Home | History | Annotate | Download | only in AST
      1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the C++ Decl subclasses, other than those for templates
     12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CLANG_AST_DECLCXX_H
     17 #define LLVM_CLANG_AST_DECLCXX_H
     18 
     19 #include "clang/AST/ASTUnresolvedSet.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/TypeLoc.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PointerIntPair.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/Support/Compiler.h"
     28 
     29 namespace clang {
     30 
     31 class ClassTemplateDecl;
     32 class ClassTemplateSpecializationDecl;
     33 class CXXBasePath;
     34 class CXXBasePaths;
     35 class CXXConstructorDecl;
     36 class CXXConversionDecl;
     37 class CXXDestructorDecl;
     38 class CXXMethodDecl;
     39 class CXXRecordDecl;
     40 class CXXMemberLookupCriteria;
     41 class CXXFinalOverriderMap;
     42 class CXXIndirectPrimaryBaseSet;
     43 class FriendDecl;
     44 class LambdaExpr;
     45 class UsingDecl;
     46 
     47 /// \brief Represents any kind of function declaration, whether it is a
     48 /// concrete function or a function template.
     49 class AnyFunctionDecl {
     50   NamedDecl *Function;
     51 
     52   AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
     53 
     54 public:
     55   AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
     56   AnyFunctionDecl(FunctionTemplateDecl *FTD);
     57 
     58   /// \brief Implicily converts any function or function template into a
     59   /// named declaration.
     60   operator NamedDecl *() const { return Function; }
     61 
     62   /// \brief Retrieve the underlying function or function template.
     63   NamedDecl *get() const { return Function; }
     64 
     65   static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
     66     return AnyFunctionDecl(ND);
     67   }
     68 };
     69 
     70 } // end namespace clang
     71 
     72 namespace llvm {
     73   // Provide PointerLikeTypeTraits for non-cvr pointers.
     74   template<>
     75   class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
     76   public:
     77     static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
     78       return F.get();
     79     }
     80     static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
     81       return ::clang::AnyFunctionDecl::getFromNamedDecl(
     82                                       static_cast< ::clang::NamedDecl*>(P));
     83     }
     84 
     85     enum { NumLowBitsAvailable = 2 };
     86   };
     87 
     88 } // end namespace llvm
     89 
     90 namespace clang {
     91 
     92 /// \brief Represents an access specifier followed by colon ':'.
     93 ///
     94 /// An objects of this class represents sugar for the syntactic occurrence
     95 /// of an access specifier followed by a colon in the list of member
     96 /// specifiers of a C++ class definition.
     97 ///
     98 /// Note that they do not represent other uses of access specifiers,
     99 /// such as those occurring in a list of base specifiers.
    100 /// Also note that this class has nothing to do with so-called
    101 /// "access declarations" (C++98 11.3 [class.access.dcl]).
    102 class AccessSpecDecl : public Decl {
    103   virtual void anchor();
    104   /// \brief The location of the ':'.
    105   SourceLocation ColonLoc;
    106 
    107   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
    108                  SourceLocation ASLoc, SourceLocation ColonLoc)
    109     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
    110     setAccess(AS);
    111   }
    112   AccessSpecDecl(EmptyShell Empty)
    113     : Decl(AccessSpec, Empty) { }
    114 public:
    115   /// \brief The location of the access specifier.
    116   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
    117   /// \brief Sets the location of the access specifier.
    118   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
    119 
    120   /// \brief The location of the colon following the access specifier.
    121   SourceLocation getColonLoc() const { return ColonLoc; }
    122   /// \brief Sets the location of the colon.
    123   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
    124 
    125   SourceRange getSourceRange() const LLVM_READONLY {
    126     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
    127   }
    128 
    129   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
    130                                 DeclContext *DC, SourceLocation ASLoc,
    131                                 SourceLocation ColonLoc) {
    132     return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
    133   }
    134   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
    135 
    136   // Implement isa/cast/dyncast/etc.
    137   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
    138   static bool classofKind(Kind K) { return K == AccessSpec; }
    139 };
    140 
    141 
    142 /// \brief Represents a base class of a C++ class.
    143 ///
    144 /// Each CXXBaseSpecifier represents a single, direct base class (or
    145 /// struct) of a C++ class (or struct). It specifies the type of that
    146 /// base class, whether it is a virtual or non-virtual base, and what
    147 /// level of access (public, protected, private) is used for the
    148 /// derivation. For example:
    149 ///
    150 /// \code
    151 ///   class A { };
    152 ///   class B { };
    153 ///   class C : public virtual A, protected B { };
    154 /// \endcode
    155 ///
    156 /// In this code, C will have two CXXBaseSpecifiers, one for "public
    157 /// virtual A" and the other for "protected B".
    158 class CXXBaseSpecifier {
    159   /// \brief The source code range that covers the full base
    160   /// specifier, including the "virtual" (if present) and access
    161   /// specifier (if present).
    162   SourceRange Range;
    163 
    164   /// \brief The source location of the ellipsis, if this is a pack
    165   /// expansion.
    166   SourceLocation EllipsisLoc;
    167 
    168   /// \brief Whether this is a virtual base class or not.
    169   bool Virtual : 1;
    170 
    171   /// \brief Whether this is the base of a class (true) or of a struct (false).
    172   ///
    173   /// This determines the mapping from the access specifier as written in the
    174   /// source code to the access specifier used for semantic analysis.
    175   bool BaseOfClass : 1;
    176 
    177   /// \brief Access specifier as written in the source code (may be AS_none).
    178   ///
    179   /// The actual type of data stored here is an AccessSpecifier, but we use
    180   /// "unsigned" here to work around a VC++ bug.
    181   unsigned Access : 2;
    182 
    183   /// \brief Whether the class contains a using declaration
    184   /// to inherit the named class's constructors.
    185   bool InheritConstructors : 1;
    186 
    187   /// \brief The type of the base class.
    188   ///
    189   /// This will be a class or struct (or a typedef of such). The source code
    190   /// range does not include the \c virtual or the access specifier.
    191   TypeSourceInfo *BaseTypeInfo;
    192 
    193 public:
    194   CXXBaseSpecifier() { }
    195 
    196   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
    197                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
    198     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
    199       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
    200 
    201   /// \brief Retrieves the source range that contains the entire base specifier.
    202   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
    203   SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
    204   SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
    205 
    206   /// \brief Determines whether the base class is a virtual base class (or not).
    207   bool isVirtual() const { return Virtual; }
    208 
    209   /// \brief Determine whether this base class is a base of a class declared
    210   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
    211   bool isBaseOfClass() const { return BaseOfClass; }
    212 
    213   /// \brief Determine whether this base specifier is a pack expansion.
    214   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
    215 
    216   /// \brief Determine whether this base class's constructors get inherited.
    217   bool getInheritConstructors() const { return InheritConstructors; }
    218 
    219   /// \brief Set that this base class's constructors should be inherited.
    220   void setInheritConstructors(bool Inherit = true) {
    221     InheritConstructors = Inherit;
    222   }
    223 
    224   /// \brief For a pack expansion, determine the location of the ellipsis.
    225   SourceLocation getEllipsisLoc() const {
    226     return EllipsisLoc;
    227   }
    228 
    229   /// \brief Returns the access specifier for this base specifier.
    230   ///
    231   /// This is the actual base specifier as used for semantic analysis, so
    232   /// the result can never be AS_none. To retrieve the access specifier as
    233   /// written in the source code, use getAccessSpecifierAsWritten().
    234   AccessSpecifier getAccessSpecifier() const {
    235     if ((AccessSpecifier)Access == AS_none)
    236       return BaseOfClass? AS_private : AS_public;
    237     else
    238       return (AccessSpecifier)Access;
    239   }
    240 
    241   /// \brief Retrieves the access specifier as written in the source code
    242   /// (which may mean that no access specifier was explicitly written).
    243   ///
    244   /// Use getAccessSpecifier() to retrieve the access specifier for use in
    245   /// semantic analysis.
    246   AccessSpecifier getAccessSpecifierAsWritten() const {
    247     return (AccessSpecifier)Access;
    248   }
    249 
    250   /// \brief Retrieves the type of the base class.
    251   ///
    252   /// This type will always be an unqualified class type.
    253   QualType getType() const {
    254     return BaseTypeInfo->getType().getUnqualifiedType();
    255   }
    256 
    257   /// \brief Retrieves the type and source location of the base class.
    258   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
    259 };
    260 
    261 /// The inheritance model to use for member pointers of a given CXXRecordDecl.
    262 enum MSInheritanceModel {
    263   MSIM_Single,
    264   MSIM_SinglePolymorphic,
    265   MSIM_Multiple,
    266   MSIM_MultiplePolymorphic,
    267   MSIM_Virtual,
    268   MSIM_Unspecified
    269 };
    270 
    271 /// \brief Represents a C++ struct/union/class.
    272 ///
    273 /// FIXME: This class will disappear once we've properly taught RecordDecl
    274 /// to deal with C++-specific things.
    275 class CXXRecordDecl : public RecordDecl {
    276 
    277   friend void TagDecl::startDefinition();
    278 
    279   /// Values used in DefinitionData fields to represent special members.
    280   enum SpecialMemberFlags {
    281     SMF_DefaultConstructor = 0x1,
    282     SMF_CopyConstructor = 0x2,
    283     SMF_MoveConstructor = 0x4,
    284     SMF_CopyAssignment = 0x8,
    285     SMF_MoveAssignment = 0x10,
    286     SMF_Destructor = 0x20,
    287     SMF_All = 0x3f
    288   };
    289 
    290   struct DefinitionData {
    291     DefinitionData(CXXRecordDecl *D);
    292 
    293     /// \brief True if this class has any user-declared constructors.
    294     bool UserDeclaredConstructor : 1;
    295 
    296     /// \brief The user-declared special members which this class has.
    297     unsigned UserDeclaredSpecialMembers : 6;
    298 
    299     /// \brief True when this class is an aggregate.
    300     bool Aggregate : 1;
    301 
    302     /// \brief True when this class is a POD-type.
    303     bool PlainOldData : 1;
    304 
    305     /// true when this class is empty for traits purposes,
    306     /// i.e. has no data members other than 0-width bit-fields, has no
    307     /// virtual function/base, and doesn't inherit from a non-empty
    308     /// class. Doesn't take union-ness into account.
    309     bool Empty : 1;
    310 
    311     /// \brief True when this class is polymorphic, i.e., has at
    312     /// least one virtual member or derives from a polymorphic class.
    313     bool Polymorphic : 1;
    314 
    315     /// \brief True when this class is abstract, i.e., has at least
    316     /// one pure virtual function, (that can come from a base class).
    317     bool Abstract : 1;
    318 
    319     /// \brief True when this class has standard layout.
    320     ///
    321     /// C++11 [class]p7.  A standard-layout class is a class that:
    322     /// * has no non-static data members of type non-standard-layout class (or
    323     ///   array of such types) or reference,
    324     /// * has no virtual functions (10.3) and no virtual base classes (10.1),
    325     /// * has the same access control (Clause 11) for all non-static data
    326     ///   members
    327     /// * has no non-standard-layout base classes,
    328     /// * either has no non-static data members in the most derived class and at
    329     ///   most one base class with non-static data members, or has no base
    330     ///   classes with non-static data members, and
    331     /// * has no base classes of the same type as the first non-static data
    332     ///   member.
    333     bool IsStandardLayout : 1;
    334 
    335     /// \brief True when there are no non-empty base classes.
    336     ///
    337     /// This is a helper bit of state used to implement IsStandardLayout more
    338     /// efficiently.
    339     bool HasNoNonEmptyBases : 1;
    340 
    341     /// \brief True when there are private non-static data members.
    342     bool HasPrivateFields : 1;
    343 
    344     /// \brief True when there are protected non-static data members.
    345     bool HasProtectedFields : 1;
    346 
    347     /// \brief True when there are private non-static data members.
    348     bool HasPublicFields : 1;
    349 
    350     /// \brief True if this class (or any subobject) has mutable fields.
    351     bool HasMutableFields : 1;
    352 
    353     /// \brief True if there no non-field members declared by the user.
    354     bool HasOnlyCMembers : 1;
    355 
    356     /// \brief True if any field has an in-class initializer.
    357     bool HasInClassInitializer : 1;
    358 
    359     /// \brief True if any field is of reference type, and does not have an
    360     /// in-class initializer.
    361     ///
    362     /// In this case, value-initialization of this class is illegal in C++98
    363     /// even if the class has a trivial default constructor.
    364     bool HasUninitializedReferenceMember : 1;
    365 
    366     /// \brief These flags are \c true if a defaulted corresponding special
    367     /// member can't be fully analyzed without performing overload resolution.
    368     /// @{
    369     bool NeedOverloadResolutionForMoveConstructor : 1;
    370     bool NeedOverloadResolutionForMoveAssignment : 1;
    371     bool NeedOverloadResolutionForDestructor : 1;
    372     /// @}
    373 
    374     /// \brief These flags are \c true if an implicit defaulted corresponding
    375     /// special member would be defined as deleted.
    376     /// @{
    377     bool DefaultedMoveConstructorIsDeleted : 1;
    378     bool DefaultedMoveAssignmentIsDeleted : 1;
    379     bool DefaultedDestructorIsDeleted : 1;
    380     /// @}
    381 
    382     /// \brief The trivial special members which this class has, per
    383     /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
    384     /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
    385     ///
    386     /// This excludes any user-declared but not user-provided special members
    387     /// which have been declared but not yet defined.
    388     unsigned HasTrivialSpecialMembers : 6;
    389 
    390     /// \brief The declared special members of this class which are known to be
    391     /// non-trivial.
    392     ///
    393     /// This excludes any user-declared but not user-provided special members
    394     /// which have been declared but not yet defined, and any implicit special
    395     /// members which have not yet been declared.
    396     unsigned DeclaredNonTrivialSpecialMembers : 6;
    397 
    398     /// \brief True when this class has a destructor with no semantic effect.
    399     bool HasIrrelevantDestructor : 1;
    400 
    401     /// \brief True when this class has at least one user-declared constexpr
    402     /// constructor which is neither the copy nor move constructor.
    403     bool HasConstexprNonCopyMoveConstructor : 1;
    404 
    405     /// \brief True if a defaulted default constructor for this class would
    406     /// be constexpr.
    407     bool DefaultedDefaultConstructorIsConstexpr : 1;
    408 
    409     /// \brief True if this class has a constexpr default constructor.
    410     ///
    411     /// This is true for either a user-declared constexpr default constructor
    412     /// or an implicitly declared constexpr default constructor..
