Home | History | Annotate | Download | only in cpufeatures
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* ChangeLog for this library:
     30  *
     31  * NDK r8d: Add android_setCpu().
     32  *
     33  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
     34  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
     35  *
     36  *          Rewrite the code to parse /proc/self/auxv instead of
     37  *          the "Features" field in /proc/cpuinfo.
     38  *
     39  *          Dynamically allocate the buffer that hold the content
     40  *          of /proc/cpuinfo to deal with newer hardware.
     41  *
     42  * NDK r7c: Fix CPU count computation. The old method only reported the
     43  *           number of _active_ CPUs when the library was initialized,
     44  *           which could be less than the real total.
     45  *
     46  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
     47  *         for an ARMv6 CPU (see below).
     48  *
     49  *         Handle kernels that only report 'neon', and not 'vfpv3'
     50  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
     51  *
     52  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
     53  *
     54  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
     55  *         android_getCpuFamily().
     56  *
     57  * NDK r4: Initial release
     58  */
     59 #include <sys/system_properties.h>
     60 #ifdef __arm__
     61 #include <machine/cpu-features.h>
     62 #endif
     63 #include <pthread.h>
     64 #include "cpu-features.h"
     65 #include <stdio.h>
     66 #include <stdlib.h>
     67 #include <fcntl.h>
     68 #include <errno.h>
     69 
     70 static  pthread_once_t     g_once;
     71 static  int                g_inited;
     72 static  AndroidCpuFamily   g_cpuFamily;
     73 static  uint64_t           g_cpuFeatures;
     74 static  int                g_cpuCount;
     75 
     76 #ifdef __arm__
     77 static  uint32_t           g_cpuIdArm;
     78 #endif
     79 
     80 static const int  android_cpufeatures_debug = 0;
     81 
     82 #ifdef __arm__
     83 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_ARM
     84 #elif defined __i386__
     85 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_X86
     86 #else
     87 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_UNKNOWN
     88 #endif
     89 
     90 #define  D(...) \
     91     do { \
     92         if (android_cpufeatures_debug) { \
     93             printf(__VA_ARGS__); fflush(stdout); \
     94         } \
     95     } while (0)
     96 
     97 #ifdef __i386__
     98 static __inline__ void x86_cpuid(int func, int values[4])
     99 {
    100     int a, b, c, d;
    101     /* We need to preserve ebx since we're compiling PIC code */
    102     /* this means we can't use "=b" for the second output register */
    103     __asm__ __volatile__ ( \
    104       "push %%ebx\n"
    105       "cpuid\n" \
    106       "mov %%ebx, %1\n"
    107       "pop %%ebx\n"
    108       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
    109       : "a" (func) \
    110     );
    111     values[0] = a;
    112     values[1] = b;
    113     values[2] = c;
    114     values[3] = d;
    115 }
    116 #endif
    117 
    118 /* Get the size of a file by reading it until the end. This is needed
    119  * because files under /proc do not always return a valid size when
    120  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
    121  */
    122 static int
    123 get_file_size(const char* pathname)
    124 {
    125     int fd, ret, result = 0;
    126     char buffer[256];
    127 
    128     fd = open(pathname, O_RDONLY);
    129     if (fd < 0) {
    130         D("Can't open %s: %s\n", pathname, strerror(errno));
    131         return -1;
    132     }
    133 
    134     for (;;) {
    135         int ret = read(fd, buffer, sizeof buffer);
    136         if (ret < 0) {
    137             if (errno == EINTR)
    138                 continue;
    139             D("Error while reading %s: %s\n", pathname, strerror(errno));
    140             break;
    141         }
    142         if (ret == 0)
    143             break;
    144 
    145         result += ret;
    146     }
    147     close(fd);
    148     return result;
    149 }
    150 
    151 /* Read the content of /proc/cpuinfo into a user-provided buffer.
    152  * Return the length of the data, or -1 on error. Does *not*
    153  * zero-terminate the content. Will not read more
    154  * than 'buffsize' bytes.
