1 //===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ValueMap class. ValueMap maps Value* or any subclass 11 // to an arbitrary other type. It provides the DenseMap interface but updates 12 // itself to remain safe when keys are RAUWed or deleted. By default, when a 13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new 14 // mapping V2->target is added. If V2 already existed, its old target is 15 // overwritten. When a key is deleted, its mapping is removed. 16 // 17 // You can override a ValueMap's Config parameter to control exactly what 18 // happens on RAUW and destruction and to get called back on each event. It's 19 // legal to call back into the ValueMap from a Config's callbacks. Config 20 // parameters should inherit from ValueMapConfig<KeyT> to get default 21 // implementations of all the methods ValueMap uses. See ValueMapConfig for 22 // documentation of the functions you can override. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_ADT_VALUEMAP_H 27 #define LLVM_ADT_VALUEMAP_H 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/Support/Mutex.h" 31 #include "llvm/Support/ValueHandle.h" 32 #include "llvm/Support/type_traits.h" 33 #include <iterator> 34 35 namespace llvm { 36 37 template<typename KeyT, typename ValueT, typename Config> 38 class ValueMapCallbackVH; 39 40 template<typename DenseMapT, typename KeyT> 41 class ValueMapIterator; 42 template<typename DenseMapT, typename KeyT> 43 class ValueMapConstIterator; 44 45 /// This class defines the default behavior for configurable aspects of 46 /// ValueMap<>. User Configs should inherit from this class to be as compatible 47 /// as possible with future versions of ValueMap. 48 template<typename KeyT> 49 struct ValueMapConfig { 50 /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's 51 /// false, the ValueMap will leave the original mapping in place. 52 enum { FollowRAUW = true }; 53 54 // All methods will be called with a first argument of type ExtraData. The 55 // default implementations in this class take a templated first argument so 56 // that users' subclasses can use any type they want without having to 57 // override all the defaults. 58 struct ExtraData {}; 59 60 template<typename ExtraDataT> 61 static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {} 62 template<typename ExtraDataT> 63 static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {} 64 65 /// Returns a mutex that should be acquired around any changes to the map. 66 /// This is only acquired from the CallbackVH (and held around calls to onRAUW 67 /// and onDelete) and not inside other ValueMap methods. NULL means that no 68 /// mutex is necessary. 69 template<typename ExtraDataT> 70 static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; } 71 }; 72 73 /// See the file comment. 74 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> > 75 class ValueMap { 76 friend class ValueMapCallbackVH<KeyT, ValueT, Config>; 77 typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH; 78 typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT; 79 typedef typename Config::ExtraData ExtraData; 80 MapT Map; 81 ExtraData Data; 82 ValueMap(const ValueMap&) LLVM_DELETED_FUNCTION; 83 ValueMap& operator=(const ValueMap&) LLVM_DELETED_FUNCTION; 84 public: 85 typedef KeyT key_type; 86 typedef ValueT mapped_type; 87 typedef std::pair<KeyT, ValueT> value_type; 88 89 explicit ValueMap(unsigned NumInitBuckets = 64) 90 : Map(NumInitBuckets), Data() {} 91 explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64) 92 : Map(NumInitBuckets), Data(Data) {} 93 94 ~ValueMap() {} 95 96 typedef ValueMapIterator<MapT, KeyT> iterator; 97 typedef ValueMapConstIterator<MapT, KeyT> const_iterator; 98 inline iterator begin() { return iterator(Map.begin()); } 99 inline iterator end() { return iterator(Map.end()); } 100 inline const_iterator begin() const { return const_iterator(Map.begin()); } 101 inline const_iterator end() const { return const_iterator(Map.end()); } 102 103 bool empty() const { return Map.empty(); } 104 unsigned size() const { return Map.size(); } 105 106 /// Grow the map so that it has at least Size buckets. Does not shrink 107 void resize(size_t Size) { Map.resize(Size); } 108 109 void clear() { Map.clear(); } 110 111 /// count - Return true if the specified key is in the map. 112 bool count(const KeyT &Val) const { 113 return Map.find_as(Val) != Map.end(); 114 } 115 116 iterator find(const KeyT &Val) { 117 return iterator(Map.find_as(Val)); 118 } 119 const_iterator find(const KeyT &Val) const { 120 return const_iterator(Map.find_as(Val)); 121 } 122 123 /// lookup - Return the entry for the specified key, or a default 124 /// constructed value if no such entry exists. 