1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "accessors.h" 31 #include "api.h" 32 #include "bootstrapper.h" 33 #include "deoptimizer.h" 34 #include "execution.h" 35 #include "global-handles.h" 36 #include "ic-inl.h" 37 #include "natives.h" 38 #include "platform.h" 39 #include "runtime.h" 40 #include "serialize.h" 41 #include "snapshot.h" 42 #include "stub-cache.h" 43 #include "v8threads.h" 44 45 namespace v8 { 46 namespace internal { 47 48 49 // ----------------------------------------------------------------------------- 50 // Coding of external references. 51 52 // The encoding of an external reference. The type is in the high word. 53 // The id is in the low word. 54 static uint32_t EncodeExternal(TypeCode type, uint16_t id) { 55 return static_cast<uint32_t>(type) << 16 | id; 56 } 57 58 59 static int* GetInternalPointer(StatsCounter* counter) { 60 // All counters refer to dummy_counter, if deserializing happens without 61 // setting up counters. 62 static int dummy_counter = 0; 63 return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter; 64 } 65 66 67 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { 68 ExternalReferenceTable* external_reference_table = 69 isolate->external_reference_table(); 70 if (external_reference_table == NULL) { 71 external_reference_table = new ExternalReferenceTable(isolate); 72 isolate->set_external_reference_table(external_reference_table); 73 } 74 return external_reference_table; 75 } 76 77 78 void ExternalReferenceTable::AddFromId(TypeCode type, 79 uint16_t id, 80 const char* name, 81 Isolate* isolate) { 82 Address address; 83 switch (type) { 84 case C_BUILTIN: { 85 ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate); 86 address = ref.address(); 87 break; 88 } 89 case BUILTIN: { 90 ExternalReference ref(static_cast<Builtins::Name>(id), isolate); 91 address = ref.address(); 92 break; 93 } 94 case RUNTIME_FUNCTION: { 95 ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate); 96 address = ref.address(); 97 break; 98 } 99 case IC_UTILITY: { 100 ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)), 101 isolate); 102 address = ref.address(); 103 break; 104 } 105 default: 106 UNREACHABLE(); 107 return; 108 } 109 Add(address, type, id, name); 110 } 111 112 113 void ExternalReferenceTable::Add(Address address, 114 TypeCode type, 115 uint16_t id, 116 const char* name) { 117 ASSERT_NE(NULL, address); 118 ExternalReferenceEntry entry; 119 entry.address = address; 120 entry.code = EncodeExternal(type, id); 121 entry.name = name; 122 ASSERT_NE(0, entry.code); 123 refs_.Add(entry); 124 if (id > max_id_[type]) max_id_[type] = id; 125 } 126 127 128 void ExternalReferenceTable::PopulateTable(Isolate* isolate) { 129 for (int type_code = 0; type_code < kTypeCodeCount; type_code++) { 130 max_id_[type_code] = 0; 131 } 132 133 // The following populates all of the different type of external references 134 // into the ExternalReferenceTable. 135 // 136 // NOTE: This function was originally 100k of code. It has since been 137 // rewritten to be mostly table driven, as the callback macro style tends to 138 // very easily cause code bloat. Please be careful in the future when adding 139 // new references. 140 141 struct RefTableEntry { 142 TypeCode type; 143 uint16_t id; 144 const char* name; 145 }; 146 147 static const RefTableEntry ref_table[] = { 148 // Builtins 149 #define DEF_ENTRY_C(name, ignored) \ 150 { C_BUILTIN, \ 151 Builtins::c_##name, \ 152 "Builtins::" #name }, 153 154 BUILTIN_LIST_C(DEF_ENTRY_C) 155 #undef DEF_ENTRY_C 156 157 #define DEF_ENTRY_C(name, ignored) \ 158 { BUILTIN, \ 159 Builtins::k##name, \ 160 "Builtins::" #name }, 161 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored) 162 163 BUILTIN_LIST_C(DEF_ENTRY_C) 164 BUILTIN_LIST_A(DEF_ENTRY_A) 165 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) 166 #undef DEF_ENTRY_C 167 #undef DEF_ENTRY_A 168 169 // Runtime functions 170 #define RUNTIME_ENTRY(name, nargs, ressize) \ 171 { RUNTIME_FUNCTION, \ 172 Runtime::k##name, \ 173 "Runtime::" #name }, 174 175 RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY) 176 #undef RUNTIME_ENTRY 177 178 // IC utilities 179 #define IC_ENTRY(name) \ 180 { IC_UTILITY, \ 181 IC::k##name, \ 182 "IC::" #name }, 183 184 IC_UTIL_LIST(IC_ENTRY) 185 #undef IC_ENTRY 186 }; // end of ref_table[]. 187 188 for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) { 189 AddFromId(ref_table[i].type, 190 ref_table[i].id, 191 ref_table[i].name, 192 isolate); 193 } 194 195 #ifdef ENABLE_DEBUGGER_SUPPORT 196 // Debug addresses 197 Add(Debug_Address(Debug::k_after_break_target_address).address(isolate), 198 DEBUG_ADDRESS, 199 Debug::k_after_break_target_address << kDebugIdShift, 200 "Debug::after_break_target_address()"); 201 Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate), 202 DEBUG_ADDRESS, 203 Debug::k_debug_break_slot_address << kDebugIdShift, 204 "Debug::debug_break_slot_address()"); 205 Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate), 206 DEBUG_ADDRESS, 207 Debug::k_debug_break_return_address << kDebugIdShift, 208 "Debug::debug_break_return_address()"); 209 Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate), 210 DEBUG_ADDRESS, 211 Debug::k_restarter_frame_function_pointer << kDebugIdShift, 212 "Debug::restarter_frame_function_pointer_address()"); 213 #endif 214 215 // Stat counters 216 struct StatsRefTableEntry { 217 StatsCounter* (Counters::*counter)(); 218 uint16_t id; 219 const char* name; 220 }; 221 222 const StatsRefTableEntry stats_ref_table[] = { 223 #define COUNTER_ENTRY(name, caption) \ 224 { &Counters::name, \ 225 Counters::k_##name, \ 226 "Counters::" #name }, 227 228 STATS_COUNTER_LIST_1(COUNTER_ENTRY) 229 STATS_COUNTER_LIST_2(COUNTER_ENTRY) 230 #undef COUNTER_ENTRY 231 }; // end of stats_ref_table[]. 232 233 Counters* counters = isolate->counters(); 234 for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) { 235 Add(reinterpret_cast<Address>(GetInternalPointer( 236 (counters->*(stats_ref_table[i].counter))())), 237 STATS_COUNTER, 238 stats_ref_table[i].id, 239 stats_ref_table[i].name); 240 } 241 242 // Top addresses 243 244 const char* AddressNames[] = { 245 #define BUILD_NAME_LITERAL(CamelName, hacker_name) \ 246 "Isolate::" #hacker_name "_address", 247 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) 248 NULL 249 #undef BUILD_NAME_LITERAL 250 }; 251 252 for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) { 253 Add(isolate->get_address_from_id((Isolate::AddressId)i), 254 TOP_ADDRESS, i, AddressNames[i]); 255 } 256 257 // Accessors 258 #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \ 259 Add((Address)&Accessors::name, \ 260 ACCESSOR, \ 261 Accessors::k##name, \ 262 "Accessors::" #name); 263 264 ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION) 265 #undef ACCESSOR_DESCRIPTOR_DECLARATION 266 267 StubCache* stub_cache = isolate->stub_cache(); 268 269 // Stub cache tables 270 Add(stub_cache->key_reference(StubCache::kPrimary).address(), 271 STUB_CACHE_TABLE, 272 1, 273 "StubCache::primary_->key"); 274 Add(stub_cache->value_reference(StubCache::kPrimary).address(), 275 STUB_CACHE_TABLE, 276 2, 277 "StubCache::primary_->value"); 278 Add(stub_cache->map_reference(StubCache::kPrimary).address(), 279 STUB_CACHE_TABLE, 280 3, 281 "StubCache::primary_->map"); 282 Add(stub_cache->key_reference(StubCache::kSecondary).address(), 283 STUB_CACHE_TABLE, 284 4, 285 "StubCache::secondary_->key"); 286 Add(stub_cache->value_reference(StubCache::kSecondary).address(), 287 STUB_CACHE_TABLE, 288 5, 289 "StubCache::secondary_->value"); 290 Add(stub_cache->map_reference(StubCache::kSecondary).address(), 291 STUB_CACHE_TABLE, 292 6, 293 "StubCache::secondary_->map"); 294 295 // Runtime entries 296 Add(ExternalReference::perform_gc_function(isolate).address(), 297 RUNTIME_ENTRY, 298 1, 299 "Runtime::PerformGC"); 300 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), 301 RUNTIME_ENTRY, 302 4, 303 "HandleScope::DeleteExtensions"); 304 Add(ExternalReference:: 305 incremental_marking_record_write_function(isolate).address(), 306 RUNTIME_ENTRY, 307 5, 308 "IncrementalMarking::RecordWrite"); 309 Add(ExternalReference::store_buffer_overflow_function(isolate).address(), 310 RUNTIME_ENTRY, 311 6, 312 "StoreBuffer::StoreBufferOverflow"); 313 Add(ExternalReference:: 314 incremental_evacuation_record_write_function(isolate).address(), 315 RUNTIME_ENTRY, 316 7, 317 "IncrementalMarking::RecordWrite"); 318 319 // Miscellaneous 320 Add(ExternalReference::roots_array_start(isolate).address(), 321 UNCLASSIFIED, 322 3, 323 "Heap::roots_array_start()"); 324 Add(ExternalReference::address_of_stack_limit(isolate).address(), 325 UNCLASSIFIED, 326 4, 327 "StackGuard::address_of_jslimit()"); 328 Add(ExternalReference::address_of_real_stack_limit(isolate).address(), 329 UNCLASSIFIED, 330 5, 331 "StackGuard::address_of_real_jslimit()"); 332 #ifndef V8_INTERPRETED_REGEXP 333 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), 334 UNCLASSIFIED, 335 6, 336 "RegExpStack::limit_address()"); 337 Add(ExternalReference::address_of_regexp_stack_memory_address( 338 isolate).address(), 339 UNCLASSIFIED, 340 7, 341 "RegExpStack::memory_address()"); 342 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), 343 UNCLASSIFIED, 344 8, 345 "RegExpStack::memory_size()"); 346 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), 347 UNCLASSIFIED, 348 9, 349 "OffsetsVector::static_offsets_vector"); 350 #endif // V8_INTERPRETED_REGEXP 351 Add(ExternalReference::new_space_start(isolate).address(), 352 UNCLASSIFIED, 353 10, 354 "Heap::NewSpaceStart()"); 355 Add(ExternalReference::new_space_mask(isolate).address(), 356 UNCLASSIFIED, 357 11, 358 "Heap::NewSpaceMask()"); 359 Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(), 360 UNCLASSIFIED, 361 12, 362 "Heap::always_allocate_scope_depth()"); 363 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), 364 UNCLASSIFIED, 365 14, 366 "Heap::NewSpaceAllocationLimitAddress()"); 367 Add(ExternalReference::new_space_allocation_top_address(isolate).address(), 368 UNCLASSIFIED, 369 15, 370 "Heap::NewSpaceAllocationTopAddress()"); 371 #ifdef ENABLE_DEBUGGER_SUPPORT 372 Add(ExternalReference::debug_break(isolate).address(), 373 UNCLASSIFIED, 374 16, 375 "Debug::Break()"); 376 Add(ExternalReference::debug_step_in_fp_address(isolate).address(), 377 UNCLASSIFIED, 378 17, 379 "Debug::step_in_fp_addr()"); 380 #endif 381 Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(), 382 UNCLASSIFIED, 383 18, 384 "add_two_doubles"); 385 Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(), 386 UNCLASSIFIED, 387 19, 388 "sub_two_doubles"); 389 Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(), 390 UNCLASSIFIED, 391 20, 392 "mul_two_doubles"); 393 Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(), 394 UNCLASSIFIED, 395 21, 396 "div_two_doubles"); 397 Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(), 398 UNCLASSIFIED, 399 22, 400 "mod_two_doubles"); 401 Add(ExternalReference::compare_doubles(isolate).address(), 402 UNCLASSIFIED, 403 23, 404 "compare_doubles"); 405 #ifndef V8_INTERPRETED_REGEXP 406 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), 407 UNCLASSIFIED, 408 24, 409 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); 410 Add(ExternalReference::re_check_stack_guard_state(isolate).address(), 411 UNCLASSIFIED, 412 25, 413 "RegExpMacroAssembler*::CheckStackGuardState()"); 414 Add(ExternalReference::re_grow_stack(isolate).address(), 415 UNCLASSIFIED, 416 26, 417 "NativeRegExpMacroAssembler::GrowStack()"); 418 Add(ExternalReference::re_word_character_map().address(), 419 UNCLASSIFIED, 420 27, 421 "NativeRegExpMacroAssembler::word_character_map"); 422 #endif // V8_INTERPRETED_REGEXP 423 // Keyed lookup cache. 424 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), 425 UNCLASSIFIED, 426 28, 427 "KeyedLookupCache::keys()"); 428 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), 429 UNCLASSIFIED, 430 29, 431 "KeyedLookupCache::field_offsets()"); 432 Add(ExternalReference::transcendental_cache_array_address(isolate).address(), 433 UNCLASSIFIED, 434 30, 435 "TranscendentalCache::caches()"); 436 Add(ExternalReference::handle_scope_next_address(isolate).address(), 437 UNCLASSIFIED, 438 31, 439 "HandleScope::next"); 440 Add(ExternalReference::handle_scope_limit_address(isolate).address(), 441 UNCLASSIFIED, 442 32, 443 "HandleScope::limit"); 444 Add(ExternalReference::handle_scope_level_address(isolate).address(), 445 UNCLASSIFIED, 446 33, 447 "HandleScope::level"); 448 Add(ExternalReference::new_deoptimizer_function(isolate).address(), 449 UNCLASSIFIED, 450 34, 451 "Deoptimizer::New()"); 452 Add(ExternalReference::compute_output_frames_function(isolate).address(), 453 UNCLASSIFIED, 454 35, 455 "Deoptimizer::ComputeOutputFrames()"); 456 Add(ExternalReference::address_of_min_int().address(), 457 UNCLASSIFIED, 458 36, 459 "LDoubleConstant::min_int"); 460 Add(ExternalReference::address_of_one_half().address(), 461 UNCLASSIFIED, 462 37, 463 "LDoubleConstant::one_half"); 464 Add(ExternalReference::isolate_address(isolate).address(), 465 UNCLASSIFIED, 466 38, 467 "isolate"); 468 Add(ExternalReference::address_of_minus_zero().address(), 469 UNCLASSIFIED, 470 39, 471 "LDoubleConstant::minus_zero"); 472 Add(ExternalReference::address_of_negative_infinity().address(), 473 UNCLASSIFIED, 474 40, 475 "LDoubleConstant::negative_infinity"); 476 Add(ExternalReference::power_double_double_function(isolate).address(), 477 UNCLASSIFIED, 478 41, 479 "power_double_double_function"); 480 Add(ExternalReference::power_double_int_function(isolate).address(), 481 UNCLASSIFIED, 482 42, 483 "power_double_int_function"); 484 Add(ExternalReference::store_buffer_top(isolate).address(), 485 UNCLASSIFIED, 486 43, 487 "store_buffer_top"); 488 Add(ExternalReference::address_of_canonical_non_hole_nan().address(), 489 UNCLASSIFIED, 490 44, 491 "canonical_nan"); 492 Add(ExternalReference::address_of_the_hole_nan().address(), 493 UNCLASSIFIED, 494 45, 495 "the_hole_nan"); 496 Add(ExternalReference::get_date_field_function(isolate).address(), 497 UNCLASSIFIED, 498 46, 499 "JSDate::GetField"); 500 Add(ExternalReference::date_cache_stamp(isolate).address(), 501 UNCLASSIFIED, 502 47, 503 "date_cache_stamp"); 504 Add(ExternalReference::address_of_pending_message_obj(isolate).address(), 505 UNCLASSIFIED, 506 48, 507 "address_of_pending_message_obj"); 508 Add(ExternalReference::address_of_has_pending_message(isolate).address(), 509 UNCLASSIFIED, 510 49, 511 "address_of_has_pending_message"); 512 Add(ExternalReference::address_of_pending_message_script(isolate).address(), 513 UNCLASSIFIED, 514 50, 515 "pending_message_script"); 516 Add(ExternalReference::get_make_code_young_function(isolate).address(), 517 UNCLASSIFIED, 518 51, 519 "Code::MakeCodeYoung"); 520 Add(ExternalReference::cpu_features().address(), 521 UNCLASSIFIED, 522 52, 523 "cpu_features"); 524 Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(), 525 UNCLASSIFIED, 526 53, 527 "Runtime::AllocateInNewSpace"); 528 Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(), 529 UNCLASSIFIED, 530 54, 531 "Runtime::AllocateInTargetSpace"); 532 Add(ExternalReference::old_pointer_space_allocation_top_address( 533 isolate).address(), 534 UNCLASSIFIED, 535 55, 536 "Heap::OldPointerSpaceAllocationTopAddress"); 537 Add(ExternalReference::old_pointer_space_allocation_limit_address( 538 isolate).address(), 539 UNCLASSIFIED, 540 56, 541 "Heap::OldPointerSpaceAllocationLimitAddress"); 542 Add(ExternalReference::old_data_space_allocation_top_address( 543 isolate).address(), 544 UNCLASSIFIED, 545 57, 546 "Heap::OldDataSpaceAllocationTopAddress"); 547 Add(ExternalReference::old_data_space_allocation_limit_address( 548 isolate).address(), 549 UNCLASSIFIED, 550 58, 551 "Heap::OldDataSpaceAllocationLimitAddress"); 552 Add(ExternalReference::new_space_high_promotion_mode_active_address(isolate). 