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
    770   }
    771 
    772   bool operator!=(const LockData &other) const {
    773     return !(*this == other);
    774   }
    775 
    776   void Profile(llvm::FoldingSetNodeID &ID) const {
    777     ID.AddInteger(AcquireLoc.getRawEncoding());
    778     ID.AddInteger(LKind);
    779   }
    780 
    781   bool isAtLeast(LockKind LK) {
    782     return (LK == LK_Shared) || (LKind == LK_Exclusive);
    783   }
    784 };
    785 
    786 
    787 /// \brief A FactEntry stores a single fact that is known at a particular point
    788 /// in the program execution.  Currently, this is information regarding a lock
    789 /// that is held at that point.
    790 struct FactEntry {
    791   SExpr    MutID;
    792   LockData LDat;
    793 
    794   FactEntry(const SExpr& M, const LockData& L)
    795     : MutID(M), LDat(L)
    796   { }
    797 };
    798 
    799 
    800 typedef unsigned short FactID;
    801 
    802 /// \brief FactManager manages the memory for all facts that are created during
    803 /// the analysis of a single routine.
    804 class FactManager {
    805 private:
    806   std::vector<FactEntry> Facts;
    807 
    808 public:
    809   FactID newLock(const SExpr& M, const LockData& L) {
    810     Facts.push_back(FactEntry(M,L));
    811     return static_cast<unsigned short>(Facts.size() - 1);
    812   }
    813 
    814   const FactEntry& operator[](FactID F) const { return Facts[F]; }
    815   FactEntry&       operator[](FactID F)       { return Facts[F]; }
    816 };
    817 
    818 
    819 /// \brief A FactSet is the set of facts that are known to be true at a
    820 /// particular program point.  FactSets must be small, because they are
    821 /// frequently copied, and are thus implemented as a set of indices into a
    822 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
    823 /// locks, so we can get away with doing a linear search for lookup.  Note
    824 /// that a hashtable or map is inappropriate in this case, because lookups
    825 /// may involve partial pattern matches, rather than exact matches.
    826 class FactSet {
    827 private:
    828   typedef SmallVector<FactID, 4> FactVec;
    829 
    830   FactVec FactIDs;
    831 
    832 public:
    833   typedef FactVec::iterator       iterator;
    834   typedef FactVec::const_iterator const_iterator;
    835 
    836   iterator       begin()       { return FactIDs.begin(); }
    837   const_iterator begin() const { return FactIDs.begin(); }
    838 
    839   iterator       end()       { return FactIDs.end(); }
    840   const_iterator end() const { return FactIDs.end(); }
    841 
    842   bool isEmpty() const { return FactIDs.size() == 0; }
    843 
    844   FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
    845     FactID F = FM.newLock(M, L);
    846     FactIDs.push_back(F);
    847     return F;
    848   }
    849 
    850   bool removeLock(FactManager& FM, const SExpr& M) {
    851     unsigned n = FactIDs.size();
    852     if (n == 0)
    853       return false;
    854 
    855     for (unsigned i = 0; i < n-1; ++i) {
    856       if (FM[FactIDs[i]].MutID.matches(M)) {
    857         FactIDs[i] = FactIDs[n-1];
    858         FactIDs.pop_back();
    859         return true;
    860       }
    861     }
    862     if (FM[FactIDs[n-1]].MutID.matches(M)) {
    863       FactIDs.pop_back();
    864       return true;
    865     }
    866     return false;
    867   }
    868 
    869   // Returns an iterator
    870   iterator findLockIter(FactManager &FM, const SExpr &M) {
    871     for (iterator I = begin(), E = end(); I != E; ++I) {
    872       const SExpr &Exp = FM[*I].MutID;
    873       if (Exp.matches(M))
    874         return I;
    875     }
    876     return end();
    877   }
    878 
    879   LockData* findLock(FactManager &FM, const SExpr &M) const {
    880     for (const_iterator I = begin(), E = end(); I != E; ++I) {
    881       const SExpr &Exp = FM[*I].MutID;
    882       if (Exp.matches(M))
    883         return &FM[*I].LDat;
    884     }
    885     return 0;
    886   }
    887 
    888   LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
    889     for (const_iterator I = begin(), E = end(); I != E; ++I) {
    890       const SExpr &Exp = FM[*I].MutID;
    891       if (Exp.matches(M) || Exp.isUniversal())
    892         return &FM[*I].LDat;
    893     }
    894     return 0;
    895   }
    896 
    897   FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
    898     for (const_iterator I=begin(), E=end(); I != E; ++I) {
    899       const SExpr& Exp = FM[*I].MutID;
    900       if (Exp.partiallyMatches(M)) return &FM[*I];
    901     }
    902     return 0;
    903   }
    904 };
    905 
    906 
    907 
    908 /// A Lockset maps each SExpr (defined above) to information about how it has
    909 /// been locked.
    910 typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
    911 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
    912 
    913 class LocalVariableMap;
    914 
    915 /// A side (entry or exit) of a CFG node.
    916 enum CFGBlockSide { CBS_Entry, CBS_Exit };
    917 
    918 /// CFGBlockInfo is a struct which contains all the information that is
    919 /// maintained for each block in the CFG.  See LocalVariableMap for more
    920 /// information about the contexts.
    921 struct CFGBlockInfo {
    922   FactSet EntrySet;             // Lockset held at entry to block
    923   FactSet ExitSet;              // Lockset held at exit from block
    924   LocalVarContext EntryContext; // Context held at entry to block
    925   LocalVarContext ExitContext;  // Context held at exit from block
    926   SourceLocation EntryLoc;      // Location of first statement in block
    927   SourceLocation ExitLoc;       // Location of last statement in block.
    928   unsigned EntryIndex;          // Used to replay contexts later
    929   bool Reachable;               // Is this block reachable?
    930 
    931   const FactSet &getSet(CFGBlockSide Side) const {
    932     return Side == CBS_Entry ? EntrySet : ExitSet;
    933   }
    934   SourceLocation getLocation(CFGBlockSide Side) const {
    935     return Side == CBS_Entry ? EntryLoc : ExitLoc;
    936   }
    937 
    938 private:
    939   CFGBlockInfo(LocalVarContext EmptyCtx)
    940     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
    941   { }
    942 
    943 public:
    944   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
    945 };
    946 
    947 
    948 
    949 // A LocalVariableMap maintains a map from local variables to their currently
    950 // valid definitions.  It provides SSA-like functionality when traversing the
    951 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
    952 // unique name (an integer), which acts as the SSA name for that definition.
    953 // The total set of names is shared among all CFG basic blocks.
    954 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
    955 // with their SSA-names.  Instead, we compute a Context for each point in the
    956 // code, which maps local variables to the appropriate SSA-name.  This map
    957 // changes with each assignment.
    958 //
    959 // The map is computed in a single pass over the CFG.  Subsequent analyses can
    960 // then query the map to find the appropriate Context for a statement, and use
    961 // that Context to look up the definitions of variables.
    962 class LocalVariableMap {
    963 public:
    964   typedef LocalVarContext Context;
    965 
    966   /// A VarDefinition consists of an expression, representing the value of the
    967   /// variable, along with the context in which that expression should be
    968   /// interpreted.  A reference VarDefinition does not itself contain this
    969   /// information, but instead contains a pointer to a previous VarDefinition.
    970   struct VarDefinition {
    971   public:
    972     friend class LocalVariableMap;
    973 
    974     const NamedDecl *Dec;  // The original declaration for this variable.
    975     const Expr *Exp;       // The expression for this variable, OR
    976     unsigned Ref;          // Reference to another VarDefinition
    977     Context Ctx;           // The map with which Exp should be interpreted.
    978 
    979     bool isReference() { return !Exp; }
    980 
    981   private:
    982     // Create ordinary variable definition
    983     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
    984       : Dec(D), Exp(E), Ref(0), Ctx(C)
    985     { }
    986 
    987     // Create reference to previous definition
    988     VarDefinition(const NamedDecl *D, unsigned R, Context C)
    989       : Dec(D), Exp(0), Ref(R), Ctx(C)
    990     { }
    991   };
    992 
    993 private:
    994   Context::Factory ContextFactory;
    995   std::vector<VarDefinition> VarDefinitions;
    996   std::vector<unsigned> CtxIndices;
    997   std::vector<std::pair<Stmt*, Context> > SavedContexts;
    998 
    999 public:
   1000   LocalVariableMap() {
   1001     // index 0 is a placeholder for undefined variables (aka phi-nodes).