    413     bool HasConstexprDefaultConstructor : 1;
    414 
    415     /// \brief True when this class contains at least one non-static data
    416     /// member or base class of non-literal or volatile type.
    417     bool HasNonLiteralTypeFieldsOrBases : 1;
    418 
    419     /// \brief True when visible conversion functions are already computed
    420     /// and are available.
    421     bool ComputedVisibleConversions : 1;
    422 
    423     /// \brief Whether we have a C++11 user-provided default constructor (not
    424     /// explicitly deleted or defaulted).
    425     bool UserProvidedDefaultConstructor : 1;
    426 
    427     /// \brief The special members which have been declared for this class,
    428     /// either by the user or implicitly.
    429     unsigned DeclaredSpecialMembers : 6;
    430 
    431     /// \brief Whether an implicit copy constructor would have a const-qualified
    432     /// parameter.
    433     bool ImplicitCopyConstructorHasConstParam : 1;
    434 
    435     /// \brief Whether an implicit copy assignment operator would have a
    436     /// const-qualified parameter.
    437     bool ImplicitCopyAssignmentHasConstParam : 1;
    438 
    439     /// \brief Whether any declared copy constructor has a const-qualified
    440     /// parameter.
    441     bool HasDeclaredCopyConstructorWithConstParam : 1;
    442 
    443     /// \brief Whether any declared copy assignment operator has either a
    444     /// const-qualified reference parameter or a non-reference parameter.
    445     bool HasDeclaredCopyAssignmentWithConstParam : 1;
    446 
    447     /// \brief Whether an implicit move constructor was attempted to be declared
    448     /// but would have been deleted.
    449     bool FailedImplicitMoveConstructor : 1;
    450 
    451     /// \brief Whether an implicit move assignment operator was attempted to be
    452     /// declared but would have been deleted.
    453     bool FailedImplicitMoveAssignment : 1;
    454 
    455     /// \brief Whether this class describes a C++ lambda.
    456     bool IsLambda : 1;
    457 
    458     /// \brief The number of base class specifiers in Bases.
    459     unsigned NumBases;
    460 
    461     /// \brief The number of virtual base class specifiers in VBases.
    462     unsigned NumVBases;
    463 
    464     /// \brief Base classes of this class.
    465     ///
    466     /// FIXME: This is wasted space for a union.
    467     LazyCXXBaseSpecifiersPtr Bases;
    468 
    469     /// \brief direct and indirect virtual base classes of this class.
    470     LazyCXXBaseSpecifiersPtr VBases;
    471 
    472     /// \brief The conversion functions of this C++ class (but not its
    473     /// inherited conversion functions).
    474     ///
    475     /// Each of the entries in this overload set is a CXXConversionDecl.
    476     ASTUnresolvedSet Conversions;
    477 
    478     /// \brief The conversion functions of this C++ class and all those
    479     /// inherited conversion functions that are visible in this class.
    480     ///
    481     /// Each of the entries in this overload set is a CXXConversionDecl or a
    482     /// FunctionTemplateDecl.
    483     ASTUnresolvedSet VisibleConversions;
    484 
    485     /// \brief The declaration which defines this record.
    486     CXXRecordDecl *Definition;
    487 
    488     /// \brief The first friend declaration in this class, or null if there
    489     /// aren't any.
    490     ///
    491     /// This is actually currently stored in reverse order.
    492     LazyDeclPtr FirstFriend;
    493 
    494     /// \brief Retrieve the set of direct base classes.
    495     CXXBaseSpecifier *getBases() const {
    496       if (!Bases.isOffset())
    497         return Bases.get(0);
    498       return getBasesSlowCase();
    499     }
    500 
    501     /// \brief Retrieve the set of virtual base classes.
    502     CXXBaseSpecifier *getVBases() const {
    503       if (!VBases.isOffset())
    504         return VBases.get(0);
    505       return getVBasesSlowCase();
    506     }
    507 
    508   private:
    509     CXXBaseSpecifier *getBasesSlowCase() const;
    510     CXXBaseSpecifier *getVBasesSlowCase() const;
    511   } *DefinitionData;
    512 
    513   /// \brief Describes a C++ closure type (generated by a lambda expression).
    514   struct LambdaDefinitionData : public DefinitionData {
    515     typedef LambdaExpr::Capture Capture;
    516 
    517     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent)
    518       : DefinitionData(D), Dependent(Dependent), NumCaptures(0),
    519         NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0),
    520         MethodTyInfo(Info)
    521     {
    522       IsLambda = true;
    523     }
    524 
    525     /// \brief Whether this lambda is known to be dependent, even if its
    526     /// context isn't dependent.
    527     ///
    528     /// A lambda with a non-dependent context can be dependent if it occurs
    529     /// within the default argument of a function template, because the
    530     /// lambda will have been created with the enclosing context as its
    531     /// declaration context, rather than function. This is an unfortunate
    532     /// artifact of having to parse the default arguments before
    533     unsigned Dependent : 1;
    534 
    535     /// \brief The number of captures in this lambda.
    536     unsigned NumCaptures : 16;
    537 
    538     /// \brief The number of explicit captures in this lambda.
    539     unsigned NumExplicitCaptures : 15;
    540 
    541     /// \brief The number used to indicate this lambda expression for name
    542     /// mangling in the Itanium C++ ABI.
    543     unsigned ManglingNumber;
    544 
    545     /// \brief The declaration that provides context for this lambda, if the
    546     /// actual DeclContext does not suffice. This is used for lambdas that
    547     /// occur within default arguments of function parameters within the class
    548     /// or within a data member initializer.
    549     Decl *ContextDecl;
    550 
    551     /// \brief The list of captures, both explicit and implicit, for this
    552     /// lambda.
    553     Capture *Captures;
    554 
    555     /// \brief The type of the call method.
    556     TypeSourceInfo *MethodTyInfo;
    557   };
    558 
    559   struct DefinitionData &data() {
    560     assert(DefinitionData && "queried property of class with no definition");
    561     return *DefinitionData;
    562   }
    563 
    564   const struct DefinitionData &data() const {
    565     assert(DefinitionData && "queried property of class with no definition");
    566     return *DefinitionData;
    567   }
    568 
    569   struct LambdaDefinitionData &getLambdaData() const {
    570     assert(DefinitionData && "queried property of lambda with no definition");
    571     assert(DefinitionData->IsLambda &&
    572            "queried lambda property of non-lambda class");
    573     return static_cast<LambdaDefinitionData &>(*DefinitionData);
    574   }
    575 
    576   /// \brief The template or declaration that this declaration
    577   /// describes or was instantiated from, respectively.
    578   ///
    579   /// For non-templates, this value will be null. For record
    580   /// declarations that describe a class template, this will be a
    581   /// pointer to a ClassTemplateDecl. For member
    582   /// classes of class template specializations, this will be the
    583   /// MemberSpecializationInfo referring to the member class that was
    584   /// instantiated or specialized.
    585   llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
    586     TemplateOrInstantiation;
    587 
    588   friend class DeclContext;
    589   friend class LambdaExpr;
    590 
    591   /// \brief Called from setBases and addedMember to notify the class that a
    592   /// direct or virtual base class or a member of class type has been added.
    593   void addedClassSubobject(CXXRecordDecl *Base);
    594 
    595   /// \brief Notify the class that member has been added.
    596   ///
    597   /// This routine helps maintain information about the class based on which
    598   /// members have been added. It will be invoked by DeclContext::addDecl()
    599   /// whenever a member is added to this record.
    600   void addedMember(Decl *D);
    601 
    602   void markedVirtualFunctionPure();
    603   friend void FunctionDecl::setPure(bool);
    604 
    605   friend class ASTNodeImporter;
    606 
    607   /// \brief Get the head of our list of friend declarations, possibly
    608   /// deserializing the friends from an external AST source.
    609   FriendDecl *getFirstFriend() const;
    610 
    611 protected:
    612   CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
    613                 SourceLocation StartLoc, SourceLocation IdLoc,
    614                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
    615 
    616 public:
    617   /// \brief Iterator that traverses the base classes of a class.
    618   typedef CXXBaseSpecifier*       base_class_iterator;
    619 
    620   /// \brief Iterator that traverses the base classes of a class.
    621   typedef const CXXBaseSpecifier* base_class_const_iterator;
    622 
    623   /// \brief Iterator that traverses the base classes of a class in reverse
    624   /// order.
    625   typedef std::reverse_iterator<base_class_iterator>
    626     reverse_base_class_iterator;
    627 
    628   /// \brief Iterator that traverses the base classes of a class in reverse
    629   /// order.
    630   typedef std::reverse_iterator<base_class_const_iterator>
    631     reverse_base_class_const_iterator;
    632 
    633   virtual CXXRecordDecl *getCanonicalDecl() {
    634     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
    635   }
    636   virtual const CXXRecordDecl *getCanonicalDecl() const {
    637     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
    638   }
    639 
    640   const CXXRecordDecl *getPreviousDecl() const {
    641     return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
    642   }
    643   CXXRecordDecl *getPreviousDecl() {
    644     return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
    645   }
    646 
    647   const CXXRecordDecl *getMostRecentDecl() const {
    648     return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
    649   }
    650   CXXRecordDecl *getMostRecentDecl() {
    651     return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
    652   }
    653 
    654   CXXRecordDecl *getDefinition() const {
    655     if (!DefinitionData) return 0;
    656     return data().Definition;
    657   }
    658 
    659   bool hasDefinition() const { return DefinitionData != 0; }
    660 
    661   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
    662                                SourceLocation StartLoc, SourceLocation IdLoc,
    663                                IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0,
    664                                bool DelayTypeCreation = false);
    665   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
    666                                      TypeSourceInfo *Info, SourceLocation Loc,
    667                                      bool DependentLambda);
    668   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
    669 
    670   bool isDynamicClass() const {
    671     return data().Polymorphic || data().NumVBases != 0;
    672   }
    673 
    674   /// \brief Sets the base classes of this struct or class.
    675   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
    676 
    677   /// \brief Retrieves the number of base classes of this class.
    678   unsigned getNumBases() const { return data().NumBases; }
    679 
    680   base_class_iterator bases_begin() { return data().getBases(); }
    681   base_class_const_iterator bases_begin() const { return data().getBases(); }
    682   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
    683   base_class_const_iterator bases_end() const {
    684     return bases_begin() + data().NumBases;
    685   }
    686   reverse_base_class_iterator       bases_rbegin() {
    687     return reverse_base_class_iterator(bases_end());
    688   }
    689   reverse_base_class_const_iterator bases_rbegin() const {
    690     return reverse_base_class_const_iterator(bases_end());
    691   }
    692   reverse_base_class_iterator bases_rend() {
    693     return reverse_base_class_iterator(bases_begin());
    694   }
    695   reverse_base_class_const_iterator bases_rend() const {
    696     return reverse_base_class_const_iterator(bases_begin());
    697   }
    698 
    699   /// \brief Retrieves the number of virtual base classes of this class.
    700   unsigned getNumVBases() const { return data().NumVBases; }
    701 
    702   base_class_iterator vbases_begin() { return data().getVBases(); }
    703   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
    704   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
    705   base_class_const_iterator vbases_end() const {
    706     return vbases_begin() + data().NumVBases;
    707   }
    708   reverse_base_class_iterator vbases_rbegin() {
    709     return reverse_base_class_iterator(vbases_end());
    710   }
    711   reverse_base_class_const_iterator vbases_rbegin() const {
    712     return reverse_base_class_const_iterator(vbases_end());
    713   }
    714   reverse_base_class_iterator vbases_rend() {
    715     return reverse_base_class_iterator(vbases_begin());
    716   }
    717   reverse_base_class_const_iterator vbases_rend() const {
    718     return reverse_base_class_const_iterator(vbases_begin());
    719  }
    720 
    721   /// \brief Determine whether this class has any dependent base classes which
    722   /// are not the current instantiation.
    723   bool hasAnyDependentBases() const;
    724 
    725   /// Iterator access to method members.  The method iterator visits
    726   /// all method members of the class, including non-instance methods,
    727   /// special methods, etc.
    728   typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
    729 
    730   /// \brief Method begin iterator.  Iterates in the order the methods
    731   /// were declared.
    732   method_iterator method_begin() const {
    733     return method_iterator(decls_begin());
    734   }
    735   /// \brief Method past-the-end iterator.
    736   method_iterator method_end() const {
    737     return method_iterator(decls_end());
    738   }
    739 
    740   /// Iterator access to constructor members.
    741   typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
    742 
    743   ctor_iterator ctor_begin() const {
    744     return ctor_iterator(decls_begin());
    745   }
    746   ctor_iterator ctor_end() const {
    747     return ctor_iterator(decls_end());
    748   }
    749 
    750   /// An iterator over friend declarations.  All of these are defined
    751   /// in DeclFriend.h.
    752   class friend_iterator;
    753   friend_iterator friend_begin() const;
    754   friend_iterator friend_end() const;
    755   void pushFriendDecl(FriendDecl *FD);
    756 
    757   /// Determines whether this record has any friends.
    758   bool hasFriends() const {
    759     return data().FirstFriend.isValid();
    760   }
    761 
    762   /// \brief \c true if we know for sure that this class has a single,
    763   /// accessible, unambiguous move constructor that is not deleted.
    764   bool hasSimpleMoveConstructor() const {
    765     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor();
    766   }
    767   /// \brief \c true if we know for sure that this class has a single,
    768   /// accessible, unambiguous move assignment operator that is not deleted.
    769   bool hasSimpleMoveAssignment() const {
    770     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment();
    771   }
    772   /// \brief \c true if we know for sure that this class has an accessible
    773   /// destructor that is not deleted.
    774   bool hasSimpleDestructor() const {
    775     return !hasUserDeclaredDestructor() &&
    776            !data().DefaultedDestructorIsDeleted;
    777   }
    778 
    779   /// \brief Determine whether this class has any default constructors.
    780   bool hasDefaultConstructor() const {
    781     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
    782            needsImplicitDefaultConstructor();
    783   }
    784 
    785   /// \brief Determine if we need to declare a default constructor for
    786   /// this class.
    787   ///
    788   /// This value is used for lazy creation of default constructors.
    789   bool needsImplicitDefaultConstructor() const {
    790     return !data().UserDeclaredConstructor &&
    791            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
    792   }
    793 
    794   /// \brief Determine whether this class has any user-declared constructors.
    795   ///
    796   /// When true, a default constructor will not be implicitly declared.