    155  */
    156 static int
    157 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
    158 {
    159     int  fd, count;
    160 
    161     fd = open(pathname, O_RDONLY);
    162     if (fd < 0) {
    163         D("Could not open %s: %s\n", pathname, strerror(errno));
    164         return -1;
    165     }
    166     count = 0;
    167     while (count < (int)buffsize) {
    168         int ret = read(fd, buffer + count, buffsize - count);
    169         if (ret < 0) {
    170             if (errno == EINTR)
    171                 continue;
    172             D("Error while reading from %s: %s\n", pathname, strerror(errno));
    173             if (count == 0)
    174                 count = -1;
    175             break;
    176         }
    177         if (ret == 0)
    178             break;
    179         count += ret;
    180     }
    181     close(fd);
    182     return count;
    183 }
    184 
    185 /* Extract the content of a the first occurence of a given field in
    186  * the content of /proc/cpuinfo and return it as a heap-allocated
    187  * string that must be freed by the caller.
    188  *
    189  * Return NULL if not found
    190  */
    191 static char*
    192 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
    193 {
    194     int  fieldlen = strlen(field);
    195     const char* bufend = buffer + buflen;
    196     char* result = NULL;
    197     int len, ignore;
    198     const char *p, *q;
    199 
    200     /* Look for first field occurence, and ensures it starts the line. */
    201     p = buffer;
    202     for (;;) {
    203         p = memmem(p, bufend-p, field, fieldlen);
    204         if (p == NULL)
    205             goto EXIT;
    206 
    207         if (p == buffer || p[-1] == '\n')
    208             break;
    209 
    210         p += fieldlen;
    211     }
    212 
    213     /* Skip to the first column followed by a space */
    214     p += fieldlen;
    215     p  = memchr(p, ':', bufend-p);
    216     if (p == NULL || p[1] != ' ')
    217         goto EXIT;
    218 
    219     /* Find the end of the line */
    220     p += 2;
    221     q = memchr(p, '\n', bufend-p);
    222     if (q == NULL)
    223         q = bufend;
    224 
    225     /* Copy the line into a heap-allocated buffer */
    226     len = q-p;
    227     result = malloc(len+1);
    228     if (result == NULL)
    229         goto EXIT;
    230 
    231     memcpy(result, p, len);
    232     result[len] = '\0';
    233 
    234 EXIT:
    235     return result;
    236 }
    237 
    238 /* Checks that a space-separated list of items contains one given 'item'.
    239  * Returns 1 if found, 0 otherwise.
    240  */
    241 static int
    242 has_list_item(const char* list, const char* item)
    243 {
    244     const char*  p = list;
    245     int itemlen = strlen(item);
    246 
    247     if (list == NULL)
    248         return 0;
    249 
    250     while (*p) {
    251         const char*  q;
    252 
    253         /* skip spaces */
    254         while (*p == ' ' || *p == '\t')
    255             p++;
    256 
    257         /* find end of current list item */
    258         q = p;
    259         while (*q && *q != ' ' && *q != '\t')
    260             q++;
    261 
    262         if (itemlen == q-p && !memcmp(p, item, itemlen))
    263             return 1;
    264 
    265         /* skip to next item */
    266         p = q;
    267     }
    268     return 0;
    269 }
    270 
    271 /* Parse a number starting from 'input', but not going further
    272  * than 'limit'. Return the value into '*result'.
    273  *
    274  * NOTE: Does not skip over leading spaces, or deal with sign characters.
    275  * NOTE: Ignores overflows.
    276  *
    277  * The function returns NULL in case of error (bad format), or the new
    278  * position after the decimal number in case of success (which will always
    279  * be <= 'limit').
