Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
     11 // to an arbitrary other type.  It provides the DenseMap interface but updates
     12 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
     13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
     14 // mapping V2->target is added.  If V2 already existed, its old target is
     15 // overwritten.  When a key is deleted, its mapping is removed.
     16 //
     17 // You can override a ValueMap's Config parameter to control exactly what
     18 // happens on RAUW and destruction and to get called back on each event.  It's
     19 // legal to call back into the ValueMap from a Config's callbacks.  Config
     20 // parameters should inherit from ValueMapConfig<KeyT> to get default
     21 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
     22 // documentation of the functions you can override.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #ifndef LLVM_ADT_VALUEMAP_H
     27 #define LLVM_ADT_VALUEMAP_H
     28 
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/Support/Mutex.h"
     31 #include "llvm/Support/ValueHandle.h"
     32 #include "llvm/Support/type_traits.h"
     33 #include <iterator>
     34 
     35 namespace llvm {
     36 
     37 template<typename KeyT, typename ValueT, typename Config>
     38 class ValueMapCallbackVH;
     39 
     40 template<typename DenseMapT, typename KeyT>
     41 class ValueMapIterator;
     42 template<typename DenseMapT, typename KeyT>
     43 class ValueMapConstIterator;
     44 
     45 /// This class defines the default behavior for configurable aspects of
     46 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
     47 /// as possible with future versions of ValueMap.
     48 template<typename KeyT>
     49 struct ValueMapConfig {
     50   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
     51   /// false, the ValueMap will leave the original mapping in place.
     52   enum { FollowRAUW = true };
     53 
     54   // All methods will be called with a first argument of type ExtraData.  The
     55   // default implementations in this class take a templated first argument so
     56   // that users' subclasses can use any type they want without having to
     57   // override all the defaults.
     58   struct ExtraData {};
     59 
     60   template<typename ExtraDataT>
     61   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
     62   template<typename ExtraDataT>
     63   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
     64 
     65   /// Returns a mutex that should be acquired around any changes to the map.
     66   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
     67   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
     68   /// mutex is necessary.
     69   template<typename ExtraDataT>
     70   static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; }
     71 };
     72 
     73 /// See the file comment.
     74 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> >
     75 class ValueMap {
     76   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
     77   typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH;
     78   typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT;
     79   typedef typename Config::ExtraData ExtraData;
     80   MapT Map;
     81   ExtraData Data;
     82   ValueMap(const ValueMap&) LLVM_DELETED_FUNCTION;
     83   ValueMap& operator=(const ValueMap&) LLVM_DELETED_FUNCTION;
     84 public:
     85   typedef KeyT key_type;
     86   typedef ValueT mapped_type;
     87   typedef std::pair<KeyT, ValueT> value_type;
     88 
     89   explicit ValueMap(unsigned NumInitBuckets = 64)
     90     : Map(NumInitBuckets), Data() {}
     91   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
     92     : Map(NumInitBuckets), Data(Data) {}
     93 
     94   ~ValueMap() {}
     95 
     96   typedef ValueMapIterator<MapT, KeyT> iterator;
     97   typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
     98   inline iterator begin() { return iterator(Map.begin()); }
     99   inline iterator end() { return iterator(Map.end()); }
    100   inline const_iterator begin() const { return const_iterator(Map.begin()); }
    101   inline const_iterator end() const { return const_iterator(Map.end()); }
    102 
    103   bool empty() const { return Map.empty(); }
    104   unsigned size() const { return Map.size(); }
    105 
    106   /// Grow the map so that it has at least Size buckets. Does not shrink
    107   void resize(size_t Size) { Map.resize(Size); }
    108 
    109   void clear() { Map.clear(); }
    110 
    111   /// count - Return true if the specified key is in the map.
    112   bool count(const KeyT &Val) const {
    113     return Map.find_as(Val) != Map.end();
    114   }
    115 
    116   iterator find(const KeyT &Val) {
    117     return iterator(Map.find_as(Val));
    118   }
    119   const_iterator find(const KeyT &Val) const {
    120     return const_iterator(Map.find_as(Val));
    121   }
    122 
    123   /// lookup - Return the entry for the specified key, or a default
    124   /// constructed value if no such entry exists.
    125   ValueT lookup(const KeyT &Val) const {
    126     typename MapT::const_iterator I = Map.find_as(Val);
    127     return I != Map.end() ? I->second : ValueT();
    128   }
    129 
    130   // Inserts key,value pair into the map if the key isn't already in the map.
