Home | History | Annotate | Download | only in Analysis
      1 //=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
     11 #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
     12 
     13 #include "llvm/ADT/SmallPtrSet.h"
     14 #include "llvm/Analysis/Dominators.h"
     15 
     16 //===----------------------------------------------------------------------===//
     17 //
     18 // DominatorTree construction - This pass constructs immediate dominator
     19 // information for a flow-graph based on the algorithm described in this
     20 // document:
     21 //
     22 //   A Fast Algorithm for Finding Dominators in a Flowgraph
     23 //   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
     24 //
     25 // This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
     26 // out that the theoretically slower O(n*log(n)) implementation is actually
     27 // faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 
     31 namespace llvm {
     32 
     33 template<class GraphT>
     34 unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
     35                  typename GraphT::NodeType* V, unsigned N) {
     36   // This is more understandable as a recursive algorithm, but we can't use the
     37   // recursive algorithm due to stack depth issues.  Keep it here for
     38   // documentation purposes.
     39 #if 0
     40   InfoRec &VInfo = DT.Info[DT.Roots[i]];
     41   VInfo.DFSNum = VInfo.Semi = ++N;
     42   VInfo.Label = V;
     43 
     44   Vertex.push_back(V);        // Vertex[n] = V;
     45 
     46   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
     47     InfoRec &SuccVInfo = DT.Info[*SI];
     48     if (SuccVInfo.Semi == 0) {
     49       SuccVInfo.Parent = V;
     50       N = DTDFSPass(DT, *SI, N);
     51     }
     52   }
     53 #else
     54   bool IsChildOfArtificialExit = (N != 0);
     55 
     56   SmallVector<std::pair<typename GraphT::NodeType*,
     57                         typename GraphT::ChildIteratorType>, 32> Worklist;
     58   Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
     59   while (!Worklist.empty()) {
     60     typename GraphT::NodeType* BB = Worklist.back().first;
     61     typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
     62 
     63     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
     64                                                                     DT.Info[BB];
     65 
     66     // First time we visited this BB?
     67     if (NextSucc == GraphT::child_begin(BB)) {
     68       BBInfo.DFSNum = BBInfo.Semi = ++N;
     69       BBInfo.Label = BB;
     70 
     71       DT.Vertex.push_back(BB);       // Vertex[n] = V;
     72 
     73       if (IsChildOfArtificialExit)
     74         BBInfo.Parent = 1;
     75 
     76       IsChildOfArtificialExit = false;
     77     }
     78 
     79     // store the DFS number of the current BB - the reference to BBInfo might
     80     // get invalidated when processing the successors.
     81     unsigned BBDFSNum = BBInfo.DFSNum;
     82 
     83     // If we are done with this block, remove it from the worklist.
     84     if (NextSucc == GraphT::child_end(BB)) {
     85       Worklist.pop_back();
     86       continue;
     87     }
     88 
     89     // Increment the successor number for the next time we get to it.
     90     ++Worklist.back().second;
     91 
     92     // Visit the successor next, if it isn't already visited.
     93     typename GraphT::NodeType* Succ = *NextSucc;
     94 
     95     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
     96                                                                   DT.Info[Succ];
     97     if (SuccVInfo.Semi == 0) {
     98       SuccVInfo.Parent = BBDFSNum;
     99       Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
    100     }
    101   }
    102 #endif
    103     return N;
    104 }
    105 
    106 template<class GraphT>
    107 typename GraphT::NodeType*
    108 Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
    109      typename GraphT::NodeType *VIn, unsigned LastLinked) {
    110   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
    111                                                                   DT.Info[VIn];
    112   if (VInInfo.DFSNum < LastLinked)
    113     return VIn;
    114 
    115   SmallVector<typename GraphT::NodeType*, 32> Work;
    116   SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
    117 
    118   if (VInInfo.Parent >= LastLinked)
    119     Work.push_back(VIn);
    120 
    121   while (!Work.empty()) {
    122     typename GraphT::NodeType* V = Work.back();
    123     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
    124                                                                      DT.Info[V];
    125     typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
    126 
    127     // Process Ancestor first
    128     if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
    129       Work.push_back(VAncestor);
    130       continue;
    131     }
    132     Work.pop_back();
    133 
    134     // Update VInfo based on Ancestor info
    135     if (VInfo.Parent < LastLinked)
    136       continue;
    137 
    138     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
    139                                                              DT.Info[VAncestor];
    140     typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
    141     typename GraphT::NodeType* VLabel = VInfo.Label;
    142     if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
    143       VInfo.Label = VAncestorLabel;
    144     VInfo.Parent = VAInfo.Parent;
    145   }
    146 
    147   return VInInfo.Label;
    148 }
    149 
    150 template<class FuncT, class NodeT>
    151 void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
    152                FuncT& F) {
    153   typedef GraphTraits<NodeT> GraphT;
    154 
    155   unsigned N = 0;
    156   bool MultipleRoots = (DT.Roots.size() > 1);
    157   if (MultipleRoots) {
    158     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
    159         DT.Info[NULL];
    160     BBInfo.DFSNum = BBInfo.Semi = ++N;
    161     BBInfo.Label = NULL;
    162 
    163     DT.Vertex.push_back(NULL);       // Vertex[n] = V;
    164   }
    165 
    166   // Step #1: Number blocks in depth-first order and initialize variables used
    167   // in later stages of the algorithm.