   1002     VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
   1003   }
   1004 
   1005   /// Look up a definition, within the given context.
   1006   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
   1007     const unsigned *i = Ctx.lookup(D);
   1008     if (!i)
   1009       return 0;
   1010     assert(*i < VarDefinitions.size());
   1011     return &VarDefinitions[*i];
   1012   }
   1013 
   1014   /// Look up the definition for D within the given context.  Returns
   1015   /// NULL if the expression is not statically known.  If successful, also
   1016   /// modifies Ctx to hold the context of the return Expr.
   1017   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
   1018     const unsigned *P = Ctx.lookup(D);
   1019     if (!P)
   1020       return 0;
   1021 
   1022     unsigned i = *P;
   1023     while (i > 0) {
   1024       if (VarDefinitions[i].Exp) {
   1025         Ctx = VarDefinitions[i].Ctx;
   1026         return VarDefinitions[i].Exp;
   1027       }
   1028       i = VarDefinitions[i].Ref;
   1029     }
   1030     return 0;
   1031   }
   1032 
   1033   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
   1034 
   1035   /// Return the next context after processing S.  This function is used by
   1036   /// clients of the class to get the appropriate context when traversing the
   1037   /// CFG.  It must be called for every assignment or DeclStmt.
   1038   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
   1039     if (SavedContexts[CtxIndex+1].first == S) {
   1040       CtxIndex++;
   1041       Context Result = SavedContexts[CtxIndex].second;
   1042       return Result;
   1043     }
   1044     return C;
   1045   }
   1046 
   1047   void dumpVarDefinitionName(unsigned i) {
   1048     if (i == 0) {
   1049       llvm::errs() << "Undefined";
   1050       return;
   1051     }
   1052     const NamedDecl *Dec = VarDefinitions[i].Dec;
   1053     if (!Dec) {
   1054       llvm::errs() << "<<NULL>>";
   1055       return;
   1056     }
   1057     Dec->printName(llvm::errs());
   1058     llvm::errs() << "." << i << " " << ((const void*) Dec);
   1059   }
   1060 
   1061   /// Dumps an ASCII representation of the variable map to llvm::errs()
   1062   void dump() {
   1063     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
   1064       const Expr *Exp = VarDefinitions[i].Exp;
   1065       unsigned Ref = VarDefinitions[i].Ref;
   1066 
   1067       dumpVarDefinitionName(i);
   1068       llvm::errs() << " = ";
   1069       if (Exp) Exp->dump();
   1070       else {
   1071         dumpVarDefinitionName(Ref);
   1072         llvm::errs() << "\n";
   1073       }
   1074     }
   1075   }
   1076 
   1077   /// Dumps an ASCII representation of a Context to llvm::errs()
   1078   void dumpContext(Context C) {
   1079     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
   1080       const NamedDecl *D = I.getKey();
   1081       D->printName(llvm::errs());
   1082       const unsigned *i = C.lookup(D);
   1083       llvm::errs() << " -> ";
   1084       dumpVarDefinitionName(*i);
   1085       llvm::errs() << "\n";
   1086     }
   1087   }
   1088 
   1089   /// Builds the variable map.
   1090   void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
   1091                      std::vector<CFGBlockInfo> &BlockInfo);
   1092 
   1093 protected:
   1094   // Get the current context index
   1095   unsigned getContextIndex() { return SavedContexts.size()-1; }
   1096 
   1097   // Save the current context for later replay
   1098   void saveContext(Stmt *S, Context C) {
   1099     SavedContexts.push_back(std::make_pair(S,C));
   1100   }
   1101 
   1102   // Adds a new definition to the given context, and returns a new context.
   1103   // This method should be called when declaring a new variable.
   1104   Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
   1105     assert(!Ctx.contains(D));
   1106     unsigned newID = VarDefinitions.size();
   1107     Context NewCtx = ContextFactory.add(Ctx, D, newID);
   1108     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
   1109     return NewCtx;
   1110   }
   1111 
   1112   // Add a new reference to an existing definition.
   1113   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
   1114     unsigned newID = VarDefinitions.size();
   1115     Context NewCtx = ContextFactory.add(Ctx, D, newID);
   1116     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
   1117     return NewCtx;
   1118   }
   1119 
   1120   // Updates a definition only if that definition is already in the map.
   1121   // This method should be called when assigning to an existing variable.
   1122   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
   1123     if (Ctx.contains(D)) {
   1124       unsigned newID = VarDefinitions.size();
   1125       Context NewCtx = ContextFactory.remove(Ctx, D);
   1126       NewCtx = ContextFactory.add(NewCtx, D, newID);
   1127       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
   1128       return NewCtx;
   1129     }
   1130     return Ctx;
   1131   }
   1132 
   1133   // Removes a definition from the context, but keeps the variable name
   1134   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
   1135   Context clearDefinition(const NamedDecl *D, Context Ctx) {
   1136     Context NewCtx = Ctx;
   1137     if (NewCtx.contains(D)) {
   1138       NewCtx = ContextFactory.remove(NewCtx, D);
   1139       NewCtx = ContextFactory.add(NewCtx, D, 0);
   1140     }
   1141     return NewCtx;
   1142   }
   1143 
   1144   // Remove a definition entirely frmo the context.
   1145   Context removeDefinition(const NamedDecl *D, Context Ctx) {
   1146     Context NewCtx = Ctx;
   1147     if (NewCtx.contains(D)) {
   1148       NewCtx = ContextFactory.remove(NewCtx, D);
   1149     }
   1150     return NewCtx;
   1151   }
   1152 
   1153   Context intersectContexts(Context C1, Context C2);
   1154   Context createReferenceContext(Context C);
   1155   void intersectBackEdge(Context C1, Context C2);
   1156 
   1157   friend class VarMapBuilder;
   1158 };
   1159 
   1160 
   1161 // This has to be defined after LocalVariableMap.
   1162 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
   1163   return CFGBlockInfo(M.getEmptyContext());
   1164 }
   1165 
   1166 
   1167 /// Visitor which builds a LocalVariableMap
   1168 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
   1169 public:
   1170   LocalVariableMap* VMap;
   1171   LocalVariableMap::Context Ctx;
   1172 
   1173   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
   1174     : VMap(VM), Ctx(C) {}
   1175 
   1176   void VisitDeclStmt(DeclStmt *S);
   1177   void VisitBinaryOperator(BinaryOperator *BO);
   1178 };
   1179 
   1180 
   1181 // Add new local variables to the variable map
   1182 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
   1183   bool modifiedCtx = false;
   1184   DeclGroupRef DGrp = S->getDeclGroup();
   1185   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
   1186     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
   1187       Expr *E = VD->getInit();
   1188 
   1189       // Add local variables with trivial type to the variable map
   1190       QualType T = VD->getType();
   1191       if (T.isTrivialType(VD->getASTContext())) {
   1192         Ctx = VMap->addDefinition(VD, E, Ctx);
   1193         modifiedCtx = true;
   1194       }
   1195     }
   1196   }
   1197   if (modifiedCtx)
   1198     VMap->saveContext(S, Ctx);
   1199 }
   1200 
   1201 // Update local variable definitions in variable map
   1202 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
   1203   if (!BO->isAssignmentOp())
   1204     return;
   1205 
   1206   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
   1207 
   1208   // Update the variable map and current context.
   1209   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
   1210     ValueDecl *VDec = DRE->getDecl();
   1211     if (Ctx.lookup(VDec)) {
   1212       if (BO->getOpcode() == BO_Assign)
   1213         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
   1214       else
   1215         // FIXME -- handle compound assignment operators
   1216         Ctx = VMap->clearDefinition(VDec, Ctx);
   1217       VMap->saveContext(BO, Ctx);
   1218     }
   1219   }
   1220 }
   1221 
   1222 
   1223 // Computes the intersection of two contexts.  The intersection is the
   1224 // set of variables which have the same definition in both contexts;
   1225 // variables with different definitions are discarded.