    280  */
    281 static const char*
    282 parse_number(const char* input, const char* limit, int base, int* result)
    283 {
    284     const char* p = input;
    285     int val = 0;
    286     while (p < limit) {
    287         int d = (*p - '0');
    288         if ((unsigned)d >= 10U) {
    289             d = (*p - 'a');
    290             if ((unsigned)d >= 6U)
    291               d = (*p - 'A');
    292             if ((unsigned)d >= 6U)
    293               break;
    294             d += 10;
    295         }
    296         if (d >= base)
    297           break;
    298         val = val*base + d;
    299         p++;
    300     }
    301     if (p == input)
    302         return NULL;
    303 
    304     *result = val;
    305     return p;
    306 }
    307 
    308 static const char*
    309 parse_decimal(const char* input, const char* limit, int* result)
    310 {
    311     return parse_number(input, limit, 10, result);
    312 }
    313 
    314 static const char*
    315 parse_hexadecimal(const char* input, const char* limit, int* result)
    316 {
    317     return parse_number(input, limit, 16, result);
    318 }
    319 
    320 /* This small data type is used to represent a CPU list / mask, as read
    321  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
    322  *
    323  * For now, we don't expect more than 32 cores on mobile devices, so keep
    324  * everything simple.
    325  */
    326 typedef struct {
    327     uint32_t mask;
    328 } CpuList;
    329 
    330 static __inline__ void
    331 cpulist_init(CpuList* list) {
    332     list->mask = 0;
    333 }
    334 
    335 static __inline__ void
    336 cpulist_and(CpuList* list1, CpuList* list2) {
    337     list1->mask &= list2->mask;
    338 }
    339 
    340 static __inline__ void
    341 cpulist_set(CpuList* list, int index) {
    342     if ((unsigned)index < 32) {
    343         list->mask |= (uint32_t)(1U << index);
    344     }
    345 }
    346 
    347 static __inline__ int
    348 cpulist_count(CpuList* list) {
    349     return __builtin_popcount(list->mask);
    350 }
    351 
    352 /* Parse a textual list of cpus and store the result inside a CpuList object.
    353  * Input format is the following:
    354  * - comma-separated list of items (no spaces)
    355  * - each item is either a single decimal number (cpu index), or a range made
    356  *   of two numbers separated by a single dash (-). Ranges are inclusive.
    357  *
    358  * Examples:   0
    359  *             2,4-127,128-143
    360  *             0-1
    361  */
    362 static void
    363 cpulist_parse(CpuList* list, const char* line, int line_len)
    364 {
    365     const char* p = line;
    366     const char* end = p + line_len;
    367     const char* q;
    368 
    369     /* NOTE: the input line coming from sysfs typically contains a
    370      * trailing newline, so take care of it in the code below
    371      */
    372     while (p < end && *p != '\n')
    373     {
    374         int val, start_value, end_value;
    375 
    376         /* Find the end of current item, and put it into 'q' */
    377         q = memchr(p, ',', end-p);
    378         if (q == NULL) {
    379             q = end;
    380         }
    381 
    382         /* Get first value */
    383         p = parse_decimal(p, q, &start_value);
    384         if (p == NULL)
    385             goto BAD_FORMAT;
    386 
    387         end_value = start_value;
    388 
    389         /* If we're not at the end of the item, expect a dash and
    390          * and integer; extract end value.
    391          */
    392         if (p < q && *p == '-') {
    393             p = parse_decimal(p+1, q, &end_value);
    394             if (p == NULL)
    395                 goto BAD_FORMAT;
    396         }
    397 
    398         /* Set bits CPU list bits */
    399         for (val = start_value; val <= end_value; val++) {
    400             cpulist_set(list, val);
    401         }
    402 
    403         /* Jump to next item */
    404         p = q;
    405         if (p < end)
    406             p++;
    407     }
    408 
    409 BAD_FORMAT:
    410     ;
    411 }
    412 
    413 /* Read a CPU list from one sysfs file */
    414 static void
    415 cpulist_read_from(CpuList* list, const char* filename)
    416 {
    417     char   file[64];
    418     int    filelen;
    419 
    420     cpulist_init(list);
    421 
    422     filelen = read_file(filename, file, sizeof file);
    423     if (filelen < 0) {
    424         D("Could not read %s: %s\n", filename, strerror(errno));
    425         return;
    426     }
    427 
    428     cpulist_parse(list, file, filelen);
    429 }
    430 
    431 // See <asm/hwcap.h> kernel header.