    797   bool hasUserDeclaredConstructor() const {
    798     return data().UserDeclaredConstructor;
    799   }
    800 
    801   /// \brief Whether this class has a user-provided default constructor
    802   /// per C++11.
    803   bool hasUserProvidedDefaultConstructor() const {
    804     return data().UserProvidedDefaultConstructor;
    805   }
    806 
    807   /// \brief Determine whether this class has a user-declared copy constructor.
    808   ///
    809   /// When false, a copy constructor will be implicitly declared.
    810   bool hasUserDeclaredCopyConstructor() const {
    811     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
    812   }
    813 
    814   /// \brief Determine whether this class needs an implicit copy
    815   /// constructor to be lazily declared.
    816   bool needsImplicitCopyConstructor() const {
    817     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
    818   }
    819 
    820   /// \brief Determine whether we need to eagerly declare a defaulted copy
    821   /// constructor for this class.
    822   bool needsOverloadResolutionForCopyConstructor() const {
    823     return data().HasMutableFields;
    824   }
    825 
    826   /// \brief Determine whether an implicit copy constructor for this type
    827   /// would have a parameter with a const-qualified reference type.
    828   bool implicitCopyConstructorHasConstParam() const {
    829     return data().ImplicitCopyConstructorHasConstParam;
    830   }
    831 
    832   /// \brief Determine whether this class has a copy constructor with
    833   /// a parameter type which is a reference to a const-qualified type.
    834   bool hasCopyConstructorWithConstParam() const {
    835     return data().HasDeclaredCopyConstructorWithConstParam ||
    836            (needsImplicitCopyConstructor() &&
    837             implicitCopyConstructorHasConstParam());
    838   }
    839 
    840   /// \brief Whether this class has a user-declared move constructor or
    841   /// assignment operator.
    842   ///
    843   /// When false, a move constructor and assignment operator may be
    844   /// implicitly declared.
    845   bool hasUserDeclaredMoveOperation() const {
    846     return data().UserDeclaredSpecialMembers &
    847              (SMF_MoveConstructor | SMF_MoveAssignment);
    848   }
    849 
    850   /// \brief Determine whether this class has had a move constructor
    851   /// declared by the user.
    852   bool hasUserDeclaredMoveConstructor() const {
    853     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
    854   }
    855 
    856   /// \brief Determine whether this class has a move constructor.
    857   bool hasMoveConstructor() const {
    858     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
    859            needsImplicitMoveConstructor();
    860   }
    861 
    862   /// \brief Determine whether implicit move constructor generation for this
    863   /// class has failed before.
    864   bool hasFailedImplicitMoveConstructor() const {
    865     return data().FailedImplicitMoveConstructor;
    866   }
    867 
    868   /// \brief Set whether implicit move constructor generation for this class
    869   /// has failed before.
    870   void setFailedImplicitMoveConstructor(bool Failed = true) {
    871     data().FailedImplicitMoveConstructor = Failed;
    872   }
    873 
    874   /// \brief Determine whether this class should get an implicit move
    875   /// constructor or if any existing special member function inhibits this.
    876   bool needsImplicitMoveConstructor() const {
    877     return !hasFailedImplicitMoveConstructor() &&
    878            !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
    879            !hasUserDeclaredCopyConstructor() &&
    880            !hasUserDeclaredCopyAssignment() &&
    881            !hasUserDeclaredMoveAssignment() &&
    882            !hasUserDeclaredDestructor() &&
    883            !data().DefaultedMoveConstructorIsDeleted;
    884   }
    885 
    886   /// \brief Determine whether we need to eagerly declare a defaulted move
    887   /// constructor for this class.
    888   bool needsOverloadResolutionForMoveConstructor() const {
    889     return data().NeedOverloadResolutionForMoveConstructor;
    890   }
    891 
    892   /// \brief Determine whether this class has a user-declared copy assignment
    893   /// operator.
    894   ///
    895   /// When false, a copy assigment operator will be implicitly declared.
    896   bool hasUserDeclaredCopyAssignment() const {
    897     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
    898   }
    899 
    900   /// \brief Determine whether this class needs an implicit copy
    901   /// assignment operator to be lazily declared.
    902   bool needsImplicitCopyAssignment() const {
    903     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
    904   }
    905 
    906   /// \brief Determine whether we need to eagerly declare a defaulted copy
    907   /// assignment operator for this class.
    908   bool needsOverloadResolutionForCopyAssignment() const {
    909     return data().HasMutableFields;
    910   }
    911 
    912   /// \brief Determine whether an implicit copy assignment operator for this
    913   /// type would have a parameter with a const-qualified reference type.
    914   bool implicitCopyAssignmentHasConstParam() const {
    915     return data().ImplicitCopyAssignmentHasConstParam;
    916   }
    917 
    918   /// \brief Determine whether this class has a copy assignment operator with
    919   /// a parameter type which is a reference to a const-qualified type or is not
    920   /// a reference.
    921   bool hasCopyAssignmentWithConstParam() const {
    922     return data().HasDeclaredCopyAssignmentWithConstParam ||
    923            (needsImplicitCopyAssignment() &&
    924             implicitCopyAssignmentHasConstParam());
    925   }
    926 
    927   /// \brief Determine whether this class has had a move assignment
    928   /// declared by the user.
    929   bool hasUserDeclaredMoveAssignment() const {
    930     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
    931   }
    932 
    933   /// \brief Determine whether this class has a move assignment operator.
    934   bool hasMoveAssignment() const {
    935     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
    936            needsImplicitMoveAssignment();
    937   }
    938 
    939   /// \brief Determine whether implicit move assignment generation for this
    940   /// class has failed before.
    941   bool hasFailedImplicitMoveAssignment() const {
    942     return data().FailedImplicitMoveAssignment;
    943   }
    944 
    945   /// \brief Set whether implicit move assignment generation for this class
    946   /// has failed before.
    947   void setFailedImplicitMoveAssignment(bool Failed = true) {
    948     data().FailedImplicitMoveAssignment = Failed;
    949   }
    950 
    951   /// \brief Determine whether this class should get an implicit move
    952   /// assignment operator or if any existing special member function inhibits
    953   /// this.
    954   bool needsImplicitMoveAssignment() const {
    955     return !hasFailedImplicitMoveAssignment() &&
    956            !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
    957            !hasUserDeclaredCopyConstructor() &&
    958            !hasUserDeclaredCopyAssignment() &&
    959            !hasUserDeclaredMoveConstructor() &&
    960            !hasUserDeclaredDestructor() &&
    961            !data().DefaultedMoveAssignmentIsDeleted;
    962   }
    963 
    964   /// \brief Determine whether we need to eagerly declare a move assignment
    965   /// operator for this class.
    966   bool needsOverloadResolutionForMoveAssignment() const {
    967     return data().NeedOverloadResolutionForMoveAssignment;
    968   }
    969 
    970   /// \brief Determine whether this class has a user-declared destructor.
    971   ///
    972   /// When false, a destructor will be implicitly declared.
    973   bool hasUserDeclaredDestructor() const {
    974     return data().UserDeclaredSpecialMembers & SMF_Destructor;
    975   }
    976 
    977   /// \brief Determine whether this class needs an implicit destructor to
    978   /// be lazily declared.
    979   bool needsImplicitDestructor() const {
    980     return !(data().DeclaredSpecialMembers & SMF_Destructor);
    981   }
    982 
    983   /// \brief Determine whether we need to eagerly declare a destructor for this
    984   /// class.
    985   bool needsOverloadResolutionForDestructor() const {
    986     return data().NeedOverloadResolutionForDestructor;
    987   }
    988 
    989   /// \brief Determine whether this class describes a lambda function object.
    990   bool isLambda() const { return hasDefinition() && data().IsLambda; }
    991 
    992   /// \brief For a closure type, retrieve the mapping from captured
    993   /// variables and \c this to the non-static data members that store the
    994   /// values or references of the captures.
    995   ///
    996   /// \param Captures Will be populated with the mapping from captured
    997   /// variables to the corresponding fields.
    998   ///
    999   /// \param ThisCapture Will be set to the field declaration for the
   1000   /// \c this capture.
   1001   ///
   1002   /// \note No entries will be added for init-captures, as they do not capture
   1003   /// variables.
   1004   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
   1005                         FieldDecl *&ThisCapture) const;
   1006 
   1007   typedef const LambdaExpr::Capture* capture_const_iterator;
   1008   capture_const_iterator captures_begin() const {
   1009     return isLambda() ? getLambdaData().Captures : NULL;
   1010   }
   1011   capture_const_iterator captures_end() const {
   1012     return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL;
   1013   }
   1014 
   1015   typedef UnresolvedSetIterator conversion_iterator;
   1016   conversion_iterator conversion_begin() const {
   1017     return data().Conversions.begin();
   1018   }
   1019   conversion_iterator conversion_end() const {
   1020     return data().Conversions.end();
   1021   }
   1022 
   1023   /// Removes a conversion function from this class.  The conversion
   1024   /// function must currently be a member of this class.  Furthermore,
   1025   /// this class must currently be in the process of being defined.
   1026   void removeConversion(const NamedDecl *Old);
   1027 
   1028   /// \brief Get all conversion functions visible in current class,
   1029   /// including conversion function templates.
   1030   std::pair<conversion_iterator, conversion_iterator>
   1031     getVisibleConversionFunctions();
   1032 
   1033   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
   1034   /// which is a class with no user-declared constructors, no private
   1035   /// or protected non-static data members, no base classes, and no virtual
   1036   /// functions (C++ [dcl.init.aggr]p1).
   1037   bool isAggregate() const { return data().Aggregate; }
   1038 
   1039   /// \brief Whether this class has any in-class initializers
   1040   /// for non-static data members.
   1041   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
   1042 
   1043   /// \brief Whether this class or any of its subobjects has any members of
   1044   /// reference type which would make value-initialization ill-formed.
   1045   ///
   1046   /// Per C++03 [dcl.init]p5:
   1047   ///  - if T is a non-union class type without a user-declared constructor,
   1048   ///    then every non-static data member and base-class component of T is
   1049   ///    value-initialized [...] A program that calls for [...]
   1050   ///    value-initialization of an entity of reference type is ill-formed.
   1051   bool hasUninitializedReferenceMember() const {
   1052     return !isUnion() && !hasUserDeclaredConstructor() &&
   1053            data().HasUninitializedReferenceMember;
   1054   }
   1055 
   1056   /// \brief Whether this class is a POD-type (C++ [class]p4)
   1057   ///
   1058   /// For purposes of this function a class is POD if it is an aggregate
   1059   /// that has no non-static non-POD data members, no reference data
   1060   /// members, no user-defined copy assignment operator and no
   1061   /// user-defined destructor.
   1062   ///
   1063   /// Note that this is the C++ TR1 definition of POD.
   1064   bool isPOD() const { return data().PlainOldData; }
   1065 
   1066   /// \brief True if this class is C-like, without C++-specific features, e.g.
   1067   /// it contains only public fields, no bases, tag kind is not 'class', etc.
   1068   bool isCLike() const;
   1069 
   1070   /// \brief Determine whether this is an empty class in the sense of
   1071   /// (C++11 [meta.unary.prop]).
   1072   ///
   1073   /// A non-union class is empty iff it has a virtual function, virtual base,
   1074   /// data member (other than 0-width bit-field) or inherits from a non-empty
   1075   /// class.
   1076   ///
   1077   /// \note This does NOT include a check for union-ness.
   1078   bool isEmpty() const { return data().Empty; }
   1079 
   1080   /// Whether this class is polymorphic (C++ [class.virtual]),
   1081   /// which means that the class contains or inherits a virtual function.
   1082   bool isPolymorphic() const { return data().Polymorphic; }
   1083 
   1084   /// \brief Determine whether this class has a pure virtual function.
   1085   ///
   1086   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
   1087   /// a pure virtual function or inherits a pure virtual function that is
   1088   /// not overridden.
   1089   bool isAbstract() const { return data().Abstract; }
   1090 
   1091   /// \brief Determine whether this class has standard layout per
   1092   /// (C++ [class]p7)
   1093   bool isStandardLayout() const { return data().IsStandardLayout; }
   1094 
   1095   /// \brief Determine whether this class, or any of its class subobjects,
   1096   /// contains a mutable field.
   1097   bool hasMutableFields() const { return data().HasMutableFields; }
   1098 
   1099   /// \brief Determine whether this class has a trivial default constructor
   1100   /// (C++11 [class.ctor]p5).
   1101   bool hasTrivialDefaultConstructor() const {
   1102     return hasDefaultConstructor() &&
   1103            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
   1104   }
   1105 
   1106   /// \brief Determine whether this class has a non-trivial default constructor
   1107   /// (C++11 [class.ctor]p5).
   1108   bool hasNonTrivialDefaultConstructor() const {
   1109     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
   1110            (needsImplicitDefaultConstructor() &&
   1111             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
   1112   }
   1113 
   1114   /// \brief Determine whether this class has at least one constexpr constructor
   1115   /// other than the copy or move constructors.
   1116   bool hasConstexprNonCopyMoveConstructor() const {
   1117     return data().HasConstexprNonCopyMoveConstructor ||
   1118            (needsImplicitDefaultConstructor() &&
   1119             defaultedDefaultConstructorIsConstexpr());
   1120   }
   1121 
   1122   /// \brief Determine whether a defaulted default constructor for this class
   1123   /// would be constexpr.
   1124   bool defaultedDefaultConstructorIsConstexpr() const {
   1125     return data().DefaultedDefaultConstructorIsConstexpr &&
   1126            (!isUnion() || hasInClassInitializer());
   1127   }
   1128 
   1129   /// \brief Determine whether this class has a constexpr default constructor.