    131   // If the key is already in the map, it returns false and doesn't update the
    132   // value.
    133   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    134     std::pair<typename MapT::iterator, bool> map_result=
    135       Map.insert(std::make_pair(Wrap(KV.first), KV.second));
    136     return std::make_pair(iterator(map_result.first), map_result.second);
    137   }
    138 
    139   /// insert - Range insertion of pairs.
    140   template<typename InputIt>
    141   void insert(InputIt I, InputIt E) {
    142     for (; I != E; ++I)
    143       insert(*I);
    144   }
    145 
    146 
    147   bool erase(const KeyT &Val) {
    148     typename MapT::iterator I = Map.find_as(Val);
    149     if (I == Map.end())
    150       return false;
    151 
    152     Map.erase(I);
    153     return true;
    154   }
    155   void erase(iterator I) {
    156     return Map.erase(I.base());
    157   }
    158 
    159   value_type& FindAndConstruct(const KeyT &Key) {
    160     return Map.FindAndConstruct(Wrap(Key));
    161   }
    162 
    163   ValueT &operator[](const KeyT &Key) {
    164     return Map[Wrap(Key)];
    165   }
    166 
    167   /// isPointerIntoBucketsArray - Return true if the specified pointer points
    168   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
    169   /// value in the ValueMap).
    170   bool isPointerIntoBucketsArray(const void *Ptr) const {
    171     return Map.isPointerIntoBucketsArray(Ptr);
    172   }
    173 
    174   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
    175   /// array.  In conjunction with the previous method, this can be used to
    176   /// determine whether an insertion caused the ValueMap to reallocate.
    177   const void *getPointerIntoBucketsArray() const {
    178     return Map.getPointerIntoBucketsArray();
    179   }
    180 
    181 private:
    182   // Takes a key being looked up in the map and wraps it into a
    183   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
    184   // function because ValueMapCVH is constructed with a second parameter.
    185   ValueMapCVH Wrap(KeyT key) const {
    186     // The only way the resulting CallbackVH could try to modify *this (making
    187     // the const_cast incorrect) is if it gets inserted into the map.  But then
    188     // this function must have been called from a non-const method, making the
    189     // const_cast ok.
    190     return ValueMapCVH(key, const_cast<ValueMap*>(this));
    191   }
    192 };
    193 
    194 // This CallbackVH updates its ValueMap when the contained Value changes,
    195 // according to the user's preferences expressed through the Config object.
    196 template<typename KeyT, typename ValueT, typename Config>
    197 class ValueMapCallbackVH : public CallbackVH {
    198   friend class ValueMap<KeyT, ValueT, Config>;
    199   friend struct DenseMapInfo<ValueMapCallbackVH>;
    200   typedef ValueMap<KeyT, ValueT, Config> ValueMapT;
    201   typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT;
    202 
    203   ValueMapT *Map;
    204 
    205   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
    206       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
    207         Map(Map) {}
    208 
    209 public:
    210   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
    211 
    212   virtual void deleted() {
    213     // Make a copy that won't get changed even when *this is destroyed.
    214     ValueMapCallbackVH Copy(*this);
    215     sys::Mutex *M = Config::getMutex(Copy.Map->Data);
    216     if (M)
    217       M->acquire();
    218     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
    219     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
    220     if (M)
    221       M->release();
    222   }
    223   virtual void allUsesReplacedWith(Value *new_key) {
    224     assert(isa<KeySansPointerT>(new_key) &&
    225            "Invalid RAUW on key of ValueMap<>");
    226     // Make a copy that won't get changed even when *this is destroyed.
    227     ValueMapCallbackVH Copy(*this);
    228     sys::Mutex *M = Config::getMutex(Copy.Map->Data);
    229     if (M)
    230       M->acquire();
    231 
    232     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
    233     // Can destroy *this:
    234     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
    235     if (Config::FollowRAUW) {
    236       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
    237       // I could == Copy.Map->Map.end() if the onRAUW callback already
    238       // removed the old mapping.