   1226 LocalVariableMap::Context
   1227 LocalVariableMap::intersectContexts(Context C1, Context C2) {
   1228   Context Result = C1;
   1229   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
   1230     const NamedDecl *Dec = I.getKey();
   1231     unsigned i1 = I.getData();
   1232     const unsigned *i2 = C2.lookup(Dec);
   1233     if (!i2)             // variable doesn't exist on second path
   1234       Result = removeDefinition(Dec, Result);
   1235     else if (*i2 != i1)  // variable exists, but has different definition
   1236       Result = clearDefinition(Dec, Result);
   1237   }
   1238   return Result;
   1239 }
   1240 
   1241 // For every variable in C, create a new variable that refers to the
   1242 // definition in C.  Return a new context that contains these new variables.
   1243 // (We use this for a naive implementation of SSA on loop back-edges.)
   1244 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
   1245   Context Result = getEmptyContext();
   1246   for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
   1247     const NamedDecl *Dec = I.getKey();
   1248     unsigned i = I.getData();
   1249     Result = addReference(Dec, i, Result);
   1250   }
   1251   return Result;
   1252 }
   1253 
   1254 // This routine also takes the intersection of C1 and C2, but it does so by
   1255 // altering the VarDefinitions.  C1 must be the result of an earlier call to
   1256 // createReferenceContext.
   1257 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
   1258   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
   1259     const NamedDecl *Dec = I.getKey();
   1260     unsigned i1 = I.getData();
   1261     VarDefinition *VDef = &VarDefinitions[i1];
   1262     assert(VDef->isReference());
   1263 
   1264     const unsigned *i2 = C2.lookup(Dec);
   1265     if (!i2 || (*i2 != i1))
   1266       VDef->Ref = 0;    // Mark this variable as undefined
   1267   }
   1268 }
   1269 
   1270 
   1271 // Traverse the CFG in topological order, so all predecessors of a block
   1272 // (excluding back-edges) are visited before the block itself.  At
   1273 // each point in the code, we calculate a Context, which holds the set of
   1274 // variable definitions which are visible at that point in execution.
   1275 // Visible variables are mapped to their definitions using an array that
   1276 // contains all definitions.
   1277 //
   1278 // At join points in the CFG, the set is computed as the intersection of
   1279 // the incoming sets along each edge, E.g.
   1280 //
   1281 //                       { Context                 | VarDefinitions }
   1282 //   int x = 0;          { x -> x1                 | x1 = 0 }
   1283 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
   1284 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
   1285 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
   1286 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
   1287 //
   1288 // This is essentially a simpler and more naive version of the standard SSA
   1289 // algorithm.  Those definitions that remain in the intersection are from blocks
   1290 // that strictly dominate the current block.  We do not bother to insert proper
   1291 // phi nodes, because they are not used in our analysis; instead, wherever
   1292 // a phi node would be required, we simply remove that definition from the
   1293 // context (E.g. x above).
   1294 //
   1295 // The initial traversal does not capture back-edges, so those need to be
   1296 // handled on a separate pass.  Whenever the first pass encounters an
   1297 // incoming back edge, it duplicates the context, creating new definitions
   1298 // that refer back to the originals.  (These correspond to places where SSA
   1299 // might have to insert a phi node.)  On the second pass, these definitions are
   1300 // set to NULL if the variable has changed on the back-edge (i.e. a phi
   1301 // node was actually required.)  E.g.
   1302 //
   1303 //                       { Context           | VarDefinitions }
   1304 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
   1305 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
   1306 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
   1307 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
   1308 //
   1309 void LocalVariableMap::traverseCFG(CFG *CFGraph,
   1310                                    PostOrderCFGView *SortedGraph,
   1311                                    std::vector<CFGBlockInfo> &BlockInfo) {
   1312   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   1313 
   1314   CtxIndices.resize(CFGraph->getNumBlockIDs());
   1315 
   1316   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   1317        E = SortedGraph->end(); I!= E; ++I) {
   1318     const CFGBlock *CurrBlock = *I;
   1319     int CurrBlockID = CurrBlock->getBlockID();
   1320     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   1321 
   1322     VisitedBlocks.insert(CurrBlock);
   1323 
   1324     // Calculate the entry context for the current block
   1325     bool HasBackEdges = false;
   1326     bool CtxInit = true;
   1327     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   1328          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   1329       // if *PI -> CurrBlock is a back edge, so skip it
   1330       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
   1331         HasBackEdges = true;
   1332         continue;
   1333       }
   1334 
   1335       int PrevBlockID = (*PI)->getBlockID();
   1336       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   1337 
   1338       if (CtxInit) {
   1339         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
   1340         CtxInit = false;
   1341       }
   1342       else {
   1343         CurrBlockInfo->EntryContext =
   1344           intersectContexts(CurrBlockInfo->EntryContext,
   1345                             PrevBlockInfo->ExitContext);
   1346       }
   1347     }
   1348 
   1349     // Duplicate the context if we have back-edges, so we can call
   1350     // intersectBackEdges later.
   1351     if (HasBackEdges)
   1352       CurrBlockInfo->EntryContext =
   1353         createReferenceContext(CurrBlockInfo->EntryContext);
   1354 
   1355     // Create a starting context index for the current block
   1356     saveContext(0, CurrBlockInfo->EntryContext);
   1357     CurrBlockInfo->EntryIndex = getContextIndex();
   1358 
   1359     // Visit all the statements in the basic block.
   1360     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
   1361     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   1362          BE = CurrBlock->end(); BI != BE; ++BI) {
   1363       switch (BI->getKind()) {
   1364         case CFGElement::Statement: {
   1365           CFGStmt CS = BI->castAs<CFGStmt>();
   1366           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
   1367           break;
   1368         }
   1369         default:
   1370           break;
   1371       }
   1372     }
   1373     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
   1374 
   1375     // Mark variables on back edges as "unknown" if they've been changed.
   1376     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   1377          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   1378       // if CurrBlock -> *SI is *not* a back edge
   1379       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
   1380         continue;
   1381 
   1382       CFGBlock *FirstLoopBlock = *SI;
   1383       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
   1384       Context LoopEnd   = CurrBlockInfo->ExitContext;
   1385       intersectBackEdge(LoopBegin, LoopEnd);
   1386     }
   1387   }
   1388 
   1389   // Put an extra entry at the end of the indexed context array
   1390   unsigned exitID = CFGraph->getExit().getBlockID();
   1391   saveContext(0, BlockInfo[exitID].ExitContext);
   1392 }
   1393 
   1394 /// Find the appropriate source locations to use when producing diagnostics for
   1395 /// each block in the CFG.
   1396 static void findBlockLocations(CFG *CFGraph,
   1397                                PostOrderCFGView *SortedGraph,
   1398                                std::vector<CFGBlockInfo> &BlockInfo) {
   1399   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   1400        E = SortedGraph->end(); I!= E; ++I) {
   1401     const CFGBlock *CurrBlock = *I;
   1402     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
   1403 
   1404     // Find the source location of the last statement in the block, if the
   1405     // block is not empty.
   1406     if (const Stmt *S = CurrBlock->getTerminator()) {
   1407       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
   1408     } else {
   1409       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
   1410            BE = CurrBlock->rend(); BI != BE; ++BI) {
   1411         // FIXME: Handle other CFGElement kinds.
   1412         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
   1413           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
   1414           break;
   1415         }
   1416       }
   1417     }
   1418 
   1419     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
   1420       // This block contains at least one statement. Find the source location
   1421       // of the first statement in the block.
   1422       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   1423            BE = CurrBlock->end(); BI != BE; ++BI) {
   1424         // FIXME: Handle other CFGElement kinds.
   1425         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
   1426           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
   1427           break;
   1428         }
   1429       }
   1430     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
   1431                CurrBlock != &CFGraph->getExit()) {
   1432       // The block is empty, and has a single predecessor. Use its exit
   1433       // location.
   1434       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
   1435           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
   1436     }
   1437   }
   1438 }
   1439 
   1440 /// \brief Class which implements the core thread safety analysis routines.
