Home | History | Annotate | Download | only in JIT
      1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tool implements a just-in-time compiler for LLVM, allowing direct
     11 // execution of LLVM bitcode in an efficient manner.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "JIT.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/CodeGen/JITCodeEmitter.h"
     18 #include "llvm/CodeGen/MachineCodeInfo.h"
     19 #include "llvm/Config/config.h"
     20 #include "llvm/ExecutionEngine/GenericValue.h"
     21 #include "llvm/ExecutionEngine/JITEventListener.h"
     22 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/Support/Dwarf.h"
     30 #include "llvm/Support/DynamicLibrary.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MutexGuard.h"
     34 #include "llvm/Target/TargetJITInfo.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 
     37 using namespace llvm;
     38 
     39 #ifdef __APPLE__
     40 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
     41 // of atexit). It passes the address of linker generated symbol __dso_handle
     42 // to the function.
     43 // This configuration change happened at version 5330.
     44 # include <AvailabilityMacros.h>
     45 # if defined(MAC_OS_X_VERSION_10_4) && \
     46      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
     47       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
     48        __APPLE_CC__ >= 5330))
     49 #  ifndef HAVE___DSO_HANDLE
     50 #   define HAVE___DSO_HANDLE 1
     51 #  endif
     52 # endif
     53 #endif
     54 
     55 #if HAVE___DSO_HANDLE
     56 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
     57 #endif
     58 
     59 namespace {
     60 
     61 static struct RegisterJIT {
     62   RegisterJIT() { JIT::Register(); }
     63 } JITRegistrator;
     64 
     65 }
     66 
     67 extern "C" void LLVMLinkInJIT() {
     68 }
     69 
     70 // Determine whether we can register EH tables.
     71 #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
     72      !defined(__USING_SJLJ_EXCEPTIONS__))
     73 #define HAVE_EHTABLE_SUPPORT 1
     74 #else
     75 #define HAVE_EHTABLE_SUPPORT 0
     76 #endif
     77 
     78 #if HAVE_EHTABLE_SUPPORT
     79 
     80 // libgcc defines the __register_frame function to dynamically register new
     81 // dwarf frames for exception handling. This functionality is not portable
     82 // across compilers and is only provided by GCC. We use the __register_frame
     83 // function here so that code generated by the JIT cooperates with the unwinding
     84 // runtime of libgcc. When JITting with exception handling enable, LLVM
     85 // generates dwarf frames and registers it to libgcc with __register_frame.
     86 //
     87 // The __register_frame function works with Linux.
     88 //
     89 // Unfortunately, this functionality seems to be in libgcc after the unwinding
     90 // library of libgcc for darwin was written. The code for darwin overwrites the
     91 // value updated by __register_frame with a value fetched with "keymgr".
     92 // "keymgr" is an obsolete functionality, which should be rewritten some day.
     93 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
     94 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
     95 // values of an opaque key, used by libgcc to find dwarf tables.
     96 
     97 extern "C" void __register_frame(void*);
     98 extern "C" void __deregister_frame(void*);
     99 
    100 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
    101 # define USE_KEYMGR 1
    102 #else
    103 # define USE_KEYMGR 0
    104 #endif
    105 
    106 #if USE_KEYMGR
    107 
    108 namespace {
    109 
    110 // LibgccObject - This is the structure defined in libgcc. There is no #include
    111 // provided for this structure, so we also define it here. libgcc calls it
    112 // "struct object". The structure is undocumented in libgcc.
    113 struct LibgccObject {
    114   void *unused1;
    115   void *unused2;
    116   void *unused3;
    117 
    118   /// frame - Pointer to the exception table.
    119   void *frame;
    120 
    121   /// encoding -  The encoding of the object?
    122   union {
    123     struct {
    124       unsigned long sorted : 1;
    125       unsigned long from_array : 1;
    126       unsigned long mixed_encoding : 1;
    127       unsigned long encoding : 8;
    128       unsigned long count : 21;
    129     } b;
    130     size_t i;
    131   } encoding;
    132 
    133   /// fde_end - libgcc defines this field only if some macro is defined. We
    134   /// include this field even if it may not there, to make libgcc happy.
    135   char *fde_end;
    136 
    137   /// next - At least we know it's a chained list!