    432 #define HWCAP_VFP       (1 << 6)
    433 #define HWCAP_IWMMXT    (1 << 9)
    434 #define HWCAP_NEON      (1 << 12)
    435 #define HWCAP_VFPv3     (1 << 13)
    436 #define HWCAP_VFPv3D16  (1 << 14)
    437 #define HWCAP_VFPv4     (1 << 16)
    438 #define HWCAP_IDIVA     (1 << 17)
    439 #define HWCAP_IDIVT     (1 << 18)
    440 
    441 #define AT_HWCAP 16
    442 
    443 #if defined(__arm__)
    444 /* Compute the ELF HWCAP flags.
    445  */
    446 static uint32_t
    447 get_elf_hwcap(const char* cpuinfo, int cpuinfo_len)
    448 {
    449   /* IMPORTANT:
    450    *   Accessing /proc/self/auxv doesn't work anymore on all
    451    *   platform versions. More specifically, when running inside
    452    *   a regular application process, most of /proc/self/ will be
    453    *   non-readable, including /proc/self/auxv. This doesn't
    454    *   happen however if the application is debuggable, or when
    455    *   running under the "shell" UID, which is why this was not
    456    *   detected appropriately.
    457    */
    458 #if 0
    459     uint32_t result = 0;
    460     const char filepath[] = "/proc/self/auxv";
    461     int fd = open(filepath, O_RDONLY);
    462     if (fd < 0) {
    463         D("Could not open %s: %s\n", filepath, strerror(errno));
    464         return 0;
    465     }
    466 
    467     struct { uint32_t tag; uint32_t value; } entry;
    468 
    469     for (;;) {
    470         int ret = read(fd, (char*)&entry, sizeof entry);
    471         if (ret < 0) {
    472             if (errno == EINTR)
    473                 continue;
    474             D("Error while reading %s: %s\n", filepath, strerror(errno));
    475             break;
    476         }
    477         // Detect end of list.
    478         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
    479           break;
    480         if (entry.tag == AT_HWCAP) {
    481           result = entry.value;
    482           break;
    483         }
    484     }
    485     close(fd);
    486     return result;
    487 #else
    488     // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag.
    489     uint32_t hwcaps = 0;
    490 
    491     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
    492 
    493     if (cpuFeatures != NULL) {
    494         D("Found cpuFeatures = '%s'\n", cpuFeatures);
    495 
    496         if (has_list_item(cpuFeatures, "vfp"))
    497             hwcaps |= HWCAP_VFP;
    498         if (has_list_item(cpuFeatures, "vfpv3"))
    499             hwcaps |= HWCAP_VFPv3;
    500         if (has_list_item(cpuFeatures, "vfpv3d16"))
    501             hwcaps |= HWCAP_VFPv3D16;
    502         if (has_list_item(cpuFeatures, "vfpv4"))
    503             hwcaps |= HWCAP_VFPv4;
    504         if (has_list_item(cpuFeatures, "neon"))
    505             hwcaps |= HWCAP_NEON;
    506         if (has_list_item(cpuFeatures, "idiva"))
    507             hwcaps |= HWCAP_IDIVA;
    508         if (has_list_item(cpuFeatures, "idivt"))
    509             hwcaps |= HWCAP_IDIVT;
    510         if (has_list_item(cpuFeatures, "idiv"))
    511             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
    512         if (has_list_item(cpuFeatures, "iwmmxt"))
    513             hwcaps |= HWCAP_IWMMXT;
    514 
    515         free(cpuFeatures);
    516     }
    517     return hwcaps;
    518 #endif
    519 }
    520 #endif  /* __arm__ */
    521 
    522 /* Return the number of cpus present on a given device.
    523  *
    524  * To handle all weird kernel configurations, we need to compute the
    525  * intersection of the 'present' and 'possible' CPU lists and count
    526  * the result.
    527  */
    528 static int
    529 get_cpu_count(void)
    530 {
    531     CpuList cpus_present[1];
    532     CpuList cpus_possible[1];
    533 
    534     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
    535     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
    536 
    537     /* Compute the intersection of both sets to get the actual number of
    538      * CPU cores that can be used on this device by the kernel.