   1130   bool hasConstexprDefaultConstructor() const {
   1131     return data().HasConstexprDefaultConstructor ||
   1132            (needsImplicitDefaultConstructor() &&
   1133             defaultedDefaultConstructorIsConstexpr());
   1134   }
   1135 
   1136   /// \brief Determine whether this class has a trivial copy constructor
   1137   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1138   bool hasTrivialCopyConstructor() const {
   1139     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
   1140   }
   1141 
   1142   /// \brief Determine whether this class has a non-trivial copy constructor
   1143   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1144   bool hasNonTrivialCopyConstructor() const {
   1145     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
   1146            !hasTrivialCopyConstructor();
   1147   }
   1148 
   1149   /// \brief Determine whether this class has a trivial move constructor
   1150   /// (C++11 [class.copy]p12)
   1151   bool hasTrivialMoveConstructor() const {
   1152     return hasMoveConstructor() &&
   1153            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
   1154   }
   1155 
   1156   /// \brief Determine whether this class has a non-trivial move constructor
   1157   /// (C++11 [class.copy]p12)
   1158   bool hasNonTrivialMoveConstructor() const {
   1159     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
   1160            (needsImplicitMoveConstructor() &&
   1161             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
   1162   }
   1163 
   1164   /// \brief Determine whether this class has a trivial copy assignment operator
   1165   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
   1166   bool hasTrivialCopyAssignment() const {
   1167     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
   1168   }
   1169 
   1170   /// \brief Determine whether this class has a non-trivial copy assignment
   1171   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
   1172   bool hasNonTrivialCopyAssignment() const {
   1173     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
   1174            !hasTrivialCopyAssignment();
   1175   }
   1176 
   1177   /// \brief Determine whether this class has a trivial move assignment operator
   1178   /// (C++11 [class.copy]p25)
   1179   bool hasTrivialMoveAssignment() const {
   1180     return hasMoveAssignment() &&
   1181            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
   1182   }
   1183 
   1184   /// \brief Determine whether this class has a non-trivial move assignment
   1185   /// operator (C++11 [class.copy]p25)
   1186   bool hasNonTrivialMoveAssignment() const {
   1187     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
   1188            (needsImplicitMoveAssignment() &&
   1189             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
   1190   }
   1191 
   1192   /// \brief Determine whether this class has a trivial destructor
   1193   /// (C++ [class.dtor]p3)
   1194   bool hasTrivialDestructor() const {
   1195     return data().HasTrivialSpecialMembers & SMF_Destructor;
   1196   }
   1197 
   1198   /// \brief Determine whether this class has a non-trivial destructor
   1199   /// (C++ [class.dtor]p3)
   1200   bool hasNonTrivialDestructor() const {
   1201     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
   1202   }
   1203 
   1204   /// \brief Determine whether this class has a destructor which has no
   1205   /// semantic effect.
   1206   ///
   1207   /// Any such destructor will be trivial, public, defaulted and not deleted,
   1208   /// and will call only irrelevant destructors.
   1209   bool hasIrrelevantDestructor() const {
   1210     return data().HasIrrelevantDestructor;
   1211   }
   1212 
   1213   /// \brief Determine whether this class has a non-literal or/ volatile type
   1214   /// non-static data member or base class.
   1215   bool hasNonLiteralTypeFieldsOrBases() const {
   1216     return data().HasNonLiteralTypeFieldsOrBases;
   1217   }
   1218 
   1219   /// \brief Determine whether this class is considered trivially copyable per
   1220   /// (C++11 [class]p6).
   1221   bool isTriviallyCopyable() const;
   1222 
   1223   /// \brief Determine whether this class is considered trivial.
   1224   ///
   1225   /// C++11 [class]p6:
   1226   ///    "A trivial class is a class that has a trivial default constructor and
   1227   ///    is trivially copiable."
   1228   bool isTrivial() const {
   1229     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
   1230   }
   1231 
   1232   /// \brief Determine whether this class is a literal type.
   1233   ///
   1234   /// C++11 [basic.types]p10:
   1235   ///   A class type that has all the following properties:
   1236   ///     - it has a trivial destructor
   1237   ///     - every constructor call and full-expression in the
   1238   ///       brace-or-equal-intializers for non-static data members (if any) is
   1239   ///       a constant expression.
   1240   ///     - it is an aggregate type or has at least one constexpr constructor
   1241   ///       or constructor template that is not a copy or move constructor, and
   1242   ///     - all of its non-static data members and base classes are of literal
   1243   ///       types
   1244   ///
   1245   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
   1246   /// treating types with trivial default constructors as literal types.
   1247   bool isLiteral() const {
   1248     return hasTrivialDestructor() &&
   1249            (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
   1250             hasTrivialDefaultConstructor()) &&
   1251            !hasNonLiteralTypeFieldsOrBases();
   1252   }
   1253 
   1254   /// \brief If this record is an instantiation of a member class,
   1255   /// retrieves the member class from which it was instantiated.
   1256   ///
   1257   /// This routine will return non-null for (non-templated) member
   1258   /// classes of class templates. For example, given:
   1259   ///
   1260   /// \code
   1261   /// template<typename T>
   1262   /// struct X {
   1263   ///   struct A { };
   1264   /// };
   1265   /// \endcode
   1266   ///
   1267   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
   1268   /// whose parent is the class template specialization X<int>. For
   1269   /// this declaration, getInstantiatedFromMemberClass() will return
   1270   /// the CXXRecordDecl X<T>::A. When a complete definition of
   1271   /// X<int>::A is required, it will be instantiated from the
   1272   /// declaration returned by getInstantiatedFromMemberClass().
   1273   CXXRecordDecl *getInstantiatedFromMemberClass() const;
   1274 
   1275   /// \brief If this class is an instantiation of a member class of a
   1276   /// class template specialization, retrieves the member specialization
   1277   /// information.
   1278   MemberSpecializationInfo *getMemberSpecializationInfo() const {
   1279     return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
   1280   }
   1281 
   1282   /// \brief Specify that this record is an instantiation of the
   1283   /// member class \p RD.
   1284   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1285                                      TemplateSpecializationKind TSK);
   1286 
   1287   /// \brief Retrieves the class template that is described by this
   1288   /// class declaration.
   1289   ///
   1290   /// Every class template is represented as a ClassTemplateDecl and a
   1291   /// CXXRecordDecl. The former contains template properties (such as
   1292   /// the template parameter lists) while the latter contains the
   1293   /// actual description of the template's
   1294   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
   1295   /// CXXRecordDecl that from a ClassTemplateDecl, while
   1296   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
   1297   /// a CXXRecordDecl.
   1298   ClassTemplateDecl *getDescribedClassTemplate() const {
   1299     return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
   1300   }
   1301 
   1302   void setDescribedClassTemplate(ClassTemplateDecl *Template) {
   1303     TemplateOrInstantiation = Template;
   1304   }
   1305 
   1306   /// \brief Determine whether this particular class is a specialization or
   1307   /// instantiation of a class template or member class of a class template,
   1308   /// and how it was instantiated or specialized.
   1309   TemplateSpecializationKind getTemplateSpecializationKind() const;
   1310 
   1311   /// \brief Set the kind of specialization or template instantiation this is.
   1312   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
   1313 
   1314   /// \brief Returns the destructor decl for this class.
   1315   CXXDestructorDecl *getDestructor() const;
   1316 
   1317   /// \brief If the class is a local class [class.local], returns
   1318   /// the enclosing function declaration.
   1319   const FunctionDecl *isLocalClass() const {
   1320     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
   1321       return RD->isLocalClass();
   1322 
   1323     return dyn_cast<FunctionDecl>(getDeclContext());
   1324   }
   1325 
   1326   /// \brief Determine whether this dependent class is a current instantiation,
   1327   /// when viewed from within the given context.
   1328   bool isCurrentInstantiation(const DeclContext *CurContext) const;
   1329 
   1330   /// \brief Determine whether this class is derived from the class \p Base.
   1331   ///
   1332   /// This routine only determines whether this class is derived from \p Base,
   1333   /// but does not account for factors that may make a Derived -> Base class
   1334   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1335   /// base class subobjects.
   1336   ///
   1337   /// \param Base the base class we are searching for.
   1338   ///
   1339   /// \returns true if this class is derived from Base, false otherwise.
   1340   bool isDerivedFrom(const CXXRecordDecl *Base) const;
   1341 
   1342   /// \brief Determine whether this class is derived from the type \p Base.
   1343   ///
   1344   /// This routine only determines whether this class is derived from \p Base,
   1345   /// but does not account for factors that may make a Derived -> Base class
   1346   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1347   /// base class subobjects.
   1348   ///
   1349   /// \param Base the base class we are searching for.
   1350   ///
   1351   /// \param Paths will contain the paths taken from the current class to the
   1352   /// given \p Base class.
   1353   ///
   1354   /// \returns true if this class is derived from \p Base, false otherwise.
   1355   ///
   1356   /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
   1357   /// tangling input and output in \p Paths
   1358   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
   1359 
   1360   /// \brief Determine whether this class is virtually derived from
   1361   /// the class \p Base.
   1362   ///
   1363   /// This routine only determines whether this class is virtually
   1364   /// derived from \p Base, but does not account for factors that may
   1365   /// make a Derived -> Base class ill-formed, such as
   1366   /// private/protected inheritance or multiple, ambiguous base class
   1367   /// subobjects.
   1368   ///
   1369   /// \param Base the base class we are searching for.
   1370   ///
   1371   /// \returns true if this class is virtually derived from Base,
   1372   /// false otherwise.
   1373   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
   1374 
   1375   /// \brief Determine whether this class is provably not derived from
   1376   /// the type \p Base.
   1377   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
   1378 
   1379   /// \brief Function type used by forallBases() as a callback.
   1380   ///
   1381   /// \param BaseDefinition the definition of the base class
   1382   ///
   1383   /// \returns true if this base matched the search criteria
   1384   typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
   1385                                    void *UserData);
   1386 
   1387   /// \brief Determines if the given callback holds for all the direct
   1388   /// or indirect base classes of this type.
   1389   ///
   1390   /// The class itself does not count as a base class.  This routine
   1391   /// returns false if the class has non-computable base classes.
   1392   ///
   1393   /// \param BaseMatches Callback invoked for each (direct or indirect) base
   1394   /// class of this type, or if \p AllowShortCircut is true then until a call
   1395   /// returns false.
   1396   ///
   1397   /// \param UserData Passed as the second argument of every call to
   1398   /// \p BaseMatches.
   1399   ///
   1400   /// \param AllowShortCircuit if false, forces the callback to be called
   1401   /// for every base class, even if a dependent or non-matching base was
   1402   /// found.
   1403   bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
   1404                    bool AllowShortCircuit = true) const;
   1405 
   1406   /// \brief Function type used by lookupInBases() to determine whether a
   1407   /// specific base class subobject matches the lookup criteria.
   1408   ///
   1409   /// \param Specifier the base-class specifier that describes the inheritance
   1410   /// from the base class we are trying to match.
   1411   ///
   1412   /// \param Path the current path, from the most-derived class down to the
   1413   /// base named by the \p Specifier.
   1414   ///
   1415   /// \param UserData a single pointer to user-specified data, provided to
   1416   /// lookupInBases().
   1417   ///
   1418   /// \returns true if this base matched the search criteria, false otherwise.
   1419   typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
   1420                                    CXXBasePath &Path,
   1421                                    void *UserData);
   1422 
   1423   /// \brief Look for entities within the base classes of this C++ class,
   1424   /// transitively searching all base class subobjects.
   1425   ///
   1426   /// This routine uses the callback function \p BaseMatches to find base
   1427   /// classes meeting some search criteria, walking all base class subobjects
   1428   /// and populating the given \p Paths structure with the paths through the
   1429   /// inheritance hierarchy that resulted in a match. On a successful search,
   1430   /// the \p Paths structure can be queried to retrieve the matching paths and
   1431   /// to determine if there were any ambiguities.
   1432   ///
   1433   /// \param BaseMatches callback function used to determine whether a given
   1434   /// base matches the user-defined search criteria.
   1435   ///
   1436   /// \param UserData user data pointer that will be provided to \p BaseMatches.
   1437   ///
   1438   /// \param Paths used to record the paths from this class to its base class
   1439   /// subobjects that match the search criteria.
   1440   ///
   1441   /// \returns true if there exists any path from this class to a base class
   1442   /// subobject that matches the search criteria.
   1443   bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
   1444                      CXXBasePaths &Paths) const;
   1445 
   1446   /// \brief Base-class lookup callback that determines whether the given
   1447   /// base class specifier refers to a specific class declaration.
   1448   ///
   1449   /// This callback can be used with \c lookupInBases() to determine whether
   1450   /// a given derived class has is a base class subobject of a particular type.
   1451   /// The user data pointer should refer to the canonical CXXRecordDecl of the
   1452   /// base class that we are searching for.
   1453   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
   1454                             CXXBasePath &Path, void *BaseRecord);
   1455 
   1456   /// \brief Base-class lookup callback that determines whether the
   1457   /// given base class specifier refers to a specific class
   1458   /// declaration and describes virtual derivation.
   1459   ///
   1460   /// This callback can be used with \c lookupInBases() to determine
   1461   /// whether a given derived class has is a virtual base class
   1462   /// subobject of a particular type.  The user data pointer should
   1463   /// refer to the canonical CXXRecordDecl of the base class that we
   1464   /// are searching for.
   1465   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
   1466                                    CXXBasePath &Path, void *BaseRecord);
   1467 
   1468   /// \brief Base-class lookup callback that determines whether there exists
   1469   /// a tag with the given name.
   1470   ///
   1471   /// This callback can be used with \c lookupInBases() to find tag members
   1472   /// of the given name within a C++ class hierarchy. The user data pointer
   1473   /// is an opaque \c DeclarationName pointer.
   1474   static bool FindTagMember(const CXXBaseSpecifier *Specifier,
   1475                             CXXBasePath &Path, void *Name);
   1476 
   1477   /// \brief Base-class lookup callback that determines whether there exists
   1478   /// a member with the given name.
   1479   ///
   1480   /// This callback can be used with \c lookupInBases() to find members
   1481   /// of the given name within a C++ class hierarchy. The user data pointer
   1482   /// is an opaque \c DeclarationName pointer.
   1483   static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
   1484                                  CXXBasePath &Path, void *Name);
   1485 
   1486   /// \brief Base-class lookup callback that determines whether there exists
   1487   /// a member with the given name that can be used in a nested-name-specifier.
   1488   ///
   1489   /// This callback can be used with \c lookupInBases() to find membes of
   1490   /// the given name within a C++ class hierarchy that can occur within
   1491   /// nested-name-specifiers.
   1492   static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
   1493                                             CXXBasePath &Path,
   1494                                             void *UserData);
   1495 
   1496   /// \brief Retrieve the final overriders for each virtual member
   1497   /// function in the class hierarchy where this class is the
   1498   /// most-derived class in the class hierarchy.
   1499   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
   1500 
   1501   /// \brief Get the indirect primary bases for this class.
   1502   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
   1503 
   1504   /// Renders and displays an inheritance diagram
   1505   /// for this C++ class and all of its base classes (transitively) using
   1506   /// GraphViz.
   1507   void viewInheritance(ASTContext& Context) const;
   1508 
   1509   /// \brief Calculates the access of a decl that is reached
   1510   /// along a path.