   1441 class ThreadSafetyAnalyzer {
   1442   friend class BuildLockset;
   1443 
   1444   ThreadSafetyHandler       &Handler;
   1445   LocalVariableMap          LocalVarMap;
   1446   FactManager               FactMan;
   1447   std::vector<CFGBlockInfo> BlockInfo;
   1448 
   1449 public:
   1450   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
   1451 
   1452   void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
   1453   void removeLock(FactSet &FSet, const SExpr &Mutex,
   1454                   SourceLocation UnlockLoc, bool FullyRemove=false);
   1455 
   1456   template <typename AttrType>
   1457   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
   1458                    const NamedDecl *D, VarDecl *SelfDecl=0);
   1459 
   1460   template <class AttrType>
   1461   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
   1462                    const NamedDecl *D,
   1463                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
   1464                    Expr *BrE, bool Neg);
   1465 
   1466   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
   1467                                      bool &Negate);
   1468 
   1469   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
   1470                       const CFGBlock* PredBlock,
   1471                       const CFGBlock *CurrBlock);
   1472 
   1473   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
   1474                         SourceLocation JoinLoc,
   1475                         LockErrorKind LEK1, LockErrorKind LEK2,
   1476                         bool Modify=true);
   1477 
   1478   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
   1479                         SourceLocation JoinLoc, LockErrorKind LEK1,
   1480                         bool Modify=true) {
   1481     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
   1482   }
   1483 
   1484   void runAnalysis(AnalysisDeclContext &AC);
   1485 };
   1486 
   1487 
   1488 /// \brief Add a new lock to the lockset, warning if the lock is already there.
   1489 /// \param Mutex -- the Mutex expression for the lock
   1490 /// \param LDat  -- the LockData for the lock
   1491 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
   1492                                    const LockData &LDat) {
   1493   // FIXME: deal with acquired before/after annotations.
   1494   // FIXME: Don't always warn when we have support for reentrant locks.
   1495   if (Mutex.shouldIgnore())
   1496     return;
   1497 
   1498   if (FSet.findLock(FactMan, Mutex)) {
   1499     if (!LDat.Asserted)
   1500       Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
   1501   } else {
   1502     FSet.addLock(FactMan, Mutex, LDat);
   1503   }
   1504 }
   1505 
   1506 
   1507 /// \brief Remove a lock from the lockset, warning if the lock is not there.
   1508 /// \param Mutex The lock expression corresponding to the lock to be removed
   1509 /// \param UnlockLoc The source location of the unlock (only used in error msg)
   1510 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
   1511                                       const SExpr &Mutex,
   1512                                       SourceLocation UnlockLoc,
   1513                                       bool FullyRemove) {
   1514   if (Mutex.shouldIgnore())
   1515     return;
   1516 
   1517   const LockData *LDat = FSet.findLock(FactMan, Mutex);
   1518   if (!LDat) {
   1519     Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
   1520     return;
   1521   }
   1522 
   1523   if (LDat->UnderlyingMutex.isValid()) {
   1524     // This is scoped lockable object, which manages the real mutex.
   1525     if (FullyRemove) {
   1526       // We're destroying the managing object.
   1527       // Remove the underlying mutex if it exists; but don't warn.
   1528       if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
   1529         FSet.removeLock(FactMan, LDat->UnderlyingMutex);
   1530     } else {
   1531       // We're releasing the underlying mutex, but not destroying the
   1532       // managing object.  Warn on dual release.
   1533       if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
   1534         Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
   1535                                       UnlockLoc);
   1536       }
   1537       FSet.removeLock(FactMan, LDat->UnderlyingMutex);
   1538       return;
   1539     }
   1540   }
   1541   FSet.removeLock(FactMan, Mutex);
   1542 }
   1543 
   1544 
   1545 /// \brief Extract the list of mutexIDs from the attribute on an expression,
   1546 /// and push them onto Mtxs, discarding any duplicates.
   1547 template <typename AttrType>
   1548 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
   1549                                        Expr *Exp, const NamedDecl *D,
   1550                                        VarDecl *SelfDecl) {
   1551   typedef typename AttrType::args_iterator iterator_type;
   1552 
   1553   if (Attr->args_size() == 0) {
   1554     // The mutex held is the "this" object.
   1555     SExpr Mu(0, Exp, D, SelfDecl);
   1556     if (!Mu.isValid())
   1557       SExpr::warnInvalidLock(Handler, 0, Exp, D);
   1558     else
   1559       Mtxs.push_back_nodup(Mu);
   1560     return;
   1561   }
   1562 
   1563   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
   1564     SExpr Mu(*I, Exp, D, SelfDecl);
   1565     if (!Mu.isValid())
   1566       SExpr::warnInvalidLock(Handler, *I, Exp, D);
   1567     else
   1568       Mtxs.push_back_nodup(Mu);
   1569   }
   1570 }
   1571 
   1572 
   1573 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
   1574 /// trylock applies to the given edge, then push them onto Mtxs, discarding
   1575 /// any duplicates.
   1576 template <class AttrType>
   1577 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
   1578                                        Expr *Exp, const NamedDecl *D,
   1579                                        const CFGBlock *PredBlock,
   1580                                        const CFGBlock *CurrBlock,
   1581                                        Expr *BrE, bool Neg) {
   1582   // Find out which branch has the lock
   1583   bool branch = 0;
   1584   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
   1585     branch = BLE->getValue();
   1586   }
   1587   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
   1588     branch = ILE->getValue().getBoolValue();
   1589   }
   1590   int branchnum = branch ? 0 : 1;
   1591   if (Neg) branchnum = !branchnum;
   1592 
   1593   // If we've taken the trylock branch, then add the lock
   1594   int i = 0;
   1595   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
   1596        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
   1597     if (*SI == CurrBlock && i == branchnum) {
   1598       getMutexIDs(Mtxs, Attr, Exp, D);
   1599     }
   1600   }
   1601 }
   1602 
   1603 
   1604 bool getStaticBooleanValue(Expr* E, bool& TCond) {
   1605   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
   1606     TCond = false;
   1607     return true;
   1608   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
   1609     TCond = BLE->getValue();
   1610     return true;
   1611   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
   1612     TCond = ILE->getValue().getBoolValue();
   1613     return true;
   1614   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   1615     return getStaticBooleanValue(CE->getSubExpr(), TCond);
   1616   }
   1617   return false;
   1618 }
   1619 
   1620 
   1621 // If Cond can be traced back to a function call, return the call expression.
   1622 // The negate variable should be called with false, and will be set to true
   1623 // if the function call is negated, e.g. if (!mu.tryLock(...))
   1624 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
   1625                                                          LocalVarContext C,
   1626                                                          bool &Negate) {
   1627   if (!Cond)
   1628     return 0;
   1629 
   1630   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
   1631     return CallExp;
   1632   }
   1633   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
   1634     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
   1635   }
   1636   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
   1637     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
   1638   }
   1639   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
   1640     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
   1641   }
   1642   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
   1643     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
   1644     return getTrylockCallExpr(E, C, Negate);
   1645   }
   1646   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
   1647     if (UOP->getOpcode() == UO_LNot) {
   1648       Negate = !Negate;
   1649       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
   1650     }
   1651     return 0;
   1652   }
   1653   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
   1654     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
   1655       if (BOP->getOpcode() == BO_NE)
   1656         Negate = !Negate;
   1657 
   1658       bool TCond = false;
   1659       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
   1660         if (!TCond) Negate = !Negate;
   1661         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
   1662       }
   1663       else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
   1664         if (!TCond) Negate = !Negate;
   1665         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1666       }
   1667       return 0;
   1668     }
   1669     return 0;
   1670   }
   1671   // FIXME -- handle && and || as well.