    539      */
    540     cpulist_and(cpus_present, cpus_possible);
    541 
    542     return cpulist_count(cpus_present);
    543 }
    544 
    545 static void
    546 android_cpuInitFamily(void)
    547 {
    548 #if defined(__ARM_ARCH__)
    549     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
    550 #elif defined(__i386__)
    551     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
    552 #elif defined(_MIPS_ARCH)
    553     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
    554 #else
    555     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
    556 #endif
    557 }
    558 
    559 static void
    560 android_cpuInit(void)
    561 {
    562     char* cpuinfo = NULL;
    563     int   cpuinfo_len;
    564 
    565     android_cpuInitFamily();
    566 
    567     g_cpuFeatures = 0;
    568     g_cpuCount    = 1;
    569     g_inited      = 1;
    570 
    571     cpuinfo_len = get_file_size("/proc/cpuinfo");
    572     if (cpuinfo_len < 0) {
    573       D("cpuinfo_len cannot be computed!");
    574       return;
    575     }
    576     cpuinfo = malloc(cpuinfo_len);
    577     if (cpuinfo == NULL) {
    578       D("cpuinfo buffer could not be allocated");
    579       return;
    580     }
    581     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
    582     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
    583       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
    584 
    585     if (cpuinfo_len < 0)  /* should not happen */ {
    586         free(cpuinfo);
    587         return;
    588     }
    589 
    590     /* Count the CPU cores, the value may be 0 for single-core CPUs */
    591     g_cpuCount = get_cpu_count();
    592     if (g_cpuCount == 0) {
    593         g_cpuCount = 1;
    594     }
    595 
    596     D("found cpuCount = %d\n", g_cpuCount);
    597 
    598 #ifdef __ARM_ARCH__
    599     {
    600         char*  features = NULL;
    601         char*  architecture = NULL;
    602 
    603         /* Extract architecture from the "CPU Architecture" field.
    604          * The list is well-known, unlike the the output of
    605          * the 'Processor' field which can vary greatly.
    606          *
    607          * See the definition of the 'proc_arch' array in
    608          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
    609          * same file.
    610          */
    611         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
    612 
    613         if (cpuArch != NULL) {
    614             char*  end;
    615             long   archNumber;
    616             int    hasARMv7 = 0;
    617 
    618             D("found cpuArch = '%s'\n", cpuArch);
    619 
    620             /* read the initial decimal number, ignore the rest */
    621             archNumber = strtol(cpuArch, &end, 10);
    622 
    623             /* Here we assume that ARMv8 will be upwards compatible with v7
    624              * in the future. Unfortunately, there is no 'Features' field to
    625              * indicate that Thumb-2 is supported.
    626              */
    627             if (end > cpuArch && archNumber >= 7) {
    628                 hasARMv7 = 1;
    629             }
    630 
    631             /* Unfortunately, it seems that certain ARMv6-based CPUs
    632              * report an incorrect architecture number of 7!
    633              *
    634              * See http://code.google.com/p/android/issues/detail?id=10812
    635              *
    636              * We try to correct this by looking at the 'elf_format'
    637              * field reported by the 'Processor' field, which is of the
    638              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    639              * an ARMv6-one.
    640              */
    641             if (hasARMv7) {
    642                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
    643                                                       "Processor");
    644                 if (cpuProc != NULL) {
    645                     D("found cpuProc = '%s'\n", cpuProc);
    646                     if (has_list_item(cpuProc, "(v6l)")) {
    647                         D("CPU processor and architecture mismatch!!\n");
    648                         hasARMv7 = 0;
    649                     }
    650                     free(cpuProc);
    651                 }
    652             }
    653 
    654             if (hasARMv7) {
    655                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
    656             }
    657 
    658             /* The LDREX / STREX instructions are available from ARMv6 */
    659             if (archNumber >= 6) {
    660                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
    661             }
    662 
    663             free(cpuArch);
    664         }
    665 
    666         /* Extract the list of CPU features from ELF hwcaps */
    667         uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len);
    668 
    669         if (hwcaps != 0) {
    670             int has_vfp = (hwcaps & HWCAP_VFP);
    671             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
    672             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
    673             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
    674             int has_neon = (hwcaps & HWCAP_NEON);
    675             int has_idiva = (hwcaps & HWCAP_IDIVA);
    676             int has_idivt = (hwcaps & HWCAP_IDIVT);
    677             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
    678 
    679             // The kernel does a poor job at ensuring consistency when
    680             // describing CPU features. So lots of guessing is needed.