   1511   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
   1512                                      AccessSpecifier DeclAccess) {
   1513     assert(DeclAccess != AS_none);
   1514     if (DeclAccess == AS_private) return AS_none;
   1515     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
   1516   }
   1517 
   1518   /// \brief Indicates that the declaration of a defaulted or deleted special
   1519   /// member function is now complete.
   1520   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
   1521 
   1522   /// \brief Indicates that the definition of this class is now complete.
   1523   virtual void completeDefinition();
   1524 
   1525   /// \brief Indicates that the definition of this class is now complete,
   1526   /// and provides a final overrider map to help determine
   1527   ///
   1528   /// \param FinalOverriders The final overrider map for this class, which can
   1529   /// be provided as an optimization for abstract-class checking. If NULL,
   1530   /// final overriders will be computed if they are needed to complete the
   1531   /// definition.
   1532   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
   1533 
   1534   /// \brief Determine whether this class may end up being abstract, even though
   1535   /// it is not yet known to be abstract.
   1536   ///
   1537   /// \returns true if this class is not known to be abstract but has any
   1538   /// base classes that are abstract. In this case, \c completeDefinition()
   1539   /// will need to compute final overriders to determine whether the class is
   1540   /// actually abstract.
   1541   bool mayBeAbstract() const;
   1542 
   1543   /// \brief If this is the closure type of a lambda expression, retrieve the
   1544   /// number to be used for name mangling in the Itanium C++ ABI.
   1545   ///
   1546   /// Zero indicates that this closure type has internal linkage, so the
   1547   /// mangling number does not matter, while a non-zero value indicates which
   1548   /// lambda expression this is in this particular context.
   1549   unsigned getLambdaManglingNumber() const {
   1550     assert(isLambda() && "Not a lambda closure type!");
   1551     return getLambdaData().ManglingNumber;
   1552   }
   1553 
   1554   /// \brief Retrieve the declaration that provides additional context for a
   1555   /// lambda, when the normal declaration context is not specific enough.
   1556   ///
   1557   /// Certain contexts (default arguments of in-class function parameters and
   1558   /// the initializers of data members) have separate name mangling rules for
   1559   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
   1560   /// the declaration in which the lambda occurs, e.g., the function parameter
   1561   /// or the non-static data member. Otherwise, it returns NULL to imply that
   1562   /// the declaration context suffices.
   1563   Decl *getLambdaContextDecl() const {
   1564     assert(isLambda() && "Not a lambda closure type!");
   1565     return getLambdaData().ContextDecl;
   1566   }
   1567 
   1568   /// \brief Set the mangling number and context declaration for a lambda
   1569   /// class.
   1570   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
   1571     getLambdaData().ManglingNumber = ManglingNumber;
   1572     getLambdaData().ContextDecl = ContextDecl;
   1573   }
   1574 
   1575   /// \brief Returns the inheritance model used for this record.
   1576   MSInheritanceModel getMSInheritanceModel() const;
   1577 
   1578   /// \brief Determine whether this lambda expression was known to be dependent
   1579   /// at the time it was created, even if its context does not appear to be
   1580   /// dependent.
   1581   ///
   1582   /// This flag is a workaround for an issue with parsing, where default
   1583   /// arguments are parsed before their enclosing function declarations have
   1584   /// been created. This means that any lambda expressions within those
   1585   /// default arguments will have as their DeclContext the context enclosing
   1586   /// the function declaration, which may be non-dependent even when the
   1587   /// function declaration itself is dependent. This flag indicates when we
   1588   /// know that the lambda is dependent despite that.
   1589   bool isDependentLambda() const {
   1590     return isLambda() && getLambdaData().Dependent;
   1591   }
   1592 
   1593   TypeSourceInfo *getLambdaTypeInfo() const {
   1594     return getLambdaData().MethodTyInfo;
   1595   }
   1596 
   1597   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1598   static bool classofKind(Kind K) {
   1599     return K >= firstCXXRecord && K <= lastCXXRecord;
   1600   }
   1601 
   1602   friend class ASTDeclReader;
   1603   friend class ASTDeclWriter;
   1604   friend class ASTReader;
   1605   friend class ASTWriter;
   1606 };
   1607 
   1608 /// \brief Represents a static or instance method of a struct/union/class.
   1609 ///
   1610 /// In the terminology of the C++ Standard, these are the (static and
   1611 /// non-static) member functions, whether virtual or not.
   1612 class CXXMethodDecl : public FunctionDecl {
   1613   virtual void anchor();
   1614 protected:
   1615   CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc,
   1616                 const DeclarationNameInfo &NameInfo,
   1617                 QualType T, TypeSourceInfo *TInfo,
   1618                 StorageClass SC, bool isInline,
   1619                 bool isConstexpr, SourceLocation EndLocation)
   1620     : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo,
   1621                    SC, isInline, isConstexpr) {
   1622     if (EndLocation.isValid())
   1623       setRangeEnd(EndLocation);
   1624   }
   1625 
   1626 public:
   1627   static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   1628                                SourceLocation StartLoc,
   1629                                const DeclarationNameInfo &NameInfo,
   1630                                QualType T, TypeSourceInfo *TInfo,
   1631                                StorageClass SC,
   1632                                bool isInline,
   1633                                bool isConstexpr,
   1634                                SourceLocation EndLocation);
   1635 
   1636   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   1637 
   1638   bool isStatic() const;
   1639   bool isInstance() const { return !isStatic(); }
   1640 
   1641   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
   1642   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
   1643 
   1644   bool isVirtual() const {
   1645     CXXMethodDecl *CD =
   1646       cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
   1647 
   1648     // Methods declared in interfaces are automatically (pure) virtual.
   1649     if (CD->isVirtualAsWritten() ||
   1650           (CD->getParent()->isInterface() && CD->isUserProvided()))
   1651       return true;
   1652 
   1653     return (CD->begin_overridden_methods() != CD->end_overridden_methods());
   1654   }
   1655 
   1656   /// \brief Determine whether this is a usual deallocation function
   1657   /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
   1658   /// delete or delete[] operator with a particular signature.
   1659   bool isUsualDeallocationFunction() const;
   1660 
   1661   /// \brief Determine whether this is a copy-assignment operator, regardless
   1662   /// of whether it was declared implicitly or explicitly.
   1663   bool isCopyAssignmentOperator() const;
   1664 
   1665   /// \brief Determine whether this is a move assignment operator.
   1666   bool isMoveAssignmentOperator() const;
   1667 
   1668   const CXXMethodDecl *getCanonicalDecl() const {
   1669     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
   1670   }
   1671   CXXMethodDecl *getCanonicalDecl() {
   1672     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
   1673   }
   1674 
   1675   /// True if this method is user-declared and was not
   1676   /// deleted or defaulted on its first declaration.
   1677   bool isUserProvided() const {
   1678     return !(isDeleted() || getCanonicalDecl()->isDefaulted());
   1679   }
   1680 
   1681   ///
   1682   void addOverriddenMethod(const CXXMethodDecl *MD);
   1683 
   1684   typedef const CXXMethodDecl *const* method_iterator;
   1685 
   1686   method_iterator begin_overridden_methods() const;
   1687   method_iterator end_overridden_methods() const;
   1688   unsigned size_overridden_methods() const;
   1689 
   1690   /// Returns the parent of this method declaration, which
   1691   /// is the class in which this method is defined.
   1692   const CXXRecordDecl *getParent() const {
   1693     return cast<CXXRecordDecl>(FunctionDecl::getParent());
   1694   }
   1695 
   1696   /// Returns the parent of this method declaration, which
   1697   /// is the class in which this method is defined.
   1698   CXXRecordDecl *getParent() {
   1699     return const_cast<CXXRecordDecl *>(
   1700              cast<CXXRecordDecl>(FunctionDecl::getParent()));
   1701   }
   1702 
   1703   /// \brief Returns the type of the \c this pointer.
   1704   ///
   1705   /// Should only be called for instance (i.e., non-static) methods.
   1706   QualType getThisType(ASTContext &C) const;
   1707 
   1708   unsigned getTypeQualifiers() const {
   1709     return getType()->getAs<FunctionProtoType>()->getTypeQuals();
   1710   }
   1711 
   1712   /// \brief Retrieve the ref-qualifier associated with this method.
   1713   ///
   1714   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
   1715   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
   1716   /// @code
   1717   /// struct X {
   1718   ///   void f() &;
   1719   ///   void g() &&;
   1720   ///   void h();
   1721   /// };
   1722   /// @endcode
   1723   RefQualifierKind getRefQualifier() const {
   1724     return getType()->getAs<FunctionProtoType>()->getRefQualifier();
   1725   }
   1726 
   1727   bool hasInlineBody() const;
   1728 
   1729   /// \brief Determine whether this is a lambda closure type's static member
   1730   /// function that is used for the result of the lambda's conversion to
   1731   /// function pointer (for a lambda with no captures).
   1732   ///
   1733   /// The function itself, if used, will have a placeholder body that will be
   1734   /// supplied by IR generation to either forward to the function call operator
   1735   /// or clone the function call operator.
   1736   bool isLambdaStaticInvoker() const;
   1737 
   1738   /// \brief Find the method in \p RD that corresponds to this one.
   1739   ///
   1740   /// Find if \p RD or one of the classes it inherits from override this method.
   1741   /// If so, return it. \p RD is assumed to be a subclass of the class defining
   1742   /// this method (or be the class itself), unless \p MayBeBase is set to true.
   1743   CXXMethodDecl *
   1744   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1745                                 bool MayBeBase = false);
   1746 
   1747   const CXXMethodDecl *
   1748   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1749                                 bool MayBeBase = false) const {
   1750     return const_cast<CXXMethodDecl *>(this)
   1751               ->getCorrespondingMethodInClass(RD, MayBeBase);
   1752   }
   1753 
   1754   // Implement isa/cast/dyncast/etc.
   1755   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1756   static bool classofKind(Kind K) {
   1757     return K >= firstCXXMethod && K <= lastCXXMethod;
   1758   }
   1759 };
   1760 
   1761 /// \brief Represents a C++ base or member initializer.
   1762 ///
   1763 /// This is part of a constructor initializer that
   1764 /// initializes one non-static member variable or one base class. For
   1765 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
   1766 /// initializers:
   1767 ///
   1768 /// \code
   1769 /// class A { };
   1770 /// class B : public A {
   1771 ///   float f;
   1772 /// public:
   1773 ///   B(A& a) : A(a), f(3.14159) { }
   1774 /// };
   1775 /// \endcode
   1776 class CXXCtorInitializer {
   1777   /// \brief Either the base class name/delegating constructor type (stored as
   1778   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
   1779   /// (IndirectFieldDecl*) being initialized.
   1780   llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
   1781     Initializee;
   1782 
   1783   /// \brief The source location for the field name or, for a base initializer
   1784   /// pack expansion, the location of the ellipsis.
   1785   ///
   1786   /// In the case of a delegating
   1787   /// constructor, it will still include the type's source location as the
   1788   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
   1789   SourceLocation MemberOrEllipsisLocation;
   1790 
   1791   /// \brief The argument used to initialize the base or member, which may
   1792   /// end up constructing an object (when multiple arguments are involved).
   1793   Stmt *Init;
   1794 
   1795   /// \brief Location of the left paren of the ctor-initializer.
   1796   SourceLocation LParenLoc;
   1797 
   1798   /// \brief Location of the right paren of the ctor-initializer.
   1799   SourceLocation RParenLoc;
   1800 
   1801   /// \brief If the initializee is a type, whether that type makes this
   1802   /// a delegating initialization.
   1803   bool IsDelegating : 1;
   1804 
   1805   /// \brief If the initializer is a base initializer, this keeps track
   1806   /// of whether the base is virtual or not.
   1807   bool IsVirtual : 1;
   1808 
   1809   /// \brief Whether or not the initializer is explicitly written
   1810   /// in the sources.
   1811   bool IsWritten : 1;
   1812 
   1813   /// If IsWritten is true, then this number keeps track of the textual order
   1814   /// of this initializer in the original sources, counting from 0; otherwise,
   1815   /// it stores the number of array index variables stored after this object
   1816   /// in memory.
   1817   unsigned SourceOrderOrNumArrayIndices : 13;
   1818 
   1819   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1820                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1821                      SourceLocation R, VarDecl **Indices, unsigned NumIndices);
   1822 
   1823 public:
   1824   /// \brief Creates a new base-class initializer.
   1825   explicit
   1826   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
   1827                      SourceLocation L, Expr *Init, SourceLocation R,
   1828                      SourceLocation EllipsisLoc);
   1829 
   1830   /// \brief Creates a new member initializer.
   1831   explicit
   1832   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1833                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1834                      SourceLocation R);
   1835 
   1836   /// \brief Creates a new anonymous field initializer.
   1837   explicit
   1838   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
   1839                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1840                      SourceLocation R);
   1841 
   1842   /// \brief Creates a new delegating initializer.
   1843   explicit
   1844   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
   1845                      SourceLocation L, Expr *Init, SourceLocation R);
   1846 
   1847   /// \brief Creates a new member initializer that optionally contains
   1848   /// array indices used to describe an elementwise initialization.
   1849   static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
   1850                                     SourceLocation MemberLoc, SourceLocation L,
   1851                                     Expr *Init, SourceLocation R,
   1852                                     VarDecl **Indices, unsigned NumIndices);
   1853 
   1854   /// \brief Determine whether this initializer is initializing a base class.
   1855   bool isBaseInitializer() const {
   1856     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
   1857   }
   1858 
   1859   /// \brief Determine whether this initializer is initializing a non-static
   1860   /// data member.
   1861   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
   1862 
   1863   bool isAnyMemberInitializer() const {
   1864     return isMemberInitializer() || isIndirectMemberInitializer();
   1865   }
   1866 
   1867   bool isIndirectMemberInitializer() const {
   1868     return Initializee.is<IndirectFieldDecl*>();
   1869   }
   1870 
   1871   /// \brief Determine whether this initializer is an implicit initializer
   1872   /// generated for a field with an initializer defined on the member
   1873   /// declaration.
   1874   ///
   1875   /// In-class member initializers (also known as "non-static data member
   1876   /// initializations", NSDMIs) were introduced in C++11.
   1877   bool isInClassMemberInitializer() const {
   1878     return isa<CXXDefaultInitExpr>(Init);
   1879   }
   1880 
   1881   /// \brief Determine whether this initializer is creating a delegating
   1882   /// constructor.