   1672   return 0;
   1673 }
   1674 
   1675 
   1676 /// \brief Find the lockset that holds on the edge between PredBlock
   1677 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
   1678 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
   1679 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
   1680                                           const FactSet &ExitSet,
   1681                                           const CFGBlock *PredBlock,
   1682                                           const CFGBlock *CurrBlock) {
   1683   Result = ExitSet;
   1684 
   1685   if (!PredBlock->getTerminatorCondition())
   1686     return;
   1687 
   1688   bool Negate = false;
   1689   const Stmt *Cond = PredBlock->getTerminatorCondition();
   1690   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
   1691   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
   1692 
   1693   CallExpr *Exp =
   1694     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
   1695   if (!Exp)
   1696     return;
   1697 
   1698   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1699   if(!FunDecl || !FunDecl->hasAttrs())
   1700     return;
   1701 
   1702 
   1703   MutexIDList ExclusiveLocksToAdd;
   1704   MutexIDList SharedLocksToAdd;
   1705 
   1706   // If the condition is a call to a Trylock function, then grab the attributes
   1707   AttrVec &ArgAttrs = FunDecl->getAttrs();
   1708   for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
   1709     Attr *Attr = ArgAttrs[i];
   1710     switch (Attr->getKind()) {
   1711       case attr::ExclusiveTrylockFunction: {
   1712         ExclusiveTrylockFunctionAttr *A =
   1713           cast<ExclusiveTrylockFunctionAttr>(Attr);
   1714         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
   1715                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1716         break;
   1717       }
   1718       case attr::SharedTrylockFunction: {
   1719         SharedTrylockFunctionAttr *A =
   1720           cast<SharedTrylockFunctionAttr>(Attr);
   1721         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
   1722                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1723         break;
   1724       }
   1725       default:
   1726         break;
   1727     }
   1728   }
   1729 
   1730   // Add and remove locks.
   1731   SourceLocation Loc = Exp->getExprLoc();
   1732   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   1733     addLock(Result, ExclusiveLocksToAdd[i],
   1734             LockData(Loc, LK_Exclusive));
   1735   }
   1736   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   1737     addLock(Result, SharedLocksToAdd[i],
   1738             LockData(Loc, LK_Shared));
   1739   }
   1740 }
   1741 
   1742 
   1743 /// \brief We use this class to visit different types of expressions in
   1744 /// CFGBlocks, and build up the lockset.
   1745 /// An expression may cause us to add or remove locks from the lockset, or else
   1746 /// output error messages related to missing locks.
   1747 /// FIXME: In future, we may be able to not inherit from a visitor.
   1748 class BuildLockset : public StmtVisitor<BuildLockset> {
   1749   friend class ThreadSafetyAnalyzer;
   1750 
   1751   ThreadSafetyAnalyzer *Analyzer;
   1752   FactSet FSet;
   1753   LocalVariableMap::Context LVarCtx;
   1754   unsigned CtxIndex;
   1755 
   1756   // Helper functions
   1757   const ValueDecl *getValueDecl(const Expr *Exp);
   1758 
   1759   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
   1760                           Expr *MutexExp, ProtectedOperationKind POK);
   1761   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp);
   1762 
   1763   void checkAccess(const Expr *Exp, AccessKind AK);
   1764   void checkPtAccess(const Expr *Exp, AccessKind AK);
   1765 
   1766   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
   1767 
   1768 public:
   1769   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
   1770     : StmtVisitor<BuildLockset>(),
   1771       Analyzer(Anlzr),
   1772       FSet(Info.EntrySet),
   1773       LVarCtx(Info.EntryContext),
   1774       CtxIndex(Info.EntryIndex)
   1775   {}
   1776 
   1777   void VisitUnaryOperator(UnaryOperator *UO);
   1778   void VisitBinaryOperator(BinaryOperator *BO);
   1779   void VisitCastExpr(CastExpr *CE);
   1780   void VisitCallExpr(CallExpr *Exp);
   1781   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
   1782   void VisitDeclStmt(DeclStmt *S);
   1783 };
   1784 
   1785 
   1786 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
   1787 const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) {
   1788   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp))
   1789     return getValueDecl(CE->getSubExpr());
   1790 
   1791   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
   1792     return DR->getDecl();
   1793 
   1794   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
   1795     return ME->getMemberDecl();
   1796 
   1797   return 0;
   1798 }
   1799 
   1800 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
   1801 /// of at least the passed in AccessKind.
   1802 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
   1803                                       AccessKind AK, Expr *MutexExp,
   1804                                       ProtectedOperationKind POK) {
   1805   LockKind LK = getLockKindFromAccessKind(AK);
   1806 
   1807   SExpr Mutex(MutexExp, Exp, D);
   1808   if (!Mutex.isValid()) {
   1809     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
   1810     return;
   1811   } else if (Mutex.shouldIgnore()) {
   1812     return;
   1813   }
   1814 
   1815   LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
   1816   bool NoError = true;
   1817   if (!LDat) {
   1818     // No exact match found.  Look for a partial match.
   1819     FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
   1820     if (FEntry) {
   1821       // Warn that there's no precise match.
   1822       LDat = &FEntry->LDat;
   1823       std::string PartMatchStr = FEntry->MutID.toString();
   1824       StringRef   PartMatchName(PartMatchStr);
   1825       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1826                                            Exp->getExprLoc(), &PartMatchName);
   1827     } else {
   1828       // Warn that there's no match at all.
   1829       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1830                                            Exp->getExprLoc());
   1831     }
   1832     NoError = false;
   1833   }
   1834   // Make sure the mutex we found is the right kind.
   1835   if (NoError && LDat && !LDat->isAtLeast(LK))
   1836     Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1837                                          Exp->getExprLoc());
   1838 }
   1839 
   1840 /// \brief Warn if the LSet contains the given lock.
   1841 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp,
   1842                                    Expr *MutexExp) {
   1843   SExpr Mutex(MutexExp, Exp, D);
   1844   if (!Mutex.isValid()) {
   1845     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
   1846     return;
   1847   }
   1848 
   1849   LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
   1850   if (LDat) {
   1851     std::string DeclName = D->getNameAsString();
   1852     StringRef   DeclNameSR (DeclName);
   1853     Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
   1854                                             Exp->getExprLoc());
   1855   }
   1856 }
   1857 
   1858 
   1859 /// \brief Checks guarded_by and pt_guarded_by attributes.
   1860 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
   1861 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
   1862 /// Similarly, we check if the access is to an expression that dereferences
   1863 /// a pointer marked with pt_guarded_by.
   1864 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
   1865   Exp = Exp->IgnoreParenCasts();
   1866 
   1867   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
   1868     // For dereferences
   1869     if (UO->getOpcode() == clang::UO_Deref)
   1870       checkPtAccess(UO->getSubExpr(), AK);
   1871     return;
   1872   }
   1873 
   1874   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
   1875     if (ME->isArrow())
   1876       checkPtAccess(ME->getBase(), AK);
   1877     else
   1878       checkAccess(ME->getBase(), AK);
   1879   }
   1880 
   1881   const ValueDecl *D = getValueDecl(Exp);
   1882   if (!D || !D->hasAttrs())
   1883     return;
   1884 
   1885   if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
   1886     Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
   1887                                         Exp->getExprLoc());
   1888 
   1889   const AttrVec &ArgAttrs = D->getAttrs();
   1890   for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
   1891     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
   1892       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
   1893 }
   1894 
   1895 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
   1896 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
   1897   Exp = Exp->IgnoreParenCasts();
   1898 
   1899   const ValueDecl *D = getValueDecl(Exp);
   1900   if (!D || !D->hasAttrs())
   1901     return;
   1902 
   1903   if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
   1904     Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
   1905                                         Exp->getExprLoc());
   1906 
   1907   const AttrVec &ArgAttrs = D->getAttrs();
   1908   for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
   1909     if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
   1910       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference);
   1911 }
   1912 
   1913 
   1914 /// \brief Process a function call, method call, constructor call,
   1915 /// or destructor call.  This involves looking at the attributes on the
   1916 /// corresponding function/method/constructor/destructor, issuing warnings,
   1917 /// and updating the locksets accordingly.
   1918 ///
   1919 /// FIXME: For classes annotated with one of the guarded annotations, we need
   1920 /// to treat const method calls as reads and non-const method calls as writes,
   1921 /// and check that the appropriate locks are held. Non-const method calls with
   1922 /// the same signature as const method calls can be also treated as reads.
   1923 ///
   1924 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
   1925   SourceLocation Loc = Exp->getExprLoc();
   1926   const AttrVec &ArgAttrs = D->getAttrs();
   1927   MutexIDList ExclusiveLocksToAdd;
   1928   MutexIDList SharedLocksToAdd;
   1929   MutexIDList LocksToRemove;
   1930 
   1931   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
   1932     Attr *At = const_cast<Attr*>(ArgAttrs[i]);
   1933     switch (At->getKind()) {
   1934       // When we encounter an exclusive lock function, we need to add the lock
   1935       // to our lockset with kind exclusive.