    138   struct LibgccObject *next;
    139 };
    140 
    141 // "kemgr" stuff. Apparently, all frame tables are stored there.
    142 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
    143 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
    144 #define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
    145 
    146 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
    147 /// probably contains all dwarf tables that are loaded.
    148 struct LibgccObjectInfo {
    149 
    150   /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
    151   ///
    152   struct LibgccObject* seenObjects;
    153 
    154   /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
    155   ///
    156   struct LibgccObject* unseenObjects;
    157 
    158   unsigned unused[2];
    159 };
    160 
    161 /// darwin_register_frame - Since __register_frame does not work with darwin's
    162 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
    163 /// "Dwarf2 object list" key.
    164 void DarwinRegisterFrame(void* FrameBegin) {
    165   // Get the key.
    166   LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
    167     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
    168   assert(LOI && "This should be preallocated by the runtime");
    169 
    170   // Allocate a new LibgccObject to represent this frame. Deallocation of this
    171   // object may be impossible: since darwin code in libgcc was written after
    172   // the ability to dynamically register frames, things may crash if we
    173   // deallocate it.
    174   struct LibgccObject* ob = (struct LibgccObject*)
    175     malloc(sizeof(struct LibgccObject));
    176 
    177   // Do like libgcc for the values of the field.
    178   ob->unused1 = (void *)-1;
    179   ob->unused2 = 0;
    180   ob->unused3 = 0;
    181   ob->frame = FrameBegin;
    182   ob->encoding.i = 0;
    183   ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
    184 
    185   // Put the info on both places, as libgcc uses the first or the second
    186   // field. Note that we rely on having two pointers here. If fde_end was a
    187   // char, things would get complicated.
    188   ob->fde_end = (char*)LOI->unseenObjects;
    189   ob->next = LOI->unseenObjects;
    190 
    191   // Update the key's unseenObjects list.
    192   LOI->unseenObjects = ob;
    193 
    194   // Finally update the "key". Apparently, libgcc requires it.
    195   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
    196                                          LOI);
    197 
    198 }
    199 
    200 }
    201 #endif // __APPLE__
    202 #endif // HAVE_EHTABLE_SUPPORT
    203 
    204 /// createJIT - This is the factory method for creating a JIT for the current
    205 /// machine, it does not fall back to the interpreter.  This takes ownership
    206 /// of the module.
    207 ExecutionEngine *JIT::createJIT(Module *M,
    208                                 std::string *ErrorStr,
    209                                 JITMemoryManager *JMM,
    210                                 bool GVsWithCode,
    211                                 TargetMachine *TM) {
    212   // Try to register the program as a source of symbols to resolve against.
    213   //
    214   // FIXME: Don't do this here.
    215   sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
    216 
    217   // If the target supports JIT code generation, create the JIT.
    218   if (TargetJITInfo *TJ = TM->getJITInfo()) {
    219     return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
    220   } else {
    221     if (ErrorStr)
    222       *ErrorStr = "target does not support JIT code generation";
    223     return 0;
    224   }
    225 }
    226 
    227 namespace {
    228 /// This class supports the global getPointerToNamedFunction(), which allows
    229 /// bugpoint or gdb users to search for a function by name without any context.
    230 class JitPool {
    231   SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
    232   mutable sys::Mutex Lock;
    233 public:
    234   void Add(JIT *jit) {
    235     MutexGuard guard(Lock);
    236     JITs.insert(jit);
    237   }
    238   void Remove(JIT *jit) {
    239     MutexGuard guard(Lock);
    240     JITs.erase(jit);
    241   }
    242   void *getPointerToNamedFunction(const char *Name) const {
    243     MutexGuard guard(Lock);
    244     assert(JITs.size() != 0 && "No Jit registered");
    245     //search function in every instance of JIT
    246     for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
    247            end = JITs.end();
    248          Jit != end; ++Jit) {
    249       if (Function *F = (*Jit)->FindFunctionNamed(Name))
    250         return (*Jit)->getPointerToFunction(F);
    251     }
    252     // The function is not available : fallback on the first created (will
    253     // search in symbol of the current program/library)
    254     return (*JITs.begin())->getPointerToNamedFunction(Name);
    255   }
    256 };
    257 ManagedStatic<JitPool> AllJits;
    258