   1883   bool isDelegatingInitializer() const {
   1884     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
   1885   }
   1886 
   1887   /// \brief Determine whether this initializer is a pack expansion.
   1888   bool isPackExpansion() const {
   1889     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
   1890   }
   1891 
   1892   // \brief For a pack expansion, returns the location of the ellipsis.
   1893   SourceLocation getEllipsisLoc() const {
   1894     assert(isPackExpansion() && "Initializer is not a pack expansion");
   1895     return MemberOrEllipsisLocation;
   1896   }
   1897 
   1898   /// If this is a base class initializer, returns the type of the
   1899   /// base class with location information. Otherwise, returns an NULL
   1900   /// type location.
   1901   TypeLoc getBaseClassLoc() const;
   1902 
   1903   /// If this is a base class initializer, returns the type of the base class.
   1904   /// Otherwise, returns null.
   1905   const Type *getBaseClass() const;
   1906 
   1907   /// Returns whether the base is virtual or not.
   1908   bool isBaseVirtual() const {
   1909     assert(isBaseInitializer() && "Must call this on base initializer!");
   1910 
   1911     return IsVirtual;
   1912   }
   1913 
   1914   /// \brief Returns the declarator information for a base class or delegating
   1915   /// initializer.
   1916   TypeSourceInfo *getTypeSourceInfo() const {
   1917     return Initializee.dyn_cast<TypeSourceInfo *>();
   1918   }
   1919 
   1920   /// \brief If this is a member initializer, returns the declaration of the
   1921   /// non-static data member being initialized. Otherwise, returns null.
   1922   FieldDecl *getMember() const {
   1923     if (isMemberInitializer())
   1924       return Initializee.get<FieldDecl*>();
   1925     return 0;
   1926   }
   1927   FieldDecl *getAnyMember() const {
   1928     if (isMemberInitializer())
   1929       return Initializee.get<FieldDecl*>();
   1930     if (isIndirectMemberInitializer())
   1931       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
   1932     return 0;
   1933   }
   1934 
   1935   IndirectFieldDecl *getIndirectMember() const {
   1936     if (isIndirectMemberInitializer())
   1937       return Initializee.get<IndirectFieldDecl*>();
   1938     return 0;
   1939   }
   1940 
   1941   SourceLocation getMemberLocation() const {
   1942     return MemberOrEllipsisLocation;
   1943   }
   1944 
   1945   /// \brief Determine the source location of the initializer.
   1946   SourceLocation getSourceLocation() const;
   1947 
   1948   /// \brief Determine the source range covering the entire initializer.
   1949   SourceRange getSourceRange() const LLVM_READONLY;
   1950 
   1951   /// \brief Determine whether this initializer is explicitly written
   1952   /// in the source code.
   1953   bool isWritten() const { return IsWritten; }
   1954 
   1955   /// \brief Return the source position of the initializer, counting from 0.
   1956   /// If the initializer was implicit, -1 is returned.
   1957   int getSourceOrder() const {
   1958     return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
   1959   }
   1960 
   1961   /// \brief Set the source order of this initializer.
   1962   ///
   1963   /// This can only be called once for each initializer; it cannot be called
   1964   /// on an initializer having a positive number of (implicit) array indices.
   1965   ///
   1966   /// This assumes that the initialzier was written in the source code, and
   1967   /// ensures that isWritten() returns true.
   1968   void setSourceOrder(int pos) {
   1969     assert(!IsWritten &&
   1970            "calling twice setSourceOrder() on the same initializer");
   1971     assert(SourceOrderOrNumArrayIndices == 0 &&
   1972            "setSourceOrder() used when there are implicit array indices");
   1973     assert(pos >= 0 &&
   1974            "setSourceOrder() used to make an initializer implicit");
   1975     IsWritten = true;
   1976     SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
   1977   }
   1978 
   1979   SourceLocation getLParenLoc() const { return LParenLoc; }
   1980   SourceLocation getRParenLoc() const { return RParenLoc; }
   1981 
   1982   /// \brief Determine the number of implicit array indices used while
   1983   /// described an array member initialization.
   1984   unsigned getNumArrayIndices() const {
   1985     return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
   1986   }
   1987 
   1988   /// \brief Retrieve a particular array index variable used to
   1989   /// describe an array member initialization.
   1990   VarDecl *getArrayIndex(unsigned I) {
   1991     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   1992     return reinterpret_cast<VarDecl **>(this + 1)[I];
   1993   }
   1994   const VarDecl *getArrayIndex(unsigned I) const {
   1995     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   1996     return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
   1997   }
   1998   void setArrayIndex(unsigned I, VarDecl *Index) {
   1999     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2000     reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
   2001   }
   2002   ArrayRef<VarDecl *> getArrayIndexes() {
   2003     assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
   2004     return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
   2005                                getNumArrayIndices());
   2006   }
   2007 
   2008   /// \brief Get the initializer.
   2009   Expr *getInit() const { return static_cast<Expr*>(Init); }
   2010 };
   2011 
   2012 /// \brief Represents a C++ constructor within a class.
   2013 ///
   2014 /// For example:
   2015 ///
   2016 /// \code
   2017 /// class X {
   2018 /// public:
   2019 ///   explicit X(int); // represented by a CXXConstructorDecl.
   2020 /// };
   2021 /// \endcode
   2022 class CXXConstructorDecl : public CXXMethodDecl {
   2023   virtual void anchor();
   2024   /// \brief Whether this constructor declaration has the \c explicit keyword
   2025   /// specified.
   2026   bool IsExplicitSpecified : 1;
   2027 
   2028   /// \name Support for base and member initializers.
   2029   /// \{
   2030   /// \brief The arguments used to initialize the base or member.
   2031   CXXCtorInitializer **CtorInitializers;
   2032   unsigned NumCtorInitializers;
   2033   /// \}
   2034 
   2035   CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
   2036                      const DeclarationNameInfo &NameInfo,
   2037                      QualType T, TypeSourceInfo *TInfo,
   2038                      bool isExplicitSpecified, bool isInline,
   2039                      bool isImplicitlyDeclared, bool isConstexpr)
   2040     : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo,
   2041                     SC_None, isInline, isConstexpr, SourceLocation()),
   2042       IsExplicitSpecified(isExplicitSpecified), CtorInitializers(0),
   2043       NumCtorInitializers(0) {
   2044     setImplicit(isImplicitlyDeclared);
   2045   }
   2046 
   2047 public:
   2048   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2049   static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2050                                     SourceLocation StartLoc,
   2051                                     const DeclarationNameInfo &NameInfo,
   2052                                     QualType T, TypeSourceInfo *TInfo,
   2053                                     bool isExplicit,
   2054                                     bool isInline, bool isImplicitlyDeclared,
   2055                                     bool isConstexpr);
   2056 
   2057   /// \brief Determine whether this constructor declaration has the
   2058   /// \c explicit keyword specified.
   2059   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2060 
   2061   /// \brief Determine whether this constructor was marked "explicit" or not.
   2062   bool isExplicit() const {
   2063     return cast<CXXConstructorDecl>(getFirstDeclaration())
   2064       ->isExplicitSpecified();
   2065   }
   2066 
   2067   /// \brief Iterates through the member/base initializer list.
   2068   typedef CXXCtorInitializer **init_iterator;
   2069 
   2070   /// \brief Iterates through the member/base initializer list.
   2071   typedef CXXCtorInitializer * const * init_const_iterator;
   2072 
   2073   /// \brief Retrieve an iterator to the first initializer.
   2074   init_iterator       init_begin()       { return CtorInitializers; }
   2075   /// \brief Retrieve an iterator to the first initializer.
   2076   init_const_iterator init_begin() const { return CtorInitializers; }
   2077 
   2078   /// \brief Retrieve an iterator past the last initializer.
   2079   init_iterator       init_end()       {
   2080     return CtorInitializers + NumCtorInitializers;
   2081   }
   2082   /// \brief Retrieve an iterator past the last initializer.
   2083   init_const_iterator init_end() const {
   2084     return CtorInitializers + NumCtorInitializers;
   2085   }
   2086 
   2087   typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
   2088   typedef std::reverse_iterator<init_const_iterator>
   2089           init_const_reverse_iterator;
   2090 
   2091   init_reverse_iterator init_rbegin() {
   2092     return init_reverse_iterator(init_end());
   2093   }
   2094   init_const_reverse_iterator init_rbegin() const {
   2095     return init_const_reverse_iterator(init_end());
   2096   }
   2097 
   2098   init_reverse_iterator init_rend() {
   2099     return init_reverse_iterator(init_begin());
   2100   }
   2101   init_const_reverse_iterator init_rend() const {
   2102     return init_const_reverse_iterator(init_begin());
   2103   }
   2104 
   2105   /// \brief Determine the number of arguments used to initialize the member
   2106   /// or base.
   2107   unsigned getNumCtorInitializers() const {
   2108       return NumCtorInitializers;
   2109   }
   2110 
   2111   void setNumCtorInitializers(unsigned numCtorInitializers) {
   2112     NumCtorInitializers = numCtorInitializers;
   2113   }
   2114 
   2115   void setCtorInitializers(CXXCtorInitializer ** initializers) {
   2116     CtorInitializers = initializers;
   2117   }
   2118 
   2119   /// \brief Determine whether this constructor is a delegating constructor.
   2120   bool isDelegatingConstructor() const {
   2121     return (getNumCtorInitializers() == 1) &&
   2122       CtorInitializers[0]->isDelegatingInitializer();
   2123   }
   2124 
   2125   /// \brief When this constructor delegates to another, retrieve the target.
   2126   CXXConstructorDecl *getTargetConstructor() const;
   2127 
   2128   /// Whether this constructor is a default
   2129   /// constructor (C++ [class.ctor]p5), which can be used to
   2130   /// default-initialize a class of this type.
   2131   bool isDefaultConstructor() const;
   2132 
   2133   /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
   2134   /// which can be used to copy the class.
   2135   ///
   2136   /// \p TypeQuals will be set to the qualifiers on the
   2137   /// argument type. For example, \p TypeQuals would be set to \c
   2138   /// Qualifiers::Const for the following copy constructor:
   2139   ///
   2140   /// \code
   2141   /// class X {
   2142   /// public:
   2143   ///   X(const X&);
   2144   /// };
   2145   /// \endcode
   2146   bool isCopyConstructor(unsigned &TypeQuals) const;
   2147 
   2148   /// Whether this constructor is a copy
   2149   /// constructor (C++ [class.copy]p2, which can be used to copy the
   2150   /// class.
   2151   bool isCopyConstructor() const {
   2152     unsigned TypeQuals = 0;
   2153     return isCopyConstructor(TypeQuals);
   2154   }
   2155 
   2156   /// \brief Determine whether this constructor is a move constructor
   2157   /// (C++0x [class.copy]p3), which can be used to move values of the class.
   2158   ///
   2159   /// \param TypeQuals If this constructor is a move constructor, will be set
   2160   /// to the type qualifiers on the referent of the first parameter's type.
   2161   bool isMoveConstructor(unsigned &TypeQuals) const;
   2162 
   2163   /// \brief Determine whether this constructor is a move constructor
   2164   /// (C++0x [class.copy]p3), which can be used to move values of the class.
   2165   bool isMoveConstructor() const {
   2166     unsigned TypeQuals = 0;
   2167     return isMoveConstructor(TypeQuals);
   2168   }
   2169 
   2170   /// \brief Determine whether this is a copy or move constructor.
   2171   ///
   2172   /// \param TypeQuals Will be set to the type qualifiers on the reference
   2173   /// parameter, if in fact this is a copy or move constructor.
   2174   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
   2175 
   2176   /// \brief Determine whether this a copy or move constructor.
   2177   bool isCopyOrMoveConstructor() const {
   2178     unsigned Quals;
   2179     return isCopyOrMoveConstructor(Quals);
   2180   }
   2181 
   2182   /// Whether this constructor is a
   2183   /// converting constructor (C++ [class.conv.ctor]), which can be
   2184   /// used for user-defined conversions.
   2185   bool isConvertingConstructor(bool AllowExplicit) const;
   2186 
   2187   /// \brief Determine whether this is a member template specialization that
   2188   /// would copy the object to itself. Such constructors are never used to copy
   2189   /// an object.
   2190   bool isSpecializationCopyingObject() const;
   2191 
   2192   /// \brief Get the constructor that this inheriting constructor is based on.
   2193   const CXXConstructorDecl *getInheritedConstructor() const;
   2194 
   2195   /// \brief Set the constructor that this inheriting constructor is based on.
   2196   void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
   2197 
   2198   const CXXConstructorDecl *getCanonicalDecl() const {
   2199     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
   2200   }
   2201   CXXConstructorDecl *getCanonicalDecl() {
   2202     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
   2203   }
   2204 
   2205   // Implement isa/cast/dyncast/etc.
   2206   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2207   static bool classofKind(Kind K) { return K == CXXConstructor; }
   2208 
   2209   friend class ASTDeclReader;
   2210   friend class ASTDeclWriter;
   2211 };
   2212 
   2213 /// \brief Represents a C++ destructor within a class.
   2214 ///
   2215 /// For example:
   2216 ///
   2217 /// \code
   2218 /// class X {
   2219 /// public:
   2220 ///   ~X(); // represented by a CXXDestructorDecl.
   2221 /// };
   2222 /// \endcode
   2223 class CXXDestructorDecl : public CXXMethodDecl {
   2224   virtual void anchor();
   2225 
   2226   FunctionDecl *OperatorDelete;
   2227 
   2228   CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
   2229                     const DeclarationNameInfo &NameInfo,
   2230                     QualType T, TypeSourceInfo *TInfo,
   2231                     bool isInline, bool isImplicitlyDeclared)
   2232     : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo,
   2233                     SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
   2234       OperatorDelete(0) {
   2235     setImplicit(isImplicitlyDeclared);
   2236   }
   2237 
   2238 public:
   2239   static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2240                                    SourceLocation StartLoc,
   2241                                    const DeclarationNameInfo &NameInfo,
   2242                                    QualType T, TypeSourceInfo* TInfo,
   2243                                    bool isInline,
   2244                                    bool isImplicitlyDeclared);
   2245   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
   2246 
   2247   void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
   2248   const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
   2249 
   2250   // Implement isa/cast/dyncast/etc.
   2251   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2252   static bool classofKind(Kind K) { return K == CXXDestructor; }
   2253 
   2254   friend class ASTDeclReader;
   2255   friend class ASTDeclWriter;
   2256 };
   2257 
   2258 /// \brief Represents a C++ conversion function within a class.