   1936       case attr::ExclusiveLockFunction: {
   1937         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
   1938         Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
   1939         break;
   1940       }
   1941 
   1942       // When we encounter a shared lock function, we need to add the lock
   1943       // to our lockset with kind shared.
   1944       case attr::SharedLockFunction: {
   1945         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
   1946         Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
   1947         break;
   1948       }
   1949 
   1950       // An assert will add a lock to the lockset, but will not generate
   1951       // a warning if it is already there, and will not generate a warning
   1952       // if it is not removed.
   1953       case attr::AssertExclusiveLock: {
   1954         AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
   1955 
   1956         MutexIDList AssertLocks;
   1957         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1958         for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
   1959           Analyzer->addLock(FSet, AssertLocks[i],
   1960                             LockData(Loc, LK_Exclusive, false, true));
   1961         }
   1962         break;
   1963       }
   1964       case attr::AssertSharedLock: {
   1965         AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
   1966 
   1967         MutexIDList AssertLocks;
   1968         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1969         for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
   1970           Analyzer->addLock(FSet, AssertLocks[i],
   1971                             LockData(Loc, LK_Shared, false, true));
   1972         }
   1973         break;
   1974       }
   1975 
   1976       // When we encounter an unlock function, we need to remove unlocked
   1977       // mutexes from the lockset, and flag a warning if they are not there.
   1978       case attr::UnlockFunction: {
   1979         UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
   1980         Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
   1981         break;
   1982       }
   1983 
   1984       case attr::ExclusiveLocksRequired: {
   1985         ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
   1986 
   1987         for (ExclusiveLocksRequiredAttr::args_iterator
   1988              I = A->args_begin(), E = A->args_end(); I != E; ++I)
   1989           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
   1990         break;
   1991       }
   1992 
   1993       case attr::SharedLocksRequired: {
   1994         SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
   1995 
   1996         for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
   1997              E = A->args_end(); I != E; ++I)
   1998           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
   1999         break;
   2000       }
   2001 
   2002       case attr::LocksExcluded: {
   2003         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
   2004 
   2005         for (LocksExcludedAttr::args_iterator I = A->args_begin(),
   2006             E = A->args_end(); I != E; ++I) {
   2007           warnIfMutexHeld(D, Exp, *I);
   2008         }
   2009         break;
   2010       }
   2011 
   2012       // Ignore other (non thread-safety) attributes
   2013       default:
   2014         break;
   2015     }
   2016   }
   2017 
   2018   // Figure out if we're calling the constructor of scoped lockable class
   2019   bool isScopedVar = false;
   2020   if (VD) {
   2021     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
   2022       const CXXRecordDecl* PD = CD->getParent();
   2023       if (PD && PD->getAttr<ScopedLockableAttr>())
   2024         isScopedVar = true;
   2025     }
   2026   }
   2027 
   2028   // Add locks.
   2029   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   2030     Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
   2031                             LockData(Loc, LK_Exclusive, isScopedVar));
   2032   }
   2033   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   2034     Analyzer->addLock(FSet, SharedLocksToAdd[i],
   2035                             LockData(Loc, LK_Shared, isScopedVar));
   2036   }
   2037 
   2038   // Add the managing object as a dummy mutex, mapped to the underlying mutex.
   2039   // FIXME -- this doesn't work if we acquire multiple locks.
   2040   if (isScopedVar) {
   2041     SourceLocation MLoc = VD->getLocation();
   2042     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
   2043     SExpr SMutex(&DRE, 0, 0);
   2044 
   2045     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   2046       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
   2047                                                ExclusiveLocksToAdd[i]));
   2048     }
   2049     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   2050       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
   2051                                                SharedLocksToAdd[i]));
   2052     }
   2053   }
   2054 
   2055   // Remove locks.
   2056   // FIXME -- should only fully remove if the attribute refers to 'this'.
   2057   bool Dtor = isa<CXXDestructorDecl>(D);
   2058   for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
   2059     Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
   2060   }
   2061 }
   2062 
   2063 
   2064 /// \brief For unary operations which read and write a variable, we need to
   2065 /// check whether we hold any required mutexes. Reads are checked in
   2066 /// VisitCastExpr.
   2067 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
   2068   switch (UO->getOpcode()) {
   2069     case clang::UO_PostDec:
   2070     case clang::UO_PostInc:
   2071     case clang::UO_PreDec:
   2072     case clang::UO_PreInc: {
   2073       checkAccess(UO->getSubExpr(), AK_Written);
   2074       break;
   2075     }
   2076     default:
   2077       break;
   2078   }
   2079 }
   2080 
   2081 /// For binary operations which assign to a variable (writes), we need to check
   2082 /// whether we hold any required mutexes.
   2083 /// FIXME: Deal with non-primitive types.
   2084 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
   2085   if (!BO->isAssignmentOp())
   2086     return;
   2087 
   2088   // adjust the context
   2089   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
   2090 
   2091   checkAccess(BO->getLHS(), AK_Written);
   2092 }
   2093 
   2094 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
   2095 /// need to ensure we hold any required mutexes.
   2096 /// FIXME: Deal with non-primitive types.
   2097 void BuildLockset::VisitCastExpr(CastExpr *CE) {
   2098   if (CE->getCastKind() != CK_LValueToRValue)
   2099     return;
   2100   checkAccess(CE->getSubExpr(), AK_Read);
   2101 }
   2102 
   2103 
   2104 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
   2105   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
   2106     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
   2107     // ME can be null when calling a method pointer
   2108     CXXMethodDecl *MD = CE->getMethodDecl();
   2109 
   2110     if (ME && MD) {
   2111       if (ME->isArrow()) {
   2112         if (MD->isConst()) {
   2113           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   2114         } else {  // FIXME -- should be AK_Written
   2115           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   2116         }
   2117       } else {
   2118         if (MD->isConst())
   2119           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   2120         else     // FIXME -- should be AK_Written
   2121           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   2122       }
   2123     }
   2124   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
   2125     switch (OE->getOperator()) {
   2126       case OO_Equal: {
   2127         const Expr *Target = OE->getArg(0);
   2128         const Expr *Source = OE->getArg(1);
   2129         checkAccess(Target, AK_Written);
   2130         checkAccess(Source, AK_Read);
   2131         break;
   2132       }
   2133       default: {
   2134         const Expr *Source = OE->getArg(0);
   2135         checkAccess(Source, AK_Read);
   2136         break;
   2137       }
   2138     }
   2139   }
   2140   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   2141   if(!D || !D->hasAttrs())
   2142     return;
   2143   handleCall(Exp, D);
   2144 }
   2145 
   2146 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
   2147   const CXXConstructorDecl *D = Exp->getConstructor();
   2148   if (D && D->isCopyConstructor()) {
   2149     const Expr* Source = Exp->getArg(0);
   2150     checkAccess(Source, AK_Read);
   2151   }
   2152   // FIXME -- only handles constructors in DeclStmt below.
   2153 }
   2154 
   2155 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
   2156   // adjust the context
   2157   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
   2158 
   2159   DeclGroupRef DGrp = S->getDeclGroup();
   2160   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
   2161     Decl *D = *I;
   2162     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
   2163       Expr *E = VD->getInit();
   2164       // handle constructors that involve temporaries
   2165       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
   2166         E = EWC->getSubExpr();
   2167 
   2168       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
   2169         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
   2170         if (!CtorD || !CtorD->hasAttrs())
   2171           return;
   2172         handleCall(CE, CtorD, VD);
   2173       }
   2174     }
   2175   }
   2176 }
   2177 
   2178 
   2179 
   2180 /// \brief Compute the intersection of two locksets and issue warnings for any
   2181 /// locks in the symmetric difference.
   2182 ///
   2183 /// This function is used at a merge point in the CFG when comparing the lockset
   2184 /// of each branch being merged. For example, given the following sequence:
   2185 /// A; if () then B; else C; D; we need to check that the lockset after B and C
   2186 /// are the same. In the event of a difference, we use the intersection of these
   2187 /// two locksets at the start of D.