    168   for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
    169        i != e; ++i)
    170     N = DFSPass<GraphT>(DT, DT.Roots[i], N);
    171 
    172   // it might be that some blocks did not get a DFS number (e.g., blocks of
    173   // infinite loops). In these cases an artificial exit node is required.
    174   MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
    175 
    176   // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
    177   // bucket for each vertex. However, this is unnecessary, because each vertex
    178   // is only placed into a single bucket (that of its semidominator), and each
    179   // vertex's bucket is processed before it is added to any bucket itself.
    180   //
    181   // Instead of using a bucket per vertex, we use a single array Buckets that
    182   // has two purposes. Before the vertex V with preorder number i is processed,
    183   // Buckets[i] stores the index of the first element in V's bucket. After V's
    184   // bucket is processed, Buckets[i] stores the index of the next element in the
    185   // bucket containing V, if any.
    186   SmallVector<unsigned, 32> Buckets;
    187   Buckets.resize(N + 1);
    188   for (unsigned i = 1; i <= N; ++i)
    189     Buckets[i] = i;
    190 
    191   for (unsigned i = N; i >= 2; --i) {
    192     typename GraphT::NodeType* W = DT.Vertex[i];
    193     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
    194                                                                      DT.Info[W];
    195 
    196     // Step #2: Implicitly define the immediate dominator of vertices
    197     for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
    198       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
    199       typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
    200       DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
    201     }
    202 
    203     // Step #3: Calculate the semidominators of all vertices
    204 
    205     // initialize the semi dominator to point to the parent node
    206     WInfo.Semi = WInfo.Parent;
    207     typedef GraphTraits<Inverse<NodeT> > InvTraits;
    208     for (typename InvTraits::ChildIteratorType CI =
    209          InvTraits::child_begin(W),
    210          E = InvTraits::child_end(W); CI != E; ++CI) {
    211       typename InvTraits::NodeType *N = *CI;
    212       if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
    213         unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
    214         if (SemiU < WInfo.Semi)
    215           WInfo.Semi = SemiU;
    216       }
    217     }
    218 
    219     // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
    220     // necessarily parent(V). In this case, set idom(V) here and avoid placing
    221     // V into a bucket.
    222     if (WInfo.Semi == WInfo.Parent) {
    223       DT.IDoms[W] = DT.Vertex[WInfo.Parent];
    224     } else {
    225       Buckets[i] = Buckets[WInfo.Semi];
    226       Buckets[WInfo.Semi] = i;
    227     }
    228   }
    229 
    230   if (N >= 1) {
    231     typename GraphT::NodeType* Root = DT.Vertex[1];
    232     for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
    233       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
    234       DT.IDoms[V] = Root;
    235     }
    236   }
    237 
    238   // Step #4: Explicitly define the immediate dominator of each vertex
    239   for (unsigned i = 2; i <= N; ++i) {
    240     typename GraphT::NodeType* W = DT.Vertex[i];
    241     typename GraphT::NodeType*& WIDom = DT.IDoms[W];
    242     if (WIDom != DT.Vertex[DT.Info[W].Semi])
    243       WIDom = DT.IDoms[WIDom];
    244   }
    245 
    246   if (DT.Roots.empty()) return;
    247 
    248   // Add a node for the root.  This node might be the actual root, if there is
    249   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
    250   // which postdominates all real exits if there are multiple exit blocks, or
    251   // an infinite loop.
    252   typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
    253 
    254   DT.DomTreeNodes[Root] = DT.RootNode =
    255                         new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
    256 
    257   // Loop over all of the reachable blocks in the function...
    258   for (unsigned i = 2; i <= N; ++i) {
    259     typename GraphT::NodeType* W = DT.Vertex[i];
    260 
    261     DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
    262     if (BBNode) continue;  // Haven't calculated this node yet?
    263 
    264     typename GraphT::NodeType* ImmDom = DT.getIDom(W);
    265 
    266     assert(ImmDom || DT.DomTreeNodes[NULL]);
    267 
    268     // Get or calculate the node for the immediate dominator
    269     DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
    270                                                      DT.getNodeForBlock(ImmDom);
    271 
    272     // Add a new tree node for this BasicBlock, and link it as a child of
    273     // IDomNode
    274     DomTreeNodeBase<typename GraphT::NodeType> *C =
    275                     new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
    276     DT.DomTreeNodes[W] = IDomNode->addChild(C);
    277   }
    278 
    279   // Free temporary memory used to construct idom's
    280   DT.IDoms.clear();
    281   DT.Info.clear();
    282   std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
    283 
    284   DT.updateDFSNumbers();
    285 }
    286 
    287 }
    288 
    289 #endif
    290