125 ValueT lookup(const KeyT &Val) const { 126 typename MapT::const_iterator I = Map.find_as(Val); 127 return I != Map.end() ? I->second : ValueT(); 128 } 129 130 // Inserts key,value pair into the map if the key isn't already in the map. 131 // If the key is already in the map, it returns false and doesn't update the 132 // value. 133 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { 134 std::pair<typename MapT::iterator, bool> map_result= 135 Map.insert(std::make_pair(Wrap(KV.first), KV.second)); 136 return std::make_pair(iterator(map_result.first), map_result.second); 137 } 138 139 /// insert - Range insertion of pairs. 140 template<typename InputIt> 141 void insert(InputIt I, InputIt E) { 142 for (; I != E; ++I) 143 insert(*I); 144 } 145 146 147 bool erase(const KeyT &Val) { 148 typename MapT::iterator I = Map.find_as(Val); 149 if (I == Map.end()) 150 return false; 151 152 Map.erase(I); 153 return true; 154 } 155 void erase(iterator I) { 156 return Map.erase(I.base()); 157 } 158 159 value_type& FindAndConstruct(const KeyT &Key) { 160 return Map.FindAndConstruct(Wrap(Key)); 161 } 162 163 ValueT &operator[](const KeyT &Key) { 164 return Map[Wrap(Key)]; 165 } 166 167 /// isPointerIntoBucketsArray - Return true if the specified pointer points 168 /// somewhere into the ValueMap's array of buckets (i.e. either to a key or 169 /// value in the ValueMap). 170 bool isPointerIntoBucketsArray(const void *Ptr) const { 171 return Map.isPointerIntoBucketsArray(Ptr); 172 } 173 174 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets 175 /// array. In conjunction with the previous method, this can be used to 176 /// determine whether an insertion caused the ValueMap to reallocate. 177 const void *getPointerIntoBucketsArray() const { 178 return Map.getPointerIntoBucketsArray(); 179 } 180 181 private: 182 // Takes a key being looked up in the map and wraps it into a 183 // ValueMapCallbackVH, the actual key type of the map. We use a helper 184 // function because ValueMapCVH is constructed with a second parameter. 185 ValueMapCVH Wrap(KeyT key) const { 186 // The only way the resulting CallbackVH could try to modify *this (making 187 // the const_cast incorrect) is if it gets inserted into the map. But then 188 // this function must have been called from a non-const method, making the 189 // const_cast ok. 190 return ValueMapCVH(key, const_cast<ValueMap*>(this)); 191 } 192 }; 193 194 // This CallbackVH updates its ValueMap when the contained Value changes, 195 // according to the user's preferences expressed through the Config object. 196 template<typename KeyT, typename ValueT, typename Config> 197 class ValueMapCallbackVH : public CallbackVH { 198 friend class ValueMap<KeyT, ValueT, Config>; 199 friend struct DenseMapInfo<ValueMapCallbackVH>; 200 typedef ValueMap<KeyT, ValueT, Config> ValueMapT; 201 typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT; 202 203 ValueMapT *Map; 204 205 ValueMapCallbackVH(KeyT Key, ValueMapT *Map) 206 : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))), 207 Map(Map) {} 208 209 public: 210 KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); } 211 212 virtual void deleted() { 213 // Make a copy that won't get changed even when *this is destroyed. 214 ValueMapCallbackVH Copy(*this); 215 sys::Mutex *M = Config::getMutex(Copy.Map->Data); 216 if (M) 217 M->acquire(); 218 Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this. 219 Copy.Map->Map.erase(Copy); // Definitely destroys *this. 220 if (M) 221 M->release(); 222 } 223 virtual void allUsesReplacedWith(Value *new_key) { 224 assert(isa<KeySansPointerT>(new_key) && 225 "Invalid RAUW on key of ValueMap<>"); 226 // Make a copy that won't get changed even when *this is destroyed. 