   2188 ///
   2189 /// \param FSet1 The first lockset.
   2190 /// \param FSet2 The second lockset.
   2191 /// \param JoinLoc The location of the join point for error reporting
   2192 /// \param LEK1 The error message to report if a mutex is missing from LSet1
   2193 /// \param LEK2 The error message to report if a mutex is missing from Lset2
   2194 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
   2195                                             const FactSet &FSet2,
   2196                                             SourceLocation JoinLoc,
   2197                                             LockErrorKind LEK1,
   2198                                             LockErrorKind LEK2,
   2199                                             bool Modify) {
   2200   FactSet FSet1Orig = FSet1;
   2201 
   2202   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
   2203   for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
   2204        I != E; ++I) {
   2205     const SExpr &FSet2Mutex = FactMan[*I].MutID;
   2206     const LockData &LDat2 = FactMan[*I].LDat;
   2207     FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
   2208 
   2209     if (I1 != FSet1.end()) {
   2210       const LockData* LDat1 = &FactMan[*I1].LDat;
   2211       if (LDat1->LKind != LDat2.LKind) {
   2212         Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
   2213                                          LDat2.AcquireLoc,
   2214                                          LDat1->AcquireLoc);
   2215         if (Modify && LDat1->LKind != LK_Exclusive) {
   2216           // Take the exclusive lock, which is the one in FSet2.
   2217           *I1 = *I;
   2218         }
   2219       }
   2220       else if (LDat1->Asserted && !LDat2.Asserted) {
   2221         // The non-asserted lock in FSet2 is the one we want to track.
   2222         *I1 = *I;
   2223       }
   2224     } else {
   2225       if (LDat2.UnderlyingMutex.isValid()) {
   2226         if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
   2227           // If this is a scoped lock that manages another mutex, and if the
   2228           // underlying mutex is still held, then warn about the underlying
   2229           // mutex.
   2230           Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
   2231                                             LDat2.AcquireLoc,
   2232                                             JoinLoc, LEK1);
   2233         }
   2234       }
   2235       else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted)
   2236         Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
   2237                                           LDat2.AcquireLoc,
   2238                                           JoinLoc, LEK1);
   2239     }
   2240   }
   2241 
   2242   // Find locks in FSet1 that are not in FSet2, and remove them.
   2243   for (FactSet::const_iterator I = FSet1Orig.begin(), E = FSet1Orig.end();
   2244        I != E; ++I) {
   2245     const SExpr &FSet1Mutex = FactMan[*I].MutID;
   2246     const LockData &LDat1 = FactMan[*I].LDat;
   2247 
   2248     if (!FSet2.findLock(FactMan, FSet1Mutex)) {
   2249       if (LDat1.UnderlyingMutex.isValid()) {
   2250         if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
   2251           // If this is a scoped lock that manages another mutex, and if the
   2252           // underlying mutex is still held, then warn about the underlying
   2253           // mutex.
   2254           Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
   2255                                             LDat1.AcquireLoc,
   2256                                             JoinLoc, LEK1);
   2257         }
   2258       }
   2259       else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted)
   2260         Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
   2261                                           LDat1.AcquireLoc,
   2262                                           JoinLoc, LEK2);
   2263       if (Modify)
   2264         FSet1.removeLock(FactMan, FSet1Mutex);
   2265     }
   2266   }
   2267 }
   2268 
   2269 
   2270 // Return true if block B never continues to its successors.
   2271 inline bool neverReturns(const CFGBlock* B) {
   2272   if (B->hasNoReturnElement())
   2273     return true;
   2274   if (B->empty())
   2275     return false;
   2276 
   2277   CFGElement Last = B->back();
   2278   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
   2279     if (isa<CXXThrowExpr>(S->getStmt()))
   2280       return true;
   2281   }
   2282   return false;
   2283 }
   2284 
   2285 
   2286 /// \brief Check a function's CFG for thread-safety violations.
   2287 ///
   2288 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2289 /// at the end of each block, and issue warnings for thread safety violations.
   2290 /// Each block in the CFG is traversed exactly once.
   2291 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
   2292   CFG *CFGraph = AC.getCFG();
   2293   if (!CFGraph) return;
   2294   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
   2295 
   2296   // AC.dumpCFG(true);
   2297 
   2298   if (!D)
   2299     return;  // Ignore anonymous functions for now.
   2300   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
   2301     return;
   2302   // FIXME: Do something a bit more intelligent inside constructor and
   2303   // destructor code.  Constructors and destructors must assume unique access
   2304   // to 'this', so checks on member variable access is disabled, but we should
   2305   // still enable checks on other objects.
   2306   if (isa<CXXConstructorDecl>(D))
   2307     return;  // Don't check inside constructors.
   2308   if (isa<CXXDestructorDecl>(D))
   2309     return;  // Don't check inside destructors.
   2310 
   2311   BlockInfo.resize(CFGraph->getNumBlockIDs(),
   2312     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
   2313 
   2314   // We need to explore the CFG via a "topological" ordering.
   2315   // That way, we will be guaranteed to have information about required
   2316   // predecessor locksets when exploring a new block.
   2317   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
   2318   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   2319 
   2320   // Mark entry block as reachable
   2321   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
   2322 
   2323   // Compute SSA names for local variables
   2324   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
   2325 
   2326   // Fill in source locations for all CFGBlocks.
   2327   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
   2328 
   2329   MutexIDList ExclusiveLocksAcquired;
   2330   MutexIDList SharedLocksAcquired;
   2331   MutexIDList LocksReleased;
   2332 
   2333   // Add locks from exclusive_locks_required and shared_locks_required
   2334   // to initial lockset. Also turn off checking for lock and unlock functions.
   2335   // FIXME: is there a more intelligent way to check lock/unlock functions?
   2336   if (!SortedGraph->empty() && D->hasAttrs()) {
   2337     const CFGBlock *FirstBlock = *SortedGraph->begin();
   2338     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
   2339     const AttrVec &ArgAttrs = D->getAttrs();
   2340 
   2341     MutexIDList ExclusiveLocksToAdd;
   2342     MutexIDList SharedLocksToAdd;
   2343 
   2344     SourceLocation Loc = D->getLocation();
   2345     for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
   2346       Attr *Attr = ArgAttrs[i];
   2347       Loc = Attr->getLocation();
   2348       if (ExclusiveLocksRequiredAttr *A
   2349             = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
   2350         getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
   2351       } else if (SharedLocksRequiredAttr *A
   2352                    = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
   2353         getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
   2354       } else if (UnlockFunctionAttr *A = dyn_cast<UnlockFunctionAttr>(Attr)) {
   2355         if (!Handler.issueBetaWarnings())
   2356           return;
   2357         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
   2358         // We must ignore such methods.
   2359         if (A->args_size() == 0)
   2360           return;
   2361         // FIXME -- deal with exclusive vs. shared unlock functions?
   2362         getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
   2363         getMutexIDs(LocksReleased, A, (Expr*) 0, D);
   2364       } else if (ExclusiveLockFunctionAttr *A
   2365                    = dyn_cast<ExclusiveLockFunctionAttr>(Attr)) {
   2366         if (!Handler.issueBetaWarnings())
   2367           return;
   2368         if (A->args_size() == 0)
   2369           return;
   2370         getMutexIDs(ExclusiveLocksAcquired, A, (Expr*) 0, D);
   2371       } else if (SharedLockFunctionAttr *A
   2372                    = dyn_cast<SharedLockFunctionAttr>(Attr)) {
   2373         if (!Handler.issueBetaWarnings())
   2374           return;
   2375         if (A->args_size() == 0)
   2376           return;
   2377         getMutexIDs(SharedLocksAcquired, A, (Expr*) 0, D);
   2378       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
   2379         // Don't try to check trylock functions for now
   2380         return;
   2381       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
   2382         // Don't try to check trylock functions for now
   2383         return;
   2384       }
   2385     }
   2386 
   2387     // FIXME -- Loc can be wrong here.