    681 
    682             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
    683             if (has_vfpv4)
    684                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
    685                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
    686                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
    687 
    688             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
    689             // a value of 'vfpv3' doesn't necessarily mean that the D32
    690             // feature is present, so be conservative. All CPUs in the
    691             // field that support D32 also support NEON, so this should
    692             // not be a problem in practice.
    693             if (has_vfpv3 || has_vfpv3d16)
    694                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
    695 
    696             // 'vfp' is super ambiguous. Depending on the kernel, it can
    697             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
    698             if (has_vfp) {
    699               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
    700                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
    701               else
    702                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
    703             }
    704 
    705             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
    706             if (has_neon) {
    707                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
    708                                  ANDROID_CPU_ARM_FEATURE_NEON |
    709                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
    710               if (has_vfpv4)
    711                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
    712             }
    713 
    714             // VFPv3 implies VFPv2 and ARMv7
    715             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
    716                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
    717                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
    718 
    719             if (has_idiva)
    720                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
    721             if (has_idivt)
    722                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
    723 
    724             if (has_iwmmxt)
    725                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
    726         }
    727 
    728         /* Extract the cpuid value from various fields */
    729         // The CPUID value is broken up in several entries in /proc/cpuinfo.
    730         // This table is used to rebuild it from the entries.
    731         static const struct CpuIdEntry {
    732             const char* field;
    733             char        format;
    734             char        bit_lshift;
    735             char        bit_length;
    736         } cpu_id_entries[] = {
    737             { "CPU implementer", 'x', 24, 8 },
    738             { "CPU variant", 'x', 20, 4 },
    739             { "CPU part", 'x', 4, 12 },
    740             { "CPU revision", 'd', 0, 4 },
    741         };
    742         size_t i;
    743         D("Parsing /proc/cpuinfo to recover CPUID\n");
    744         for (i = 0;
    745              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
    746              ++i) {
    747             const struct CpuIdEntry* entry = &cpu_id_entries[i];
    748             char* value = extract_cpuinfo_field(cpuinfo,
    749                                                 cpuinfo_len,
    750                                                 entry->field);
    751             if (value == NULL)
    752                 continue;
    753 
    754             D("field=%s value='%s'\n", entry->field, value);
    755             char* value_end = value + strlen(value);
    756             int val = 0;
    757             const char* start = value;
    758             const char* p;
    759             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
    760               start += 2;
    761               p = parse_hexadecimal(start, value_end, &val);
    762             } else if (entry->format == 'x')
    763               p = parse_hexadecimal(value, value_end, &val);
    764             else
    765               p = parse_decimal(value, value_end, &val);
    766 
    767             if (p > (const char*)start) {
    768               val &= ((1 << entry->bit_length)-1);
    769               val <<= entry->bit_lshift;
    770               g_cpuIdArm |= (uint32_t) val;
    771             }
    772 
    773             free(value);
    774         }
    775 
    776         // Handle kernel configuration bugs that prevent the correct
    777         // reporting of CPU features.