    239       if (I != Copy.Map->Map.end()) {
    240         ValueT Target(I->second);
    241         Copy.Map->Map.erase(I);  // Definitely destroys *this.
    242         Copy.Map->insert(std::make_pair(typed_new_key, Target));
    243       }
    244     }
    245     if (M)
    246       M->release();
    247   }
    248 };
    249 
    250 template<typename KeyT, typename ValueT, typename Config>
    251 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > {
    252   typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH;
    253   typedef DenseMapInfo<KeyT> PointerInfo;
    254 
    255   static inline VH getEmptyKey() {
    256     return VH(PointerInfo::getEmptyKey(), NULL);
    257   }
    258   static inline VH getTombstoneKey() {
    259     return VH(PointerInfo::getTombstoneKey(), NULL);
    260   }
    261   static unsigned getHashValue(const VH &Val) {
    262     return PointerInfo::getHashValue(Val.Unwrap());
    263   }
    264   static unsigned getHashValue(const KeyT &Val) {
    265     return PointerInfo::getHashValue(Val);
    266   }
    267   static bool isEqual(const VH &LHS, const VH &RHS) {
    268     return LHS == RHS;
    269   }
    270   static bool isEqual(const KeyT &LHS, const VH &RHS) {
    271     return LHS == RHS.getValPtr();
    272   }
    273 };
    274 
    275 
    276 template<typename DenseMapT, typename KeyT>
    277 class ValueMapIterator :
    278     public std::iterator<std::forward_iterator_tag,
    279                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    280                          ptrdiff_t> {
    281   typedef typename DenseMapT::iterator BaseT;
    282   typedef typename DenseMapT::mapped_type ValueT;
    283   BaseT I;
    284 public:
    285   ValueMapIterator() : I() {}
    286 
    287   ValueMapIterator(BaseT I) : I(I) {}
    288 
    289   BaseT base() const { return I; }
    290 
    291   struct ValueTypeProxy {
    292     const KeyT first;
    293     ValueT& second;
    294     ValueTypeProxy *operator->() { return this; }
    295     operator std::pair<KeyT, ValueT>() const {
    296       return std::make_pair(first, second);
    297     }
    298   };
    299 
    300   ValueTypeProxy operator*() const {
    301     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    302     return Result;
    303   }
    304 
    305   ValueTypeProxy operator->() const {
    306     return operator*();
    307   }
    308 
    309   bool operator==(const ValueMapIterator &RHS) const {
    310     return I == RHS.I;
    311   }
    312   bool operator!=(const ValueMapIterator &RHS) const {
    313     return I != RHS.I;
    314   }
    315 
    316   inline ValueMapIterator& operator++() {  // Preincrement
    317     ++I;
    318     return *this;
    319   }
    320   ValueMapIterator operator++(int) {  // Postincrement
    321     ValueMapIterator tmp = *this; ++*this; return tmp;
    322   }
    323 };
    324 
    325 template<typename DenseMapT, typename KeyT>
    326 class ValueMapConstIterator :
    327     public std::iterator<std::forward_iterator_tag,
    328                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    329                          ptrdiff_t> {
    330   typedef typename DenseMapT::const_iterator BaseT;
    331   typedef typename DenseMapT::mapped_type ValueT;
    332   BaseT I;
    333 public:
    334   ValueMapConstIterator() : I() {}
    335   ValueMapConstIterator(BaseT I) : I(I) {}
    336   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
    337     : I(Other.base()) {}
    338 
    339   BaseT base() const { return I; }
    340 
    341   struct ValueTypeProxy {
    342     const KeyT first;
    343     const ValueT& second;
    344     ValueTypeProxy *operator->() { return this; }
    345     operator std::pair<KeyT, ValueT>() const {
    346       return std::make_pair(first, second);
    347     }
    348   };
    349 
    350   ValueTypeProxy operator*() const {
    351     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    352     return Result;
    353   }
    354 
    355   ValueTypeProxy operator->() const {
    356     return operator*();
    357   }
    358 
    359   bool operator==(const ValueMapConstIterator &RHS) const {
    360     return I == RHS.I;
    361   }
    362   bool operator!=(const ValueMapConstIterator &RHS) const {
    363     return I != RHS.I;
    364   }
    365 
    366   inline ValueMapConstIterator& operator++() {  // Preincrement
    367     ++I;
    368     return *this;
    369   }
    370   ValueMapConstIterator operator++(int) {  // Postincrement
    371     ValueMapConstIterator tmp = *this; ++*this; return tmp;
    372   }
    373 };
    374 
    375 } // end namespace llvm
    376 
    377 #endif
    378