   2388     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   2389       addLock(InitialLockset, ExclusiveLocksToAdd[i],
   2390               LockData(Loc, LK_Exclusive));
   2391     }
   2392     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   2393       addLock(InitialLockset, SharedLocksToAdd[i],
   2394               LockData(Loc, LK_Shared));
   2395     }
   2396   }
   2397 
   2398   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   2399        E = SortedGraph->end(); I!= E; ++I) {
   2400     const CFGBlock *CurrBlock = *I;
   2401     int CurrBlockID = CurrBlock->getBlockID();
   2402     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   2403 
   2404     // Use the default initial lockset in case there are no predecessors.
   2405     VisitedBlocks.insert(CurrBlock);
   2406 
   2407     // Iterate through the predecessor blocks and warn if the lockset for all
   2408     // predecessors is not the same. We take the entry lockset of the current
   2409     // block to be the intersection of all previous locksets.
   2410     // FIXME: By keeping the intersection, we may output more errors in future
   2411     // for a lock which is not in the intersection, but was in the union. We
   2412     // may want to also keep the union in future. As an example, let's say
   2413     // the intersection contains Mutex L, and the union contains L and M.
   2414     // Later we unlock M. At this point, we would output an error because we
   2415     // never locked M; although the real error is probably that we forgot to
   2416     // lock M on all code paths. Conversely, let's say that later we lock M.
   2417     // In this case, we should compare against the intersection instead of the
   2418     // union because the real error is probably that we forgot to unlock M on
   2419     // all code paths.
   2420     bool LocksetInitialized = false;
   2421     SmallVector<CFGBlock *, 8> SpecialBlocks;
   2422     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   2423          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   2424 
   2425       // if *PI -> CurrBlock is a back edge
   2426       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
   2427         continue;
   2428 
   2429       int PrevBlockID = (*PI)->getBlockID();
   2430       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2431 
   2432       // Ignore edges from blocks that can't return.
   2433       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
   2434         continue;
   2435 
   2436       // Okay, we can reach this block from the entry.
   2437       CurrBlockInfo->Reachable = true;
   2438 
   2439       // If the previous block ended in a 'continue' or 'break' statement, then
   2440       // a difference in locksets is probably due to a bug in that block, rather
   2441       // than in some other predecessor. In that case, keep the other
   2442       // predecessor's lockset.
   2443       if (const Stmt *Terminator = (*PI)->getTerminator()) {
   2444         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
   2445           SpecialBlocks.push_back(*PI);
   2446           continue;
   2447         }
   2448       }
   2449 
   2450       FactSet PrevLockset;
   2451       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
   2452 
   2453       if (!LocksetInitialized) {
   2454         CurrBlockInfo->EntrySet = PrevLockset;
   2455         LocksetInitialized = true;
   2456       } else {
   2457         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2458                          CurrBlockInfo->EntryLoc,
   2459                          LEK_LockedSomePredecessors);
   2460       }
   2461     }
   2462 
   2463     // Skip rest of block if it's not reachable.
   2464     if (!CurrBlockInfo->Reachable)
   2465       continue;
   2466 
   2467     // Process continue and break blocks. Assume that the lockset for the
   2468     // resulting block is unaffected by any discrepancies in them.
   2469     for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
   2470          SpecialI < SpecialN; ++SpecialI) {
   2471       CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
   2472       int PrevBlockID = PrevBlock->getBlockID();
   2473       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2474 
   2475       if (!LocksetInitialized) {
   2476         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
   2477         LocksetInitialized = true;
   2478       } else {
   2479         // Determine whether this edge is a loop terminator for diagnostic
   2480         // purposes. FIXME: A 'break' statement might be a loop terminator, but
   2481         // it might also be part of a switch. Also, a subsequent destructor
   2482         // might add to the lockset, in which case the real issue might be a
   2483         // double lock on the other path.
   2484         const Stmt *Terminator = PrevBlock->getTerminator();
   2485         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
   2486 
   2487         FactSet PrevLockset;
   2488         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
   2489                        PrevBlock, CurrBlock);
   2490 
   2491         // Do not update EntrySet.
   2492         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2493                          PrevBlockInfo->ExitLoc,
   2494                          IsLoop ? LEK_LockedSomeLoopIterations
   2495                                 : LEK_LockedSomePredecessors,
   2496                          false);
   2497       }
   2498     }
   2499 
   2500     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
   2501 
   2502     // Visit all the statements in the basic block.
   2503     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   2504          BE = CurrBlock->end(); BI != BE; ++BI) {
   2505       switch (BI->getKind()) {
   2506         case CFGElement::Statement: {
   2507           CFGStmt CS = BI->castAs<CFGStmt>();
   2508           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
   2509           break;
   2510         }
   2511         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
   2512         case CFGElement::AutomaticObjectDtor: {
   2513           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
   2514           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
   2515               AD.getDestructorDecl(AC.getASTContext()));
   2516           if (!DD->hasAttrs())
   2517             break;
   2518 
   2519           // Create a dummy expression,
   2520           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
   2521           DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
   2522                           AD.getTriggerStmt()->getLocEnd());
   2523           LocksetBuilder.handleCall(&DRE, DD);
   2524           break;
   2525         }
   2526         default:
   2527           break;
   2528       }
   2529     }
   2530     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
   2531 
   2532     // For every back edge from CurrBlock (the end of the loop) to another block
   2533     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
   2534     // the one held at the beginning of FirstLoopBlock. We can look up the
   2535     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
   2536     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   2537          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   2538 
   2539       // if CurrBlock -> *SI is *not* a back edge
   2540       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
   2541         continue;
   2542 
   2543       CFGBlock *FirstLoopBlock = *SI;
   2544       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
   2545       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
   2546       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
   2547                        PreLoop->EntryLoc,
   2548                        LEK_LockedSomeLoopIterations,
   2549                        false);
   2550     }
   2551   }
   2552 
   2553   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
   2554   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
   2555 
   2556   // Skip the final check if the exit block is unreachable.
   2557   if (!Final->Reachable)
   2558     return;
   2559 
   2560   // By default, we expect all locks held on entry to be held on exit.
   2561   FactSet ExpectedExitSet = Initial->EntrySet;
   2562 
   2563   // Adjust the expected exit set by adding or removing locks, as declared
   2564   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
   2565   // issue the appropriate warning.
   2566   // FIXME: the location here is not quite right.
   2567   for (unsigned i=0,n=ExclusiveLocksAcquired.size(); i<n; ++i) {
   2568     ExpectedExitSet.addLock(FactMan, ExclusiveLocksAcquired[i],
   2569                             LockData(D->getLocation(), LK_Exclusive));
   2570   }
   2571   for (unsigned i=0,n=SharedLocksAcquired.size(); i<n; ++i) {
   2572     ExpectedExitSet.addLock(FactMan, SharedLocksAcquired[i],
   2573                             LockData(D->getLocation(), LK_Shared));
   2574   }
   2575   for (unsigned i=0,n=LocksReleased.size(); i<n; ++i) {
   2576     ExpectedExitSet.removeLock(FactMan, LocksReleased[i]);
   2577   }
   2578 
   2579   // FIXME: Should we call this function for all blocks which exit the function?
   2580   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
   2581                    Final->ExitLoc,
   2582                    LEK_LockedAtEndOfFunction,
   2583                    LEK_NotLockedAtEndOfFunction,
   2584                    false);
   2585 }
   2586 
   2587 } // end anonymous namespace
   2588 
   2589 
   2590 namespace clang {
   2591 namespace thread_safety {
   2592 
   2593 /// \brief Check a function's CFG for thread-safety violations.
   2594 ///
   2595 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2596 /// at the end of each block, and issue warnings for thread safety violations.
   2597 /// Each block in the CFG is traversed exactly once.
   2598 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
   2599                              ThreadSafetyHandler &Handler) {
   2600   ThreadSafetyAnalyzer Analyzer(Handler);
   2601   Analyzer.runAnalysis(AC);
   2602 }
   2603 
   2604 /// \brief Helper function that returns a LockKind required for the given level
   2605 /// of access.
   2606 LockKind getLockKindFromAccessKind(AccessKind AK) {
   2607   switch (AK) {
   2608     case AK_Read :
   2609       return LK_Shared;
   2610     case AK_Written :
   2611       return LK_Exclusive;
   2612   }
   2613   llvm_unreachable("Unknown AccessKind");
   2614 }
   2615 
   2616 }} // end namespace clang::thread_safety
   2617