    778         static const struct CpuFix {
    779             uint32_t  cpuid;
    780             uint64_t  or_flags;
    781         } cpu_fixes[] = {
    782             /* The Nexus 4 (Qualcomm Krait) kernel configuration
    783              * forgets to report IDIV support. */
    784             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
    785                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
    786         };
    787         size_t n;
    788         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
    789             const struct CpuFix* entry = &cpu_fixes[n];
    790 
    791             if (g_cpuIdArm == entry->cpuid)
    792                 g_cpuFeatures |= entry->or_flags;
    793         }
    794 
    795     }
    796 #endif /* __ARM_ARCH__ */
    797 
    798 #ifdef __i386__
    799     int regs[4];
    800 
    801 /* According to http://en.wikipedia.org/wiki/CPUID */
    802 #define VENDOR_INTEL_b  0x756e6547
    803 #define VENDOR_INTEL_c  0x6c65746e
    804 #define VENDOR_INTEL_d  0x49656e69
    805 
    806     x86_cpuid(0, regs);
    807     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
    808                          regs[2] == VENDOR_INTEL_c &&
    809                          regs[3] == VENDOR_INTEL_d);
    810 
    811     x86_cpuid(1, regs);
    812     if ((regs[2] & (1 << 9)) != 0) {
    813         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
    814     }
    815     if ((regs[2] & (1 << 23)) != 0) {
    816         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
    817     }
    818     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
    819         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
    820     }
    821 #endif
    822 
    823     free(cpuinfo);
    824 }
    825 
    826 
    827 AndroidCpuFamily
    828 android_getCpuFamily(void)
    829 {
    830     pthread_once(&g_once, android_cpuInit);
    831     return g_cpuFamily;
    832 }
    833 
    834 
    835 uint64_t
    836 android_getCpuFeatures(void)
    837 {
    838     pthread_once(&g_once, android_cpuInit);
    839     return g_cpuFeatures;
    840 }
    841 
    842 
    843 int
    844 android_getCpuCount(void)
    845 {
    846     pthread_once(&g_once, android_cpuInit);
    847     return g_cpuCount;
    848 }
    849 
    850 static void
    851 android_cpuInitDummy(void)
    852 {
    853     g_inited = 1;
    854 }
    855 
    856 int
    857 android_setCpu(int cpu_count, uint64_t cpu_features)
    858 {
    859     /* Fail if the library was already initialized. */
    860     if (g_inited)
    861         return 0;
    862 
    863     android_cpuInitFamily();
    864     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
    865     g_cpuFeatures = cpu_features;
    866     pthread_once(&g_once, android_cpuInitDummy);
    867 
    868     return 1;
    869 }
    870 
    871 #ifdef __arm__
    872 uint32_t
    873 android_getCpuIdArm(void)
    874 {
    875     pthread_once(&g_once, android_cpuInit);
    876     return g_cpuIdArm;
    877 }
    878 
    879 int
    880 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
    881 {
    882     if (!android_setCpu(cpu_count, cpu_features))
    883         return 0;
    884 
    885     g_cpuIdArm = cpu_id;
    886     return 1;
    887 }
    888 #endif  /* __arm__ */
    889 
    890 /*
    891  * Technical note: Making sense of ARM's FPU architecture versions.
    892  *
    893  * FPA was ARM's first attempt at an FPU architecture. There is no Android
    894  * device that actually uses it since this technology was already obsolete
    895  * when the project started. If you see references to FPA instructions
    896  * somewhere, you can be sure that this doesn't apply to Android at all.
    897  *
    898  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
    899  * new versions / additions to it. ARM considers this obsolete right now,
    900  * and no known Android device implements it either.
    901  *
    902  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
    903  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
    904  * supporting the 'armeabi' ABI doesn't necessarily support these.
    905  *
    906  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
    907  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
    908  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
    909  * that it provides 16 double-precision FPU registers (d0-d15) and 32
    910  * single-precision ones (s0-s31) which happen to be mapped to the same
    911  * register banks.
    912  *
    913  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
    914  * additional double precision registers (d16-d31). Note that there are
    915  * still only 32 single precision registers.
    916  *
    917  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
    918  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
    919  * are not supported by Android. Note that it is not compatible with VFPv2.
    920  *
    921  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
    922  *       depending on context. For example GCC uses it for VFPv3-D32, but
    923  *       the Linux kernel code uses it for VFPv3-D16 (especially in
    924  *       /proc/cpuinfo). Always try to use the full designation when
    925  *       possible.