227 ValueMapCallbackVH Copy(*this); 228 sys::Mutex *M = Config::getMutex(Copy.Map->Data); 229 if (M) 230 M->acquire(); 231 232 KeyT typed_new_key = cast<KeySansPointerT>(new_key); 233 // Can destroy *this: 234 Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key); 235 if (Config::FollowRAUW) { 236 typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy); 237 // I could == Copy.Map->Map.end() if the onRAUW callback already 238 // removed the old mapping. 239 if (I != Copy.Map->Map.end()) { 240 ValueT Target(I->second); 241 Copy.Map->Map.erase(I); // Definitely destroys *this. 242 Copy.Map->insert(std::make_pair(typed_new_key, Target)); 243 } 244 } 245 if (M) 246 M->release(); 247 } 248 }; 249 250 template<typename KeyT, typename ValueT, typename Config> 251 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > { 252 typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH; 253 typedef DenseMapInfo<KeyT> PointerInfo; 254 255 static inline VH getEmptyKey() { 256 return VH(PointerInfo::getEmptyKey(), NULL); 257 } 258 static inline VH getTombstoneKey() { 259 return VH(PointerInfo::getTombstoneKey(), NULL); 260 } 261 static unsigned getHashValue(const VH &Val) { 262 return PointerInfo::getHashValue(Val.Unwrap()); 263 } 264 static unsigned getHashValue(const KeyT &Val) { 265 return PointerInfo::getHashValue(Val); 266 } 267 static bool isEqual(const VH &LHS, const VH &RHS) { 268 return LHS == RHS; 269 } 270 static bool isEqual(const KeyT &LHS, const VH &RHS) { 271 return LHS == RHS.getValPtr(); 272 } 273 }; 274 275 276 template<typename DenseMapT, typename KeyT> 277 class ValueMapIterator : 278 public std::iterator<std::forward_iterator_tag, 279 std::pair<KeyT, typename DenseMapT::mapped_type>, 280 ptrdiff_t> { 281 typedef typename DenseMapT::iterator BaseT; 282 typedef typename DenseMapT::mapped_type ValueT; 283 BaseT I; 284 public: 285 ValueMapIterator() : I() {} 286 287 ValueMapIterator(BaseT I) : I(I) {} 288 289 BaseT base() const { return I; } 290 291 struct ValueTypeProxy { 292 const KeyT first; 293 ValueT& second; 294 ValueTypeProxy *operator->() { return this; } 295 operator std::pair<KeyT, ValueT>() const { 296 return std::make_pair(first, second); 297 } 298 }; 299 300 ValueTypeProxy operator*() const { 301 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 302 return Result; 303 } 304 305 ValueTypeProxy operator->() const { 306 return operator*(); 307 } 308 309 bool operator==(const ValueMapIterator &RHS) const { 310 return I == RHS.I; 311 } 312 bool operator!=(const ValueMapIterator &RHS) const { 313 return I != RHS.I; 314 } 315 316 inline ValueMapIterator& operator++() { // Preincrement 317 ++I; 318 return *this; 319 } 320 ValueMapIterator operator++(int) { // Postincrement 321 ValueMapIterator tmp = *this; ++*this; return tmp; 322 } 323 }; 324 325 template<typename DenseMapT, typename KeyT> 326 class ValueMapConstIterator : 327 public std::iterator<std::forward_iterator_tag, 328 std::pair<KeyT, typename DenseMapT::mapped_type>, 329 ptrdiff_t> { 330 typedef typename DenseMapT::const_iterator BaseT; 331 typedef typename DenseMapT::mapped_type ValueT; 332 BaseT I; 333 public: 334 ValueMapConstIterator() : I() {} 335 ValueMapConstIterator(BaseT I) : I(I) {} 336 ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other) 337 : I(Other.base()) {} 338 339 BaseT base() const { return I; } 340 341 struct ValueTypeProxy { 342 const KeyT first; 343 const ValueT& second; 344 ValueTypeProxy *operator->() { return this; } 345 operator std::pair<KeyT, ValueT>() const { 346 return std::make_pair(first, second); 347 } 348 }; 349 350 ValueTypeProxy operator*() const { 351 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 352 return Result; 353 } 354 355 ValueTypeProxy operator->() const { 356 return operator*(); 357 } 358 359 bool operator==(const ValueMapConstIterator &RHS) const { 360 return I == RHS.I; 361 } 362 bool operator!=(const ValueMapConstIterator &RHS) const { 363 return I != RHS.I; 364 } 365 366 inline ValueMapConstIterator& operator++() { // Preincrement 367 ++I; 368 return *this; 369 } 370 ValueMapConstIterator operator++(int) { // Postincrement 371 ValueMapConstIterator tmp = *this; ++*this; return tmp; 372 } 373 }; 374 375 } // end namespace llvm 376 377 #endif 378