   2259 ///
   2260 /// For example:
   2261 ///
   2262 /// \code
   2263 /// class X {
   2264 /// public:
   2265 ///   operator bool();
   2266 /// };
   2267 /// \endcode
   2268 class CXXConversionDecl : public CXXMethodDecl {
   2269   virtual void anchor();
   2270   /// Whether this conversion function declaration is marked
   2271   /// "explicit", meaning that it can only be applied when the user
   2272   /// explicitly wrote a cast. This is a C++0x feature.
   2273   bool IsExplicitSpecified : 1;
   2274 
   2275   CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
   2276                     const DeclarationNameInfo &NameInfo,
   2277                     QualType T, TypeSourceInfo *TInfo,
   2278                     bool isInline, bool isExplicitSpecified,
   2279                     bool isConstexpr, SourceLocation EndLocation)
   2280     : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo,
   2281                     SC_None, isInline, isConstexpr, EndLocation),
   2282       IsExplicitSpecified(isExplicitSpecified) { }
   2283 
   2284 public:
   2285   static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2286                                    SourceLocation StartLoc,
   2287                                    const DeclarationNameInfo &NameInfo,
   2288                                    QualType T, TypeSourceInfo *TInfo,
   2289                                    bool isInline, bool isExplicit,
   2290                                    bool isConstexpr,
   2291                                    SourceLocation EndLocation);
   2292   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2293 
   2294   /// Whether this conversion function declaration is marked
   2295   /// "explicit", meaning that it can only be used for direct initialization
   2296   /// (including explitly written casts).  This is a C++11 feature.
   2297   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2298 
   2299   /// \brief Whether this is an explicit conversion operator (C++11 and later).
   2300   ///
   2301   /// Explicit conversion operators are only considered for direct
   2302   /// initialization, e.g., when the user has explicitly written a cast.
   2303   bool isExplicit() const {
   2304     return cast<CXXConversionDecl>(getFirstDeclaration())
   2305       ->isExplicitSpecified();
   2306   }
   2307 
   2308   /// \brief Returns the type that this conversion function is converting to.
   2309   QualType getConversionType() const {
   2310     return getType()->getAs<FunctionType>()->getResultType();
   2311   }
   2312 
   2313   /// \brief Determine whether this conversion function is a conversion from
   2314   /// a lambda closure type to a block pointer.
   2315   bool isLambdaToBlockPointerConversion() const;
   2316 
   2317   // Implement isa/cast/dyncast/etc.
   2318   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2319   static bool classofKind(Kind K) { return K == CXXConversion; }
   2320 
   2321   friend class ASTDeclReader;
   2322   friend class ASTDeclWriter;
   2323 };
   2324 
   2325 /// \brief Represents a linkage specification.
   2326 ///
   2327 /// For example:
   2328 /// \code
   2329 ///   extern "C" void foo();
   2330 /// \endcode
   2331 class LinkageSpecDecl : public Decl, public DeclContext {
   2332   virtual void anchor();
   2333 public:
   2334   /// \brief Represents the language in a linkage specification.
   2335   ///
   2336   /// The values are part of the serialization ABI for
   2337   /// ASTs and cannot be changed without altering that ABI.  To help
   2338   /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
   2339   /// from the dwarf standard.
   2340   enum LanguageIDs {
   2341     lang_c = /* DW_LANG_C */ 0x0002,
   2342     lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
   2343   };
   2344 private:
   2345   /// \brief The language for this linkage specification.
   2346   unsigned Language : 3;
   2347   /// \brief True if this linkage spec has braces.
   2348   ///
   2349   /// This is needed so that hasBraces() returns the correct result while the
   2350   /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
   2351   /// not used, so it doesn't need to be serialized.
   2352   unsigned HasBraces : 1;
   2353   /// \brief The source location for the extern keyword.
   2354   SourceLocation ExternLoc;
   2355   /// \brief The source location for the right brace (if valid).
   2356   SourceLocation RBraceLoc;
   2357 
   2358   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
   2359                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
   2360     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
   2361       Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
   2362       RBraceLoc(SourceLocation()) { }
   2363 
   2364 public:
   2365   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
   2366                                  SourceLocation ExternLoc,
   2367                                  SourceLocation LangLoc, LanguageIDs Lang,
   2368                                  bool HasBraces);
   2369   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2370 
   2371   /// \brief Return the language specified by this linkage specification.
   2372   LanguageIDs getLanguage() const { return LanguageIDs(Language); }
   2373   /// \brief Set the language specified by this linkage specification.
   2374   void setLanguage(LanguageIDs L) { Language = L; }
   2375 
   2376   /// \brief Determines whether this linkage specification had braces in
   2377   /// its syntactic form.
   2378   bool hasBraces() const {
   2379     assert(!RBraceLoc.isValid() || HasBraces);
   2380     return HasBraces;
   2381   }
   2382 
   2383   SourceLocation getExternLoc() const { return ExternLoc; }
   2384   SourceLocation getRBraceLoc() const { return RBraceLoc; }
   2385   void setExternLoc(SourceLocation L) { ExternLoc = L; }
   2386   void setRBraceLoc(SourceLocation L) {
   2387     RBraceLoc = L;
   2388     HasBraces = RBraceLoc.isValid();
   2389   }
   2390 
   2391   SourceLocation getLocEnd() const LLVM_READONLY {
   2392     if (hasBraces())
   2393       return getRBraceLoc();
   2394     // No braces: get the end location of the (only) declaration in context
   2395     // (if present).
   2396     return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
   2397   }
   2398 
   2399   SourceRange getSourceRange() const LLVM_READONLY {
   2400     return SourceRange(ExternLoc, getLocEnd());
   2401   }
   2402 
   2403   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2404   static bool classofKind(Kind K) { return K == LinkageSpec; }
   2405   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
   2406     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
   2407   }
   2408   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
   2409     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
   2410   }
   2411 };
   2412 
   2413 /// \brief Represents C++ using-directive.
   2414 ///
   2415 /// For example:
   2416 /// \code
   2417 ///    using namespace std;
   2418 /// \endcode
   2419 ///
   2420 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
   2421 /// artificial names for all using-directives in order to store
   2422 /// them in DeclContext effectively.
   2423 class UsingDirectiveDecl : public NamedDecl {
   2424   virtual void anchor();
   2425   /// \brief The location of the \c using keyword.
   2426   SourceLocation UsingLoc;
   2427 
   2428   /// \brief The location of the \c namespace keyword.
   2429   SourceLocation NamespaceLoc;
   2430 
   2431   /// \brief The nested-name-specifier that precedes the namespace.
   2432   NestedNameSpecifierLoc QualifierLoc;
   2433 
   2434   /// \brief The namespace nominated by this using-directive.
   2435   NamedDecl *NominatedNamespace;
   2436 
   2437   /// Enclosing context containing both using-directive and nominated
   2438   /// namespace.
   2439   DeclContext *CommonAncestor;
   2440 
   2441   /// \brief Returns special DeclarationName used by using-directives.
   2442   ///
   2443   /// This is only used by DeclContext for storing UsingDirectiveDecls in
   2444   /// its lookup structure.
   2445   static DeclarationName getName() {
   2446     return DeclarationName::getUsingDirectiveName();
   2447   }
   2448 
   2449   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
   2450                      SourceLocation NamespcLoc,
   2451                      NestedNameSpecifierLoc QualifierLoc,
   2452                      SourceLocation IdentLoc,
   2453                      NamedDecl *Nominated,
   2454                      DeclContext *CommonAncestor)
   2455     : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
   2456       NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
   2457       NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
   2458 
   2459 public:
   2460   /// \brief Retrieve the nested-name-specifier that qualifies the
   2461   /// name of the namespace, with source-location information.
   2462   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2463 
   2464   /// \brief Retrieve the nested-name-specifier that qualifies the
   2465   /// name of the namespace.
   2466   NestedNameSpecifier *getQualifier() const {
   2467     return QualifierLoc.getNestedNameSpecifier();
   2468   }
   2469 
   2470   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
   2471   const NamedDecl *getNominatedNamespaceAsWritten() const {
   2472     return NominatedNamespace;
   2473   }
   2474 
   2475   /// \brief Returns the namespace nominated by this using-directive.
   2476   NamespaceDecl *getNominatedNamespace();
   2477 
   2478   const NamespaceDecl *getNominatedNamespace() const {
   2479     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
   2480   }
   2481 
   2482   /// \brief Returns the common ancestor context of this using-directive and
   2483   /// its nominated namespace.
   2484   DeclContext *getCommonAncestor() { return CommonAncestor; }
   2485   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
   2486 
   2487   /// \brief Return the location of the \c using keyword.
   2488   SourceLocation getUsingLoc() const { return UsingLoc; }
   2489 
   2490   // FIXME: Could omit 'Key' in name.
   2491   /// \brief Returns the location of the \c namespace keyword.
   2492   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
   2493 
   2494   /// \brief Returns the location of this using declaration's identifier.
   2495   SourceLocation getIdentLocation() const { return getLocation(); }
   2496 
   2497   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
   2498                                     SourceLocation UsingLoc,
   2499                                     SourceLocation NamespaceLoc,
   2500                                     NestedNameSpecifierLoc QualifierLoc,
   2501                                     SourceLocation IdentLoc,
   2502                                     NamedDecl *Nominated,
   2503                                     DeclContext *CommonAncestor);
   2504   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2505 
   2506   SourceRange getSourceRange() const LLVM_READONLY {
   2507     return SourceRange(UsingLoc, getLocation());
   2508   }
   2509 
   2510   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2511   static bool classofKind(Kind K) { return K == UsingDirective; }
   2512 
   2513   // Friend for getUsingDirectiveName.
   2514   friend class DeclContext;
   2515 
   2516   friend class ASTDeclReader;
   2517 };
   2518 
   2519 /// \brief Represents a C++ namespace alias.
   2520 ///
   2521 /// For example:
   2522 ///
   2523 /// \code
   2524 /// namespace Foo = Bar;
   2525 /// \endcode
   2526 class NamespaceAliasDecl : public NamedDecl {
   2527   virtual void anchor();
   2528 
   2529   /// \brief The location of the \c namespace keyword.
   2530   SourceLocation NamespaceLoc;
   2531 
   2532   /// \brief The location of the namespace's identifier.
   2533   ///
   2534   /// This is accessed by TargetNameLoc.
   2535   SourceLocation IdentLoc;
   2536 
   2537   /// \brief The nested-name-specifier that precedes the namespace.
   2538   NestedNameSpecifierLoc QualifierLoc;
   2539 
   2540   /// \brief The Decl that this alias points to, either a NamespaceDecl or
   2541   /// a NamespaceAliasDecl.
   2542   NamedDecl *Namespace;
   2543 
   2544   NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
   2545                      SourceLocation AliasLoc, IdentifierInfo *Alias,
   2546                      NestedNameSpecifierLoc QualifierLoc,
   2547                      SourceLocation IdentLoc, NamedDecl *Namespace)
   2548     : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
   2549       NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
   2550       QualifierLoc(QualifierLoc), Namespace(Namespace) { }
   2551 
   2552   friend class ASTDeclReader;
   2553 
   2554 public:
   2555   /// \brief Retrieve the nested-name-specifier that qualifies the
   2556   /// name of the namespace, with source-location information.
   2557   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2558 
   2559   /// \brief Retrieve the nested-name-specifier that qualifies the
   2560   /// name of the namespace.
   2561   NestedNameSpecifier *getQualifier() const {
   2562     return QualifierLoc.getNestedNameSpecifier();
   2563   }
   2564 
   2565   /// \brief Retrieve the namespace declaration aliased by this directive.
   2566   NamespaceDecl *getNamespace() {
   2567     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
   2568       return AD->getNamespace();
   2569 
   2570     return cast<NamespaceDecl>(Namespace);
   2571   }
   2572 
   2573   const NamespaceDecl *getNamespace() const {
   2574     return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
   2575   }
   2576 
   2577   /// Returns the location of the alias name, i.e. 'foo' in
   2578   /// "namespace foo = ns::bar;".
   2579   SourceLocation getAliasLoc() const { return getLocation(); }
   2580 
   2581   /// Returns the location of the \c namespace keyword.
   2582   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
   2583 
   2584   /// Returns the location of the identifier in the named namespace.
   2585   SourceLocation getTargetNameLoc() const { return IdentLoc; }
   2586 
   2587   /// \brief Retrieve the namespace that this alias refers to, which
   2588   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
   2589   NamedDecl *getAliasedNamespace() const { return Namespace; }
   2590 
   2591   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
   2592                                     SourceLocation NamespaceLoc,
   2593                                     SourceLocation AliasLoc,
   2594                                     IdentifierInfo *Alias,
   2595                                     NestedNameSpecifierLoc QualifierLoc,
   2596                                     SourceLocation IdentLoc,
   2597                                     NamedDecl *Namespace);
   2598 
   2599   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2600 
   2601   virtual SourceRange getSourceRange() const LLVM_READONLY {
   2602     return SourceRange(NamespaceLoc, IdentLoc);
   2603   }
   2604 
   2605   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2606   static bool classofKind(Kind K) { return K == NamespaceAlias; }
   2607 };
   2608 
   2609 /// \brief Represents a shadow declaration introduced into a scope by a
   2610 /// (resolved) using declaration.
   2611 ///
   2612 /// For example,
   2613 /// \code
   2614 /// namespace A {
   2615 ///   void foo();
   2616 /// }
   2617 /// namespace B {
   2618 ///   using A::foo; // <- a UsingDecl
   2619 ///                 // Also creates a UsingShadowDecl for A::foo() in B
   2620 /// }
   2621 /// \endcode
   2622 class UsingShadowDecl : public NamedDecl {
   2623   virtual void anchor();
   2624 
   2625   /// The referenced declaration.
   2626   NamedDecl *Underlying;
   2627 
   2628   /// \brief The using declaration which introduced this decl or the next using
   2629   /// shadow declaration contained in the aforementioned using declaration.
   2630   NamedDecl *UsingOrNextShadow;
   2631   friend class UsingDecl;
   2632 
   2633   UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
   2634                   NamedDecl *Target)
   2635     : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
   2636       Underlying(Target),
   2637       UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
   2638     if (Target) {
   2639       setDeclName(Target->getDeclName());
   2640       IdentifierNamespace = Target->getIdentifierNamespace();
   2641     }
   2642     setImplicit();
   2643   }
   2644 
   2645 public:
   2646   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
   2647                                  SourceLocation Loc, UsingDecl *Using,
   2648                                  NamedDecl *Target) {
   2649     return new (C) UsingShadowDecl(DC, Loc, Using, Target);
   2650   }
   2651 
   2652   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2653 
   2654   /// \brief Gets the underlying declaration which has been brought into the
   2655   /// local scope.