    926  *
    927  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
    928  * instructions to perform parallel computations on vectors of 8, 16,
    929  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
    930  * NEON registers are also mapped to the same register banks.
    931  *
    932  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
    933  * perform fused multiply-accumulate on VFP registers, as well as
    934  * half-precision (16-bit) conversion operations.
    935  *
    936  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
    937  * registers.
    938  *
    939  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
    940  * multiply-accumulate instructions that work on the NEON registers.
    941  *
    942  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
    943  *       depending on context.
    944  *
    945  * The following information was determined by scanning the binutils-2.22
    946  * sources:
    947  *
    948  * Basic VFP instruction subsets:
    949  *
    950  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
    951  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
    952  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
    953  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
    954  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
    955  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
    956  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
    957  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
    958  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
    959  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
    960  *
    961  * FPU types (excluding NEON)
    962  *
    963  * FPU_VFP_V1xD (EXT_V1xD)
    964  *    |
    965  *    +--------------------------+
    966  *    |                          |
    967  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
    968  *    |                          |
    969  *    |                          |
    970  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
    971  *    |
    972  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
    973  *    |
    974  *    +--------------------------+
    975  *    |                          |
    976  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
    977  *    |                          |
    978  *    |                      FPU_VFP_V4 (+EXT_D32)
    979  *    |
    980  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
    981  *
    982  * VFP architectures:
    983  *
    984  * ARCH_VFP_V1xD  (EXT_V1xD)
    985  *   |
    986  *   +------------------+
    987  *   |                  |
    988  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
    989  *   |                  |
    990  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
    991  *   |                  |
    992  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
    993  *   |
    994  * ARCH_VFP_V1 (+EXT_V1)
    995  *   |
    996  * ARCH_VFP_V2 (+EXT_V2)
    997  *   |
    998  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
    999  *   |
   1000  *   +-------------------+
   1001  *   |                   |
   1002  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
   1003  *   |
   1004  *   +-------------------+
   1005  *   |                   |
   1006  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
   1007  *   |                   |
   1008  *   |         ARCH_VFP_V4 (+EXT_D32)
   1009  *   |                   |
   1010  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
   1011  *   |
   1012  * ARCH_VFP_V3 (+EXT_D32)
   1013  *   |
   1014  *   +-------------------+
   1015  *   |                   |
   1016  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
   1017  *   |
   1018  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
   1019  *   |
   1020  * ARCH_NEON_FP16 (+EXT_FP16)
   1021  *
   1022  * -fpu=<name> values and their correspondance with FPU architectures above:
   1023  *
   1024  *   {"vfp",               FPU_ARCH_VFP_V2},
   1025  *   {"vfp9",              FPU_ARCH_VFP_V2},
   1026  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
   1027  *   {"vfp10",             FPU_ARCH_VFP_V2},
   1028  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
   1029  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
   1030  *   {"vfpv2",             FPU_ARCH_VFP_V2},
   1031  *   {"vfpv3",             FPU_ARCH_VFP_V3},
   1032  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
   1033  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
   1034  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
   1035  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
   1036  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
   1037  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
   1038  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
   1039  *   {"vfpv4",             FPU_ARCH_VFP_V4},
   1040  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
   1041  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
   1042  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
   1043  *
   1044  *
   1045  * Simplified diagram that only includes FPUs supported by Android:
   1046  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
   1047  * all others are optional and must be probed at runtime.
   1048  *
   1049  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
   1050  *   |
   1051  *   +-------------------+
   1052  *   |                   |
   1053  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
   1054  *   |
   1055  *   +-------------------+
   1056  *   |                   |
   1057  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
   1058  *   |                   |
   1059  *   |         ARCH_VFP_V4 (+EXT_D32)
   1060  *   |                   |
   1061  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
   1062  *   |
   1063  * ARCH_VFP_V3 (+EXT_D32)
   1064  *   |
   1065  *   +-------------------+
   1066  *   |                   |
   1067  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
   1068  *   |
   1069  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
   1070  *   |
   1071  * ARCH_NEON_FP16 (+EXT_FP16)
   1072  *
   1073  */
   1074