553 address(), 554 UNCLASSIFIED, 555 59, 556 "Heap::NewSpaceAllocationLimitAddress"); 557 Add(ExternalReference::allocation_sites_list_address(isolate).address(), 558 UNCLASSIFIED, 559 60, 560 "Heap::allocation_sites_list_address()"); 561 Add(ExternalReference::address_of_uint32_bias().address(), 562 UNCLASSIFIED, 563 61, 564 "uint32_bias"); 565 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), 566 UNCLASSIFIED, 567 62, 568 "Code::MarkCodeAsExecuted"); 569 570 // Add a small set of deopt entry addresses to encoder without generating the 571 // deopt table code, which isn't possible at deserialization time. 572 HandleScope scope(isolate); 573 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { 574 Address address = Deoptimizer::GetDeoptimizationEntry( 575 isolate, 576 entry, 577 Deoptimizer::LAZY, 578 Deoptimizer::CALCULATE_ENTRY_ADDRESS); 579 Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt"); 580 } 581 } 582 583 584 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) 585 : encodings_(Match), 586 isolate_(isolate) { 587 ExternalReferenceTable* external_references = 588 ExternalReferenceTable::instance(isolate_); 589 for (int i = 0; i < external_references->size(); ++i) { 590 Put(external_references->address(i), i); 591 } 592 } 593 594 595 uint32_t ExternalReferenceEncoder::Encode(Address key) const { 596 int index = IndexOf(key); 597 ASSERT(key == NULL || index >= 0); 598 return index >=0 ? 599 ExternalReferenceTable::instance(isolate_)->code(index) : 0; 600 } 601 602 603 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const { 604 int index = IndexOf(key); 605 return index >= 0 ? 606 ExternalReferenceTable::instance(isolate_)->name(index) : NULL; 607 } 608 609 610 int ExternalReferenceEncoder::IndexOf(Address key) const { 611 if (key == NULL) return -1; 612 HashMap::Entry* entry = 613 const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false); 614 return entry == NULL 615 ? -1 616 : static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); 617 } 618 619 620 void ExternalReferenceEncoder::Put(Address key, int index) { 621 HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true); 622 entry->value = reinterpret_cast<void*>(index); 623 } 624 625 626 ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate) 627 : encodings_(NewArray<Address*>(kTypeCodeCount)), 628 isolate_(isolate) { 629 ExternalReferenceTable* external_references = 630 ExternalReferenceTable::instance(isolate_); 631 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { 632 int max = external_references->max_id(type) + 1; 633 encodings_[type] = NewArray<Address>(max + 1); 634 } 635 for (int i = 0; i < external_references->size(); ++i) { 636 Put(external_references->code(i), external_references->address(i)); 637 } 638 } 639 640 641 ExternalReferenceDecoder::~ExternalReferenceDecoder() { 642 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { 643 DeleteArray(encodings_[type]); 644 } 645 DeleteArray(encodings_); 646 } 647 648 649 bool Serializer::serialization_enabled_ = false; 650 bool Serializer::too_late_to_enable_now_ = false; 651 652 653 class CodeAddressMap: public CodeEventLogger { 654 public: 655 explicit CodeAddressMap(Isolate* isolate) 656 : isolate_(isolate) { 657 isolate->logger()->addCodeEventListener(this); 658 } 659 660 virtual ~CodeAddressMap() { 661 isolate_->logger()->removeCodeEventListener(this); 662 } 663 664 virtual void CodeMoveEvent(Address from, Address to) { 665 address_to_name_map_.Move(from, to); 666 } 667 668 virtual void CodeDeleteEvent(Address from) { 669 address_to_name_map_.Remove(from); 670 } 671 672 const char* Lookup(Address address) { 673 return address_to_name_map_.Lookup(address); 674 } 675 676 private: 677 class NameMap { 678 public: 679 NameMap() : impl_(&PointerEquals) {} 680 681 ~NameMap() { 682 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { 683 DeleteArray(static_cast<const char*>(p->value)); 684 } 685 } 686 687 void Insert(Address code_address, const char* name, int name_size) { 688 HashMap::Entry* entry = FindOrCreateEntry(code_address); 689 if (entry->value == NULL) { 690 entry->value = CopyName(name, name_size); 691 } 692 } 693 694 const char* Lookup(Address code_address) { 695 HashMap::Entry* entry = FindEntry(code_address); 696 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; 697 } 698 699 void Remove(Address code_address) { 700 HashMap::Entry* entry = FindEntry(code_address); 701 if (entry != NULL) { 702 DeleteArray(static_cast<char*>(entry->value)); 703 RemoveEntry(entry); 704 } 705 } 706 707 void Move(Address from, Address to) { 708 if (from == to) return; 709 HashMap::Entry* from_entry = FindEntry(from); 710 ASSERT(from_entry != NULL); 711 void* value = from_entry->value; 712 RemoveEntry(from_entry); 713 HashMap::Entry* to_entry = FindOrCreateEntry(to); 714 ASSERT(to_entry->value == NULL); 715 to_entry->value = value; 716 } 717 718 private: 719 static bool PointerEquals(void* lhs, void* rhs) { 720 return lhs == rhs; 721 } 722 723 static char* CopyName(const char* name, int name_size) { 724 char* result = NewArray<char>(name_size + 1); 725 for (int i = 0; i < name_size; ++i) { 726 char c = name[i]; 727 if (c == '\0') c = ' '; 728 result[i] = c; 729 } 730 result[name_size] = '\0'; 731 return result; 732 } 733 734 HashMap::Entry* FindOrCreateEntry(Address code_address) { 735 return impl_.Lookup(code_address, ComputePointerHash(code_address), true); 736 } 737 738 HashMap::Entry* FindEntry(Address code_address) { 739 return impl_.Lookup(code_address, 740 ComputePointerHash(code_address), 741 false); 742 } 743 744 void RemoveEntry(HashMap::Entry* entry) { 745 impl_.Remove(entry->key, entry->hash); 746 } 747 748 HashMap impl_; 749 750 DISALLOW_COPY_AND_ASSIGN(NameMap); 751 }; 752 753 virtual void LogRecordedBuffer(Code* code, 754 SharedFunctionInfo*, 755 const char* name, 756 int length) { 757 address_to_name_map_.Insert(code->address(), name, length); 758 } 759 760 NameMap address_to_name_map_; 761 Isolate* isolate_; 762 }; 763 764 765 CodeAddressMap* Serializer::code_address_map_ = NULL; 766 767 768 void Serializer::Enable(Isolate* isolate) { 769 if (!serialization_enabled_) { 770 ASSERT(!too_late_to_enable_now_); 771 } 772 if (serialization_enabled_) return; 773 serialization_enabled_ = true; 774 isolate->InitializeLoggingAndCounters(); 775 code_address_map_ = new CodeAddressMap(isolate); 776 } 777 778 779 void Serializer::Disable() { 780 if (!serialization_enabled_) return; 781 serialization_enabled_ = false; 782 delete code_address_map_; 783 code_address_map_ = NULL; 784 } 785 786 787 Deserializer::Deserializer(SnapshotByteSource* source) 788 : isolate_(NULL), 789 source_(source), 790 external_reference_decoder_(NULL) { 791 for (int i = 0; i < LAST_SPACE + 1; i++) { 792 reservations_[i] = kUninitializedReservation; 793 } 794 } 795 796 797 void Deserializer::FlushICacheForNewCodeObjects() { 798 PageIterator it(isolate_->heap()->code_space()); 799 while (it.has_next()) { 800 Page* p = it.next(); 801 CPU::FlushICache(p->area_start(), p->area_end() - p->area_start()); 802 } 803 } 804 805 806 void Deserializer::Deserialize(Isolate* isolate) { 807 isolate_ = isolate; 808 ASSERT(isolate_ != NULL); 809 isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]); 810 // No active threads. 811 ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse()); 812 // No active handles. 813 ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty()); 814 ASSERT_EQ(NULL, external_reference_decoder_); 815 external_reference_decoder_ = new ExternalReferenceDecoder(isolate); 816 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 817 isolate_->heap()->RepairFreeListsAfterBoot(); 818 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); 819 820 isolate_->heap()->set_native_contexts_list( 821 isolate_->heap()->undefined_value()); 822 isolate_->heap()->set_array_buffers_list( 823 isolate_->heap()->undefined_value()); 824 825 // The allocation site list is build during root iteration, but if no sites 826 // were encountered then it needs to be initialized to undefined. 827 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 828 isolate_->heap()->set_allocation_sites_list( 829 isolate_->heap()->undefined_value()); 830 } 831 832 isolate_->heap()->InitializeWeakObjectToCodeTable(); 833 834 // Update data pointers to the external strings containing natives sources. 835 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { 836 Object* source = isolate_->heap()->natives_source_cache()->get(i); 837 if (!source->IsUndefined()) { 838 ExternalAsciiString::cast(source)->update_data_cache(); 839 } 840 } 841 842 FlushICacheForNewCodeObjects(); 843 844 // Issue code events for newly deserialized code objects. 845 LOG_CODE_EVENT(isolate_, LogCodeObjects()); 846 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); 847 } 848 849 850 void Deserializer::DeserializePartial(Isolate* isolate, Object** root) { 851 isolate_ = isolate; 852 for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) { 853 ASSERT(reservations_[i] != kUninitializedReservation); 854 } 855 isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]); 856 if (external_reference_decoder_ == NULL) { 857 external_reference_decoder_ = new ExternalReferenceDecoder(isolate); 858 } 859 860 // Keep track of the code space start and end pointers in case new 861 // code objects were unserialized 862 OldSpace* code_space = isolate_->heap()->code_space(); 863 Address start_address = code_space->top(); 864 VisitPointer(root); 865 866 // There's no code deserialized here. If this assert fires 867 // then that's changed and logging should be added to notify 868 // the profiler et al of the new code. 869 CHECK_EQ(start_address, code_space->top()); 870 } 871 872 873 Deserializer::~Deserializer() { 874 ASSERT(source_->AtEOF()); 875 if (external_reference_decoder_) { 876 delete external_reference_decoder_; 877 external_reference_decoder_ = NULL; 878 } 879 } 880 881 882 // This is called on the roots. It is the driver of the deserialization 883 // process. It is also called on the body of each function. 884 void Deserializer::VisitPointers(Object** start, Object** end) { 885 // The space must be new space. Any other space would cause ReadChunk to try 886 // to update the remembered using NULL as the address. 887 ReadChunk(start, end, NEW_SPACE, NULL); 888 } 889 890 891 void Deserializer::RelinkAllocationSite(AllocationSite* site) { 892 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 893 site->set_weak_next(isolate_->heap()->undefined_value()); 894 } else { 895 site->set_weak_next(isolate_->heap()->allocation_sites_list()); 896 } 897 isolate_->heap()->set_allocation_sites_list(site); 898 } 899 900 901 // This routine writes the new object into the pointer provided and then 902 // returns true if the new object was in young space and false otherwise. 903 // The reason for this strange interface is that otherwise the object is 904 // written very late, which means the FreeSpace map is not set up by the 905 // time we need to use it to mark the space at the end of a page free. 906 void Deserializer::ReadObject(int space_number, 907 Object** write_back) { 908 int size = source_->GetInt() << kObjectAlignmentBits; 909 Address address = Allocate(space_number, size); 910 HeapObject* obj = HeapObject::FromAddress(address); 911 *write_back = obj; 912 Object** current = reinterpret_cast<Object**>(address); 913 Object** limit = current + (size >> kPointerSizeLog2); 914 if (FLAG_log_snapshot_positions) { 915 LOG(isolate_, SnapshotPositionEvent(address, source_->position())); 916 } 917 ReadChunk(current, limit, space_number, address); 918 919 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() 920 // as a (weak) root. If this root is relocated correctly, 921 // RelinkAllocationSite() isn't necessary. 922 if (obj->IsAllocationSite()) { 923 RelinkAllocationSite(AllocationSite::cast(obj)); 924 } 925 926 #ifdef DEBUG 927 bool is_codespace = (space_number == CODE_SPACE); 928 ASSERT(obj->IsCode() == is_codespace); 929 #endif 930 } 931 932 void Deserializer::ReadChunk(Object** current, 933 Object** limit, 934 int source_space, 935 Address current_object_address) { 936 Isolate* const isolate = isolate_; 937 // Write barrier support costs around 1% in startup time. In fact there 938 // are no new space objects in current boot snapshots, so it's not needed, 939 // but that may change. 940 bool write_barrier_needed = (current_object_address != NULL && 941 source_space != NEW_SPACE && 942 source_space != CELL_SPACE && 943 source_space != PROPERTY_CELL_SPACE && 944 source_space != CODE_SPACE && 945 source_space != OLD_DATA_SPACE); 946 while (current < limit) { 947 int data = source_->Get(); 948 switch (data) { 949 #define CASE_STATEMENT(where, how, within, space_number) \ 950 case where + how + within + space_number: \ 951 ASSERT((where & ~kPointedToMask) == 0); \ 952 ASSERT((how & ~kHowToCodeMask) == 0); \ 953 ASSERT((within & ~kWhereToPointMask) == 0); \ 954 ASSERT((space_number & ~kSpaceMask) == 0); 955 956 #define CASE_BODY(where, how, within, space_number_if_any) \ 957 { \ 958 bool emit_write_barrier = false; \ 959 bool current_was_incremented = false; \ 960 int space_number = space_number_if_any == kAnyOldSpace ? \ 961 (data & kSpaceMask) : space_number_if_any; \ 962 if (where == kNewObject && how == kPlain && within == kStartOfObject) {\ 963 ReadObject(space_number, current); \ 964 emit_write_barrier = (space_number == NEW_SPACE); \ 965 } else { \ 966 Object* new_object = NULL; /* May not be a real Object pointer. */ \ 967 if (where == kNewObject) { \ 968 ReadObject(space_number, &new_object); \ 969 } else if (where == kRootArray) { \ 970 int root_id = source_->GetInt(); \ 971 new_object = isolate->heap()->roots_array_start()[root_id]; \ 972 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 973 } else if (where == kPartialSnapshotCache) { \ 974 int cache_index = source_->GetInt(); \ 975 new_object = isolate->serialize_partial_snapshot_cache() \ 976 [cache_index]; \ 977 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 978 } else if (where == kExternalReference) { \ 979 int skip = source_->GetInt(); \ 980 current = reinterpret_cast<Object**>(reinterpret_cast<Address>( \ 981 current) + skip); \ 982 int reference_id = source_->GetInt(); \ 983 Address address = external_reference_decoder_-> \ 984 Decode(reference_id); \ 985 new_object = reinterpret_cast<Object*>(address); \ 986 } else if (where == kBackref) { \ 987 emit_write_barrier = (space_number == NEW_SPACE); \ 988 new_object = GetAddressFromEnd(data & kSpaceMask); \ 989 } else { \ 990 ASSERT(where == kBackrefWithSkip); \ 991 int skip = source_->GetInt(); \ 992 current = reinterpret_cast<Object**>( \ 993 reinterpret_cast<Address>(current) + skip); \ 994 emit_write_barrier = (space_number == NEW_SPACE); \ 995 new_object = GetAddressFromEnd(data & kSpaceMask); \ 996 } \ 997 if (within == kInnerPointer) { \ 998 if (space_number != CODE_SPACE || new_object->IsCode()) { \ 999 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ 1000 new_object = reinterpret_cast<Object*>( \ 1001 new_code_object->instruction_start()); \ 1002 } else { \ 1003 ASSERT(space_number == CODE_SPACE); \ 1004 Cell* cell = Cell::cast(new_object); \ 1005 new_object = reinterpret_cast<Object*>( \ 1006 cell->ValueAddress()); \ 1007 } \ 1008 } \ 1009 if (how == kFromCode) { \ 1010 Address location_of_branch_data = \ 1011 reinterpret_cast<Address>(current); \ 1012 Assembler::deserialization_set_special_target_at( \ 1013 location_of_branch_data, \ 1014 reinterpret_cast<Address>(new_object)); \ 1015 location_of_branch_data += Assembler::kSpecialTargetSize; \ 1016 current = reinterpret_cast<Object**>(location_of_branch_data); \ 1017 current_was_incremented = true; \ 1018 } else { \ 1019 *current = new_object; \ 1020 } \ 1021 } \ 1022 if (emit_write_barrier && write_barrier_needed) { \ 1023 Address current_address = reinterpret_cast<Address>(current); \ 1024 isolate->heap()->RecordWrite( \ 1025 current_object_address, \ 1026 static_cast<int>(current_address - current_object_address)); \ 1027 } \ 1028 if (!current_was_incremented) { \ 1029 current++; \ 1030 } \ 1031 break; \ 1032 } \ 1033 1034 // This generates a case and a body for the new space (which has to do extra 1035 // write barrier handling) and handles the other spaces with 8 fall-through 1036 // cases and one body. 1037 #define ALL_SPACES(where, how, within) \ 1038 CASE_STATEMENT(where, how, within, NEW_SPACE) \ 1039 CASE_BODY(where, how, within, NEW_SPACE) \ 1040 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \ 1041 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \ 1042 CASE_STATEMENT(where, how, within, CODE_SPACE) \ 1043 CASE_STATEMENT(where, how, within, CELL_SPACE) \ 1044 CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE) \ 1045 CASE_STATEMENT(where, how, within, MAP_SPACE) \ 1046 CASE_BODY(where, how, within, kAnyOldSpace) 1047 1048 #define FOUR_CASES(byte_code) \ 1049 case byte_code: \ 1050 case byte_code + 1: \ 1051 case byte_code + 2: \ 1052 case byte_code + 3: 1053 1054 #define SIXTEEN_CASES(byte_code) \ 1055 FOUR_CASES(byte_code) \ 1056 FOUR_CASES(byte_code + 4) \ 1057 FOUR_CASES(byte_code + 8) \ 1058 FOUR_CASES(byte_code + 12) 1059 1060 #define COMMON_RAW_LENGTHS(f) \ 1061 f(1) \ 1062 f(2) \ 1063 f(3) \ 1064 f(4) \ 1065 f(5) \ 1066 f(6) \ 1067 f(7) \ 1068 f(8) \ 1069 f(9) \ 1070 f(10) \ 1071 f(11) \ 1072 f(12) \ 1073 f(13) \ 1074 f(14) \ 1075 f(15) \ 1076 f(16) \ 1077 f(17) \ 1078 f(18) \ 1079 f(19) \ 1080 f(20) \ 1081 f(21) \ 1082 f(22) \ 1083 f(23) \ 1084 f(24) \ 1085 f(25) \ 1086 f(26) \ 1087 f(27) \ 1088 f(28) \ 1089 f(29) \ 1090 f(30) \ 1091 f(31) 1092 1093 // We generate 15 cases and bodies that process special tags that combine 1094 // the raw data tag and the length into one byte. 1095 #define RAW_CASE(index) \ 1096 case kRawData + index: { \ 1097 byte* raw_data_out = reinterpret_cast<byte*>(current); \ 1098 source_->CopyRaw(raw_data_out, index * kPointerSize); \ 1099 current = \ 1100 reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \ 1101 break; \ 1102 } 1103 COMMON_RAW_LENGTHS(RAW_CASE) 1104 #undef RAW_CASE 1105 1106 // Deserialize a chunk of raw data that doesn't have one of the popular 1107 // lengths. 1108 case kRawData: { 1109 int size = source_->GetInt(); 1110 byte* raw_data_out = reinterpret_cast<byte*>(current); 1111 source_->CopyRaw(raw_data_out, size); 1112 break; 1113 } 1114 1115 SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance) 1116 SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) { 1117 int root_id = RootArrayConstantFromByteCode(data); 1118 Object* object = isolate->heap()->roots_array_start()[root_id]; 1119 ASSERT(!isolate->heap()->InNewSpace(object)); 1120 *current++ = object; 1121 break; 1122 } 1123 1124 SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance) 1125 SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) { 1126 int root_id = RootArrayConstantFromByteCode(data); 1127 int skip = source_->GetInt(); 1128 current = reinterpret_cast<Object**>( 1129 reinterpret_cast<intptr_t>(current) + skip); 1130 Object* object = isolate->heap()->roots_array_start()[root_id]; 1131 ASSERT(!isolate->heap()->InNewSpace(object)); 1132 *current++ = object; 1133 break; 1134 } 1135 1136 case kRepeat: { 1137 int repeats = source_->GetInt(); 1138 Object* object = current[-1]; 1139 ASSERT(!isolate->heap()->InNewSpace(object)); 1140 for (int i = 0; i < repeats; i++) current[i] = object; 1141 current += repeats; 1142 break; 1143 } 1144 1145 STATIC_ASSERT(kRootArrayNumberOfConstantEncodings == 1146 Heap::kOldSpaceRoots); 1147 STATIC_ASSERT(kMaxRepeats == 13); 1148 case kConstantRepeat: 1149 FOUR_CASES(kConstantRepeat + 1) 1150 FOUR_CASES(kConstantRepeat + 5) 1151 FOUR_CASES(kConstantRepeat + 9) { 1152 int repeats = RepeatsForCode(data); 1153 Object* object = current[-1]; 1154 ASSERT(!isolate->heap()->InNewSpace(object)); 1155 for (int i = 0; i < repeats; i++) current[i] = object; 1156 current += repeats; 1157 break; 1158 } 1159 1160 // Deserialize a new object and write a pointer to it to the current 1161 // object. 1162 ALL_SPACES(kNewObject, kPlain, kStartOfObject) 1163 // Support for direct instruction pointers in functions. It's an inner 1164 // pointer because it points at the entry point, not at the start of the 1165 // code object. 1166 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE) 1167 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE) 1168 // Deserialize a new code object and write a pointer to its first 1169 // instruction to the current code object. 1170 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) 1171 // Find a recently deserialized object using its offset from the current 1172 // allocation point and write a pointer to it to the current object. 1173 ALL_SPACES(kBackref, kPlain, kStartOfObject) 1174 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) 1175 #if V8_TARGET_ARCH_MIPS 1176 // Deserialize a new object from pointer found in code and write 1177 // a pointer to it to the current object. Required only for MIPS, and 1178 // omitted on the other architectures because it is fully unrolled and 1179 // would cause bloat. 1180 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) 1181 // Find a recently deserialized code object using its offset from the 1182 // current allocation point and write a pointer to it to the current 1183 // object. Required only for MIPS. 1184 ALL_SPACES(kBackref, kFromCode, kStartOfObject) 1185 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) 1186 #endif 1187 // Find a recently deserialized code object using its offset from the 1188 // current allocation point and write a pointer to its first instruction 1189 // to the current code object or the instruction pointer in a function 1190 // object. 1191 ALL_SPACES(kBackref, kFromCode, kInnerPointer) 1192 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) 1193 ALL_SPACES(kBackref, kPlain, kInnerPointer) 1194 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) 1195 // Find an object in the roots array and write a pointer to it to the 1196 // current object. 1197 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) 1198 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0) 1199 // Find an object in the partial snapshots cache and write a pointer to it 1200 // to the current object. 1201 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) 1202 CASE_BODY(kPartialSnapshotCache, 1203 kPlain, 1204 kStartOfObject, 1205 0) 1206 // Find an code entry in the partial snapshots cache and 1207 // write a pointer to it to the current object. 1208 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0) 1209 CASE_BODY(kPartialSnapshotCache, 1210 kPlain, 1211 kInnerPointer, 1212 0) 1213 // Find an external reference and write a pointer to it to the current 1214 // object. 1215 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) 1216 CASE_BODY(kExternalReference, 1217 kPlain, 1218 kStartOfObject, 1219 0) 1220 // Find an external reference and write a pointer to it in the current 1221 // code object. 1222 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) 1223 CASE_BODY(kExternalReference, 1224 kFromCode, 1225 kStartOfObject, 1226 0) 1227 1228 #undef CASE_STATEMENT 1229 #undef CASE_BODY 1230 #undef ALL_SPACES 1231 1232 case kSkip: { 1233 int size = source_->GetInt(); 1234 current = reinterpret_cast<Object**>( 1235 reinterpret_cast<intptr_t>(current) + size); 1236 break; 1237 } 1238 1239 case kNativesStringResource: { 1240 int index = source_->Get(); 1241 Vector<const char> source_vector = Natives::GetRawScriptSource(index); 1242 NativesExternalStringResource* resource = 1243 new NativesExternalStringResource(isolate->bootstrapper(), 1244 source_vector.start(), 1245 source_vector.length()); 1246 *current++ = reinterpret_cast<Object*>(resource); 1247 break; 1248 } 1249 1250 case kSynchronize: { 1251 // If we get here then that indicates that you have a mismatch between 1252 // the number of GC roots when serializing and deserializing. 1253 UNREACHABLE(); 1254 } 1255 1256 default: 1257 UNREACHABLE(); 1258 } 1259 } 1260 ASSERT_EQ(limit, current); 1261 } 1262 1263 1264 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) { 1265 ASSERT(integer < 1 << 22); 1266 integer <<= 2; 1267 int bytes = 1; 1268 if (integer > 0xff) bytes = 2; 1269 if (integer > 0xffff) bytes = 3; 1270 integer |= bytes; 1271 Put(static_cast<int>(integer & 0xff), "IntPart1"); 1272 if (bytes > 1) Put(static_cast<int>((integer >> 8) & 0xff), "IntPart2"); 1273 if (bytes > 2) Put(static_cast<int>((integer >> 16) & 0xff), "IntPart3"); 1274 } 1275 1276 1277 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) 1278 : isolate_(isolate), 1279 sink_(sink), 1280 current_root_index_(0), 1281 external_reference_encoder_(new ExternalReferenceEncoder(isolate)), 1282 root_index_wave_front_(0) { 1283 // The serializer is meant to be used only to generate initial heap images 1284 // from a context in which there is only one isolate. 1285 for (int i = 0; i <= LAST_SPACE; i++) { 1286 fullness_[i] = 0; 1287 } 1288 } 1289 1290 1291 Serializer::~Serializer() { 1292 delete external_reference_encoder_; 1293 } 1294 1295 1296 void StartupSerializer::SerializeStrongReferences() { 1297 Isolate* isolate = this->isolate(); 1298 // No active threads. 1299 CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse()); 1300 // No active or weak handles. 1301 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); 1302 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); 1303 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); 1304 // We don't support serializing installed extensions. 1305 CHECK(!isolate->has_installed_extensions()); 1306 1307 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 1308 } 1309 1310 1311 void PartialSerializer::Serialize(Object** object) { 1312 this->VisitPointer(object); 1313 Pad(); 1314 } 1315 1316 1317 bool Serializer::ShouldBeSkipped(Object** current) { 1318 Object** roots = isolate()->heap()->roots_array_start(); 1319 return current == &roots[Heap::kStoreBufferTopRootIndex] 1320 || current == &roots[Heap::kStackLimitRootIndex] 1321 || current == &roots[Heap::kRealStackLimitRootIndex]; 1322 } 1323 1324 1325 void Serializer::VisitPointers(Object** start, Object** end) { 1326 Isolate* isolate = this->isolate();; 1327 1328 for (Object** current = start; current < end; current++) { 1329 if (start == isolate->heap()->roots_array_start()) { 1330 root_index_wave_front_ = 1331 Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); 1332 } 1333 if (ShouldBeSkipped(current)) { 1334 sink_->Put(kSkip, "Skip"); 1335 sink_->PutInt(kPointerSize, "SkipOneWord"); 1336 } else if ((*current)->IsSmi()) { 1337 sink_->Put(kRawData + 1, "Smi"); 1338 for (int i = 0; i < kPointerSize; i++) { 1339 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); 1340 } 1341 } else { 1342 SerializeObject(*current, kPlain, kStartOfObject, 0); 1343 } 1344 } 1345 } 1346 1347 1348 // This ensures that the partial snapshot cache keeps things alive during GC and 1349 // tracks their movement. When it is called during serialization of the startup 1350 // snapshot nothing happens. When the partial (context) snapshot is created, 1351 // this array is populated with the pointers that the partial snapshot will 1352 // need. As that happens we emit serialized objects to the startup snapshot 1353 // that correspond to the elements of this cache array. On deserialization we 1354 // therefore need to visit the cache array. This fills it up with pointers to 1355 // deserialized objects. 1356 void SerializerDeserializer::Iterate(Isolate* isolate, 1357 ObjectVisitor* visitor) { 1358 if (Serializer::enabled()) return; 1359 for (int i = 0; ; i++) { 1360 if (isolate->serialize_partial_snapshot_cache_length() <= i) { 1361 // Extend the array ready to get a value from the visitor when 1362 // deserializing. 1363 isolate->PushToPartialSnapshotCache(Smi::FromInt(0)); 1364 } 1365 Object** cache = isolate->serialize_partial_snapshot_cache(); 1366 visitor->VisitPointers(&cache[i], &cache[i + 1]); 1367 // Sentinel is the undefined object, which is a root so it will not normally 1368 // be found in the cache. 1369 if (cache[i] == isolate->heap()->undefined_value()) { 1370 break; 1371 } 1372 } 1373 } 1374 1375 1376 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { 1377 Isolate* isolate = this->isolate(); 1378 1379 for (int i = 0; 1380 i < isolate->serialize_partial_snapshot_cache_length(); 1381 i++) { 1382 Object* entry = isolate->serialize_partial_snapshot_cache()[i]; 1383 if (entry == heap_object) return i; 1384 } 1385 1386 // We didn't find the object in the cache. So we add it to the cache and 1387 // then visit the pointer so that it becomes part of the startup snapshot 1388 // and we can refer to it from the partial snapshot. 1389 int length = isolate->serialize_partial_snapshot_cache_length(); 1390 isolate->PushToPartialSnapshotCache(heap_object); 1391 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); 1392 // We don't recurse from the startup snapshot generator into the partial 1393 // snapshot generator. 1394 ASSERT(length == isolate->serialize_partial_snapshot_cache_length() - 1); 1395 return length; 1396 } 1397 1398 1399 int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) { 1400 Heap* heap = isolate()->heap(); 1401 if (heap->InNewSpace(heap_object)) return kInvalidRootIndex; 1402 for (int i = 0; i < root_index_wave_front_; i++) { 1403 Object* root = heap->roots_array_start()[i]; 1404 if (!root->IsSmi() && root == heap_object) { 1405 #if V8_TARGET_ARCH_MIPS 1406 if (from == kFromCode) { 1407 // In order to avoid code bloat in the deserializer we don't have 1408 // support for the encoding that specifies a particular root should 1409 // be written into the lui/ori instructions on MIPS. Therefore we 1410 // should not generate such serialization data for MIPS. 1411 return kInvalidRootIndex; 1412 } 1413 #endif 1414 return i; 1415 } 1416 } 1417 return kInvalidRootIndex; 1418 } 1419 1420 1421 // Encode the location of an already deserialized object in order to write its 1422 // location into a later object. We can encode the location as an offset from 1423 // the start of the deserialized objects or as an offset backwards from the 1424 // current allocation pointer. 1425 void Serializer::SerializeReferenceToPreviousObject( 1426 int space, 1427 int address, 1428 HowToCode how_to_code, 1429 WhereToPoint where_to_point, 1430 int skip) { 1431 int offset = CurrentAllocationAddress(space) - address; 1432 // Shift out the bits that are always 0. 1433 offset >>= kObjectAlignmentBits; 1434 if (skip == 0) { 1435 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer"); 1436 } else { 1437 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, 1438 "BackRefSerWithSkip"); 1439 sink_->PutInt(skip, "BackRefSkipDistance"); 1440 } 1441 sink_->PutInt(offset, "offset"); 1442 } 1443 1444 1445 void StartupSerializer::SerializeObject( 1446 Object* o, 1447 HowToCode how_to_code, 1448 WhereToPoint where_to_point, 1449 int skip) { 1450 CHECK(o->IsHeapObject()); 1451 HeapObject* heap_object = HeapObject::cast(o); 1452 1453 int root_index; 1454 if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) { 1455 PutRoot(root_index, heap_object, how_to_code, where_to_point, skip); 1456 return; 1457 } 1458 1459 if (address_mapper_.IsMapped(heap_object)) { 1460 int space = SpaceOfObject(heap_object); 1461 int address = address_mapper_.MappedTo(heap_object); 1462 SerializeReferenceToPreviousObject(space, 1463 address, 1464 how_to_code, 1465 where_to_point, 1466 skip); 1467 } else { 1468 if (skip != 0) { 1469 sink_->Put(kSkip, "FlushPendingSkip"); 1470 sink_->PutInt(skip, "SkipDistance"); 1471 } 1472 1473 // Object has not yet been serialized. Serialize it here. 1474 ObjectSerializer object_serializer(this, 1475 heap_object, 1476 sink_, 1477 how_to_code, 1478 where_to_point); 1479 object_serializer.Serialize(); 1480 } 1481 } 1482 1483 1484 void StartupSerializer::SerializeWeakReferences() { 1485 // This phase comes right after the partial serialization (of the snapshot). 1486 // After we have done the partial serialization the partial snapshot cache 1487 // will contain some references needed to decode the partial snapshot. We 1488 // add one entry with 'undefined' which is the sentinel that the deserializer 1489 // uses to know it is done deserializing the array. 1490 Object* undefined = isolate()->heap()->undefined_value(); 1491 VisitPointer(&undefined); 1492 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); 1493 Pad(); 1494 } 1495 1496 1497 void Serializer::PutRoot(int root_index, 1498 HeapObject* object, 1499 SerializerDeserializer::HowToCode how_to_code, 1500 SerializerDeserializer::WhereToPoint where_to_point, 1501 int skip) { 1502 if (how_to_code == kPlain && 1503 where_to_point == kStartOfObject && 1504 root_index < kRootArrayNumberOfConstantEncodings && 1505 !isolate()->heap()->InNewSpace(object)) { 1506 if (skip == 0) { 1507 sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index, 1508 "RootConstant"); 1509 } else { 1510 sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index, 1511 "RootConstant"); 1512 sink_->PutInt(skip, "SkipInPutRoot"); 1513 } 1514 } else { 1515 if (skip != 0) { 1516 sink_->Put(kSkip, "SkipFromPutRoot"); 1517 sink_->PutInt(skip, "SkipFromPutRootDistance"); 1518 } 1519 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); 1520 sink_->PutInt(root_index, "root_index"); 1521 } 1522 } 1523 1524 1525 void PartialSerializer::SerializeObject( 1526 Object* o, 1527 HowToCode how_to_code, 1528 WhereToPoint where_to_point, 1529 int skip) { 1530 CHECK(o->IsHeapObject()); 1531 HeapObject* heap_object = HeapObject::cast(o); 1532 1533 if (heap_object->IsMap()) { 1534 // The code-caches link to context-specific code objects, which 1535 // the startup and context serializes cannot currently handle. 1536 ASSERT(Map::cast(heap_object)->code_cache() == 1537 heap_object->GetHeap()->empty_fixed_array()); 1538 } 1539 1540 int root_index; 1541 if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) { 1542 PutRoot(root_index, heap_object, how_to_code, where_to_point, skip); 1543 return; 1544 } 1545 1546 if (ShouldBeInThePartialSnapshotCache(heap_object)) { 1547 if (skip != 0) { 1548 sink_->Put(kSkip, "SkipFromSerializeObject"); 1549 sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); 1550 } 1551 1552 int cache_index = PartialSnapshotCacheIndex(heap_object); 1553 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, 1554 "PartialSnapshotCache"); 1555 sink_->PutInt(cache_index, "partial_snapshot_cache_index"); 1556 return; 1557 } 1558 1559 // Pointers from the partial snapshot to the objects in the startup snapshot 1560 // should go through the root array or through the partial snapshot cache. 1561 // If this is not the case you may have to add something to the root array. 1562 ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object)); 1563 // All the internalized strings that the partial snapshot needs should be 1564 // either in the root table or in the partial snapshot cache. 1565 ASSERT(!heap_object->IsInternalizedString()); 1566 1567 if (address_mapper_.IsMapped(heap_object)) { 1568 int space = SpaceOfObject(heap_object); 1569 int address = address_mapper_.MappedTo(heap_object); 1570 SerializeReferenceToPreviousObject(space, 1571 address, 1572 how_to_code, 1573 where_to_point, 1574 skip); 1575 } else { 1576 if (skip != 0) { 1577 sink_->Put(kSkip, "SkipFromSerializeObject"); 1578 sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); 1579 } 1580 // Object has not yet been serialized. Serialize it here. 1581 ObjectSerializer serializer(this, 1582 heap_object, 1583 sink_, 1584 how_to_code, 1585 where_to_point); 1586 serializer.Serialize(); 1587 } 1588 } 1589 1590 1591 void Serializer::ObjectSerializer::Serialize() { 1592 int space = Serializer::SpaceOfObject(object_); 1593 int size = object_->Size(); 1594 1595 sink_->Put(kNewObject + reference_representation_ + space, 1596 "ObjectSerialization"); 1597 sink_->PutInt(size >> kObjectAlignmentBits, "Size in words"); 1598 1599 ASSERT(code_address_map_); 1600 const char* code_name = code_address_map_->Lookup(object_->address()); 1601 LOG(serializer_->isolate_, 1602 CodeNameEvent(object_->address(), sink_->Position(), code_name)); 1603 LOG(serializer_->isolate_, 1604 SnapshotPositionEvent(object_->address(), sink_->Position())); 1605 1606 // Mark this object as already serialized. 1607 int offset = serializer_->Allocate(space, size); 1608 serializer_->address_mapper()->AddMapping(object_, offset); 1609 1610 // Serialize the map (first word of the object). 1611 serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0); 1612 1613 // Serialize the rest of the object. 1614 CHECK_EQ(0, bytes_processed_so_far_); 1615 bytes_processed_so_far_ = kPointerSize; 1616 object_->IterateBody(object_->map()->instance_type(), size, this); 1617 OutputRawData(object_->address() + size); 1618 } 1619 1620 1621 void Serializer::ObjectSerializer::VisitPointers(Object** start, 1622 Object** end) { 1623 Object** current = start; 1624 while (current < end) { 1625 while (current < end && (*current)->IsSmi()) current++; 1626 if (current < end) OutputRawData(reinterpret_cast<Address>(current)); 1627 1628 while (current < end && !(*current)->IsSmi()) { 1629 HeapObject* current_contents = HeapObject::cast(*current); 1630 int root_index = serializer_->RootIndex(current_contents, kPlain); 1631 // Repeats are not subject to the write barrier so there are only some 1632 // objects that can be used in a repeat encoding. These are the early 1633 // ones in the root array that are never in new space. 1634 if (current != start && 1635 root_index != kInvalidRootIndex && 1636 root_index < kRootArrayNumberOfConstantEncodings && 1637 current_contents == current[-1]) { 1638 ASSERT(!serializer_->isolate()->heap()->InNewSpace(current_contents)); 1639 int repeat_count = 1; 1640 while (current < end - 1 && current[repeat_count] == current_contents) { 1641 repeat_count++; 1642 } 1643 current += repeat_count; 1644 bytes_processed_so_far_ += repeat_count * kPointerSize; 1645 if (repeat_count > kMaxRepeats) { 1646 sink_->Put(kRepeat, "SerializeRepeats"); 1647 sink_->PutInt(repeat_count, "SerializeRepeats"); 1648 } else { 1649 sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats"); 1650 } 1651 } else { 1652 serializer_->SerializeObject( 1653 current_contents, kPlain, kStartOfObject, 0); 1654 bytes_processed_so_far_ += kPointerSize; 1655 current++; 1656 } 1657 } 1658 } 1659 } 1660 1661 1662 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { 1663 int skip = OutputRawData(rinfo->target_address_address(), 1664 kCanReturnSkipInsteadOfSkipping); 1665 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1666 Object* object = rinfo->target_object(); 1667 serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip); 1668 bytes_processed_so_far_ += rinfo->target_address_size(); 1669 } 1670 1671 1672 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { 1673 int skip = OutputRawData(reinterpret_cast<Address>(p), 1674 kCanReturnSkipInsteadOfSkipping); 1675 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); 1676 sink_->PutInt(skip, "SkipB4ExternalRef"); 1677 Address target = *p; 1678 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1679 bytes_processed_so_far_ += kPointerSize; 1680 } 1681 1682 1683 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { 1684 int skip = OutputRawData(rinfo->target_address_address(), 1685 kCanReturnSkipInsteadOfSkipping); 1686 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1687 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 1688 sink_->PutInt(skip, "SkipB4ExternalRef"); 1689 Address target = rinfo->target_reference(); 1690 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1691 bytes_processed_so_far_ += rinfo->target_address_size(); 1692 } 1693 1694 1695 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { 1696 int skip = OutputRawData(rinfo->target_address_address(), 1697 kCanReturnSkipInsteadOfSkipping); 1698 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1699 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 1700 sink_->PutInt(skip, "SkipB4ExternalRef"); 1701 Address target = rinfo->target_address(); 1702 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1703 bytes_processed_so_far_ += rinfo->target_address_size(); 1704 } 1705 1706 1707 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { 1708 int skip = OutputRawData(rinfo->target_address_address(), 1709 kCanReturnSkipInsteadOfSkipping); 1710 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); 1711 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); 1712 bytes_processed_so_far_ += rinfo->target_address_size(); 1713 } 1714 1715 1716 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { 1717 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); 1718 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); 1719 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 1720 bytes_processed_so_far_ += kPointerSize; 1721 } 1722 1723 1724 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { 1725 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); 1726 Cell* object = Cell::cast(rinfo->target_cell()); 1727 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 1728 } 1729 1730 1731 void Serializer::ObjectSerializer::VisitExternalAsciiString( 1732 v8::String::ExternalAsciiStringResource** resource_pointer) { 1733 Address references_start = reinterpret_cast<Address>(resource_pointer); 1734 OutputRawData(references_start); 1735 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { 1736 Object* source = 1737 serializer_->isolate()->heap()->natives_source_cache()->get(i); 1738 if (!source->IsUndefined()) { 1739 ExternalAsciiString* string = ExternalAsciiString::cast(source); 1740 typedef v8::String::ExternalAsciiStringResource Resource; 1741 const Resource* resource = string->resource(); 1742 if (resource == *resource_pointer) { 1743 sink_->Put(kNativesStringResource, "NativesStringResource"); 1744 sink_->PutSection(i, "NativesStringResourceEnd"); 1745 bytes_processed_so_far_ += sizeof(resource); 1746 return; 1747 } 1748 } 1749 } 1750 // One of the strings in the natives cache should match the resource. We 1751 // can't serialize any other kinds of external strings. 1752 UNREACHABLE(); 1753 } 1754 1755 1756 static Code* CloneCodeObject(HeapObject* code) { 1757 Address copy = new byte[code->Size()]; 1758 OS::MemCopy(copy, code->address(), code->Size()); 1759 return Code::cast(HeapObject::FromAddress(copy)); 1760 } 1761 1762 1763 static void WipeOutRelocations(Code* code) { 1764 int mode_mask = 1765 RelocInfo::kCodeTargetMask | 1766 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | 1767 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | 1768 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY); 1769 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { 1770 it.rinfo()->WipeOut(); 1771 } 1772 } 1773 1774 1775 int Serializer::ObjectSerializer::OutputRawData( 1776 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { 1777 Address object_start = object_->address(); 1778 int base = bytes_processed_so_far_; 1779 int up_to_offset = static_cast<int>(up_to - object_start); 1780 int to_skip = up_to_offset - bytes_processed_so_far_; 1781 int bytes_to_output = to_skip; 1782 bytes_processed_so_far_ += to_skip; 1783 // This assert will fail if the reloc info gives us the target_address_address 1784 // locations in a non-ascending order. Luckily that doesn't happen. 1785 ASSERT(to_skip >= 0); 1786 bool outputting_code = false; 1787 if (to_skip != 0 && code_object_ && !code_has_been_output_) { 1788 // Output the code all at once and fix later. 1789 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; 1790 outputting_code = true; 1791 code_has_been_output_ = true; 1792 } 1793 if (bytes_to_output != 0 && 1794 (!code_object_ || outputting_code)) { 1795 #define RAW_CASE(index) \ 1796 if (!outputting_code && bytes_to_output == index * kPointerSize && \ 1797 index * kPointerSize == to_skip) { \ 1798 sink_->PutSection(kRawData + index, "RawDataFixed"); \ 1799 to_skip = 0; /* This insn already skips. */ \ 1800 } else /* NOLINT */ 1801 COMMON_RAW_LENGTHS(RAW_CASE) 1802 #undef RAW_CASE 1803 { /* NOLINT */ 1804 // We always end up here if we are outputting the code of a code object. 1805 sink_->Put(kRawData, "RawData"); 1806 sink_->PutInt(bytes_to_output, "length"); 1807 } 1808 1809 // To make snapshots reproducible, we need to wipe out all pointers in code. 1810 if (code_object_) { 1811 Code* code = CloneCodeObject(object_); 1812 WipeOutRelocations(code); 1813 // We need to wipe out the header fields *after* wiping out the 1814 // relocations, because some of these fields are needed for the latter. 1815 code->WipeOutHeader(); 1816 object_start = code->address(); 1817 } 1818 1819 const char* description = code_object_ ? "Code" : "Byte"; 1820 for (int i = 0; i < bytes_to_output; i++) { 1821 sink_->PutSection(object_start[base + i], description); 1822 } 1823 if (code_object_) delete[] object_start; 1824 } 1825 if (to_skip != 0 && return_skip == kIgnoringReturn) { 1826 sink_->Put(kSkip, "Skip"); 1827 sink_->PutInt(to_skip, "SkipDistance"); 1828 to_skip = 0; 1829 } 1830 return to_skip; 1831 } 1832 1833 1834 int Serializer::SpaceOfObject(HeapObject* object) { 1835 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) { 1836 AllocationSpace s = static_cast<AllocationSpace>(i); 1837 if (object->GetHeap()->InSpace(object, s)) { 1838 ASSERT(i < kNumberOfSpaces); 1839 return i; 1840 } 1841 } 1842 UNREACHABLE(); 1843 return 0; 1844 } 1845 1846 1847 int Serializer::Allocate(int space, int size) { 1848 CHECK(space >= 0 && space < kNumberOfSpaces); 1849 int allocation_address = fullness_[space]; 1850 fullness_[space] = allocation_address + size; 1851 return allocation_address; 1852 } 1853 1854 1855 int Serializer::SpaceAreaSize(int space) { 1856 if (space == CODE_SPACE) { 1857 return isolate_->memory_allocator()->CodePageAreaSize(); 1858 } else { 1859 return Page::kPageSize - Page::kObjectStartOffset; 1860 } 1861 } 1862 1863 1864 void Serializer::Pad() { 1865 // The non-branching GetInt will read up to 3 bytes too far, so we need 1866 // to pad the snapshot to make sure we don't read over the end. 1867 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { 1868 sink_->Put(kNop, "Padding"); 1869 } 1870 } 1871 1872 1873 bool SnapshotByteSource::AtEOF() { 1874 if (0u + length_ - position_ > 2 * sizeof(uint32_t)) return false; 1875 for (int x = position_; x < length_; x++) { 1876 if (data_[x] != SerializerDeserializer::nop()) return false; 1877 } 1878 return true; 1879 } 1880 1881 } } // namespace v8::internal 1882