   2656   NamedDecl *getTargetDecl() const { return Underlying; }
   2657 
   2658   /// \brief Sets the underlying declaration which has been brought into the
   2659   /// local scope.
   2660   void setTargetDecl(NamedDecl* ND) {
   2661     assert(ND && "Target decl is null!");
   2662     Underlying = ND;
   2663     IdentifierNamespace = ND->getIdentifierNamespace();
   2664   }
   2665 
   2666   /// \brief Gets the using declaration to which this declaration is tied.
   2667   UsingDecl *getUsingDecl() const;
   2668 
   2669   /// \brief The next using shadow declaration contained in the shadow decl
   2670   /// chain of the using declaration which introduced this decl.
   2671   UsingShadowDecl *getNextUsingShadowDecl() const {
   2672     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
   2673   }
   2674 
   2675   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2676   static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
   2677 
   2678   friend class ASTDeclReader;
   2679   friend class ASTDeclWriter;
   2680 };
   2681 
   2682 /// \brief Represents a C++ using-declaration.
   2683 ///
   2684 /// For example:
   2685 /// \code
   2686 ///    using someNameSpace::someIdentifier;
   2687 /// \endcode
   2688 class UsingDecl : public NamedDecl {
   2689   virtual void anchor();
   2690 
   2691   /// \brief The source location of the 'using' keyword itself.
   2692   SourceLocation UsingLocation;
   2693 
   2694   /// \brief The nested-name-specifier that precedes the name.
   2695   NestedNameSpecifierLoc QualifierLoc;
   2696 
   2697   /// \brief Provides source/type location info for the declaration name
   2698   /// embedded in the ValueDecl base class.
   2699   DeclarationNameLoc DNLoc;
   2700 
   2701   /// \brief The first shadow declaration of the shadow decl chain associated
   2702   /// with this using declaration.
   2703   ///
   2704   /// The bool member of the pair store whether this decl has the \c typename
   2705   /// keyword.
   2706   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
   2707 
   2708   UsingDecl(DeclContext *DC, SourceLocation UL,
   2709             NestedNameSpecifierLoc QualifierLoc,
   2710             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
   2711     : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
   2712       UsingLocation(UL), QualifierLoc(QualifierLoc),
   2713       DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, HasTypenameKeyword) {
   2714   }
   2715 
   2716 public:
   2717   /// \brief Return the source location of the 'using' keyword.
   2718   SourceLocation getUsingLoc() const { return UsingLocation; }
   2719 
   2720   /// \brief Set the source location of the 'using' keyword.
   2721   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   2722 
   2723   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   2724   /// with source-location information.
   2725   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2726 
   2727   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   2728   NestedNameSpecifier *getQualifier() const {
   2729     return QualifierLoc.getNestedNameSpecifier();
   2730   }
   2731 
   2732   DeclarationNameInfo getNameInfo() const {
   2733     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   2734   }
   2735 
   2736   /// \brief Return true if it is a C++03 access declaration (no 'using').
   2737   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   2738 
   2739   /// \brief Return true if the using declaration has 'typename'.
   2740   bool hasTypename() const { return FirstUsingShadow.getInt(); }
   2741 
   2742   /// \brief Sets whether the using declaration has 'typename'.
   2743   void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
   2744 
   2745   /// \brief Iterates through the using shadow declarations associated with
   2746   /// this using declaration.
   2747   class shadow_iterator {
   2748     /// \brief The current using shadow declaration.
   2749     UsingShadowDecl *Current;
   2750 
   2751   public:
   2752     typedef UsingShadowDecl*          value_type;
   2753     typedef UsingShadowDecl*          reference;
   2754     typedef UsingShadowDecl*          pointer;
   2755     typedef std::forward_iterator_tag iterator_category;
   2756     typedef std::ptrdiff_t            difference_type;
   2757 
   2758     shadow_iterator() : Current(0) { }
   2759     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
   2760 
   2761     reference operator*() const { return Current; }
   2762     pointer operator->() const { return Current; }
   2763 
   2764     shadow_iterator& operator++() {
   2765       Current = Current->getNextUsingShadowDecl();
   2766       return *this;
   2767     }
   2768 
   2769     shadow_iterator operator++(int) {
   2770       shadow_iterator tmp(*this);
   2771       ++(*this);
   2772       return tmp;
   2773     }
   2774 
   2775     friend bool operator==(shadow_iterator x, shadow_iterator y) {
   2776       return x.Current == y.Current;
   2777     }
   2778     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
   2779       return x.Current != y.Current;
   2780     }
   2781   };
   2782 
   2783   shadow_iterator shadow_begin() const {
   2784     return shadow_iterator(FirstUsingShadow.getPointer());
   2785   }
   2786   shadow_iterator shadow_end() const { return shadow_iterator(); }
   2787 
   2788   /// \brief Return the number of shadowed declarations associated with this
   2789   /// using declaration.
   2790   unsigned shadow_size() const {
   2791     return std::distance(shadow_begin(), shadow_end());
   2792   }
   2793 
   2794   void addShadowDecl(UsingShadowDecl *S);
   2795   void removeShadowDecl(UsingShadowDecl *S);
   2796 
   2797   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
   2798                            SourceLocation UsingL,
   2799                            NestedNameSpecifierLoc QualifierLoc,
   2800                            const DeclarationNameInfo &NameInfo,
   2801                            bool HasTypenameKeyword);
   2802 
   2803   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2804 
   2805   SourceRange getSourceRange() const LLVM_READONLY;
   2806 
   2807   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2808   static bool classofKind(Kind K) { return K == Using; }
   2809 
   2810   friend class ASTDeclReader;
   2811   friend class ASTDeclWriter;
   2812 };
   2813 
   2814 /// \brief Represents a dependent using declaration which was not marked with
   2815 /// \c typename.
   2816 ///
   2817 /// Unlike non-dependent using declarations, these *only* bring through
   2818 /// non-types; otherwise they would break two-phase lookup.
   2819 ///
   2820 /// \code
   2821 /// template \<class T> class A : public Base<T> {
   2822 ///   using Base<T>::foo;
   2823 /// };
   2824 /// \endcode
   2825 class UnresolvedUsingValueDecl : public ValueDecl {
   2826   virtual void anchor();
   2827 
   2828   /// \brief The source location of the 'using' keyword
   2829   SourceLocation UsingLocation;
   2830 
   2831   /// \brief The nested-name-specifier that precedes the name.
   2832   NestedNameSpecifierLoc QualifierLoc;
   2833 
   2834   /// \brief Provides source/type location info for the declaration name
   2835   /// embedded in the ValueDecl base class.
   2836   DeclarationNameLoc DNLoc;
   2837 
   2838   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
   2839                            SourceLocation UsingLoc,
   2840                            NestedNameSpecifierLoc QualifierLoc,
   2841                            const DeclarationNameInfo &NameInfo)
   2842     : ValueDecl(UnresolvedUsingValue, DC,
   2843                 NameInfo.getLoc(), NameInfo.getName(), Ty),
   2844       UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
   2845       DNLoc(NameInfo.getInfo())
   2846   { }
   2847 
   2848 public:
   2849   /// \brief Returns the source location of the 'using' keyword.
   2850   SourceLocation getUsingLoc() const { return UsingLocation; }
   2851 
   2852   /// \brief Set the source location of the 'using' keyword.
   2853   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   2854 
   2855   /// \brief Return true if it is a C++03 access declaration (no 'using').
   2856   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   2857 
   2858   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   2859   /// with source-location information.
   2860   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2861 
   2862   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   2863   NestedNameSpecifier *getQualifier() const {
   2864     return QualifierLoc.getNestedNameSpecifier();
   2865   }
   2866 
   2867   DeclarationNameInfo getNameInfo() const {
   2868     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   2869   }
   2870 
   2871   static UnresolvedUsingValueDecl *
   2872     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   2873            NestedNameSpecifierLoc QualifierLoc,
   2874            const DeclarationNameInfo &NameInfo);
   2875 
   2876   static UnresolvedUsingValueDecl *
   2877   CreateDeserialized(ASTContext &C, unsigned ID);
   2878 
   2879   SourceRange getSourceRange() const LLVM_READONLY;
   2880 
   2881   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2882   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
   2883 
   2884   friend class ASTDeclReader;
   2885   friend class ASTDeclWriter;
   2886 };
   2887 
   2888 /// \brief Represents a dependent using declaration which was marked with
   2889 /// \c typename.
   2890 ///
   2891 /// \code
   2892 /// template \<class T> class A : public Base<T> {
   2893 ///   using typename Base<T>::foo;
   2894 /// };
   2895 /// \endcode
   2896 ///
   2897 /// The type associated with an unresolved using typename decl is
   2898 /// currently always a typename type.
   2899 class UnresolvedUsingTypenameDecl : public TypeDecl {
   2900   virtual void anchor();
   2901 
   2902   /// \brief The source location of the 'typename' keyword
   2903   SourceLocation TypenameLocation;
   2904 
   2905   /// \brief The nested-name-specifier that precedes the name.
   2906   NestedNameSpecifierLoc QualifierLoc;
   2907 
   2908   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
   2909                               SourceLocation TypenameLoc,
   2910                               NestedNameSpecifierLoc QualifierLoc,
   2911                               SourceLocation TargetNameLoc,
   2912                               IdentifierInfo *TargetName)
   2913     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
   2914                UsingLoc),
   2915       TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
   2916 
   2917   friend class ASTDeclReader;
   2918 
   2919 public:
   2920   /// \brief Returns the source location of the 'using' keyword.
   2921   SourceLocation getUsingLoc() const { return getLocStart(); }
   2922 
   2923   /// \brief Returns the source location of the 'typename' keyword.
   2924   SourceLocation getTypenameLoc() const { return TypenameLocation; }
   2925 
   2926   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   2927   /// with source-location information.
   2928   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2929 
   2930   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   2931   NestedNameSpecifier *getQualifier() const {
   2932     return QualifierLoc.getNestedNameSpecifier();
   2933   }
   2934 
   2935   static UnresolvedUsingTypenameDecl *
   2936     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   2937            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
   2938            SourceLocation TargetNameLoc, DeclarationName TargetName);
   2939 
   2940   static UnresolvedUsingTypenameDecl *
   2941   CreateDeserialized(ASTContext &C, unsigned ID);
   2942 
   2943   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2944   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
   2945 };
   2946 
   2947 /// \brief Represents a C++11 static_assert declaration.
   2948 class StaticAssertDecl : public Decl {
   2949   virtual void anchor();
   2950   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
   2951   StringLiteral *Message;
   2952   SourceLocation RParenLoc;
   2953 
   2954   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
   2955                    Expr *AssertExpr, StringLiteral *Message,
   2956                    SourceLocation RParenLoc, bool Failed)
   2957     : Decl(StaticAssert, DC, StaticAssertLoc),
   2958       AssertExprAndFailed(AssertExpr, Failed), Message(Message),
   2959       RParenLoc(RParenLoc) { }
   2960 
   2961 public:
   2962   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
   2963                                   SourceLocation StaticAssertLoc,
   2964                                   Expr *AssertExpr, StringLiteral *Message,
   2965                                   SourceLocation RParenLoc, bool Failed);
   2966   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2967 
   2968   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
   2969   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
   2970 
   2971   StringLiteral *getMessage() { return Message; }
   2972   const StringLiteral *getMessage() const { return Message; }
   2973 
   2974   bool isFailed() const { return AssertExprAndFailed.getInt(); }
   2975 
   2976   SourceLocation getRParenLoc() const { return RParenLoc; }
   2977 
   2978   SourceRange getSourceRange() const LLVM_READONLY {
   2979     return SourceRange(getLocation(), getRParenLoc());
   2980   }
   2981 
   2982   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2983   static bool classofKind(Kind K) { return K == StaticAssert; }
   2984 
   2985   friend class ASTDeclReader;
   2986 };
   2987 
   2988 /// An instance of this class represents the declaration of a property
   2989 /// member.  This is a Microsoft extension to C++, first introduced in
   2990 /// Visual Studio .NET 2003 as a parallel to similar features in C#
   2991 /// and Managed C++.
   2992 ///
   2993 /// A property must always be a non-static class member.
   2994 ///
   2995 /// A property member superficially resembles a non-static data
   2996 /// member, except preceded by a property attribute:
   2997 ///   __declspec(property(get=GetX, put=PutX)) int x;
   2998 /// Either (but not both) of the 'get' and 'put' names may be omitted.
   2999 ///
   3000 /// A reference to a property is always an lvalue.  If the lvalue
   3001 /// undergoes lvalue-to-rvalue conversion, then a getter name is
   3002 /// required, and that member is called with no arguments.
   3003 /// If the lvalue is assigned into, then a setter name is required,
   3004 /// and that member is called with one argument, the value assigned.
   3005 /// Both operations are potentially overloaded.  Compound assignments
   3006 /// are permitted, as are the increment and decrement operators.
   3007 ///
   3008 /// The getter and putter methods are permitted to be overloaded,
   3009 /// although their return and parameter types are subject to certain
   3010 /// restrictions according to the type of the property.
   3011 ///
   3012 /// A property declared using an incomplete array type may
   3013 /// additionally be subscripted, adding extra parameters to the getter
   3014 /// and putter methods.
   3015 class MSPropertyDecl : public DeclaratorDecl {
   3016   IdentifierInfo *GetterId, *SetterId;
   3017 
   3018 public:
   3019   MSPropertyDecl(DeclContext *DC, SourceLocation L,
   3020                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
   3021                  SourceLocation StartL, IdentifierInfo *Getter,
   3022                  IdentifierInfo *Setter):
   3023   DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter),
   3024   SetterId(Setter) {}
   3025 
   3026   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   3027 
   3028   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
   3029 
   3030   bool hasGetter() const { return GetterId != NULL; }
   3031   IdentifierInfo* getGetterId() const { return GetterId; }
   3032   bool hasSetter() const { return SetterId != NULL; }
   3033   IdentifierInfo* getSetterId() const { return SetterId; }
   3034 
   3035   friend class ASTDeclReader;
   3036 };
   3037 
   3038 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
   3039 /// into a diagnostic with <<.
   3040 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   3041                                     AccessSpecifier AS);
   3042 
   3043 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
   3044                                     AccessSpecifier AS);
   3045 
   3046 } // end namespace clang
   3047 
   3048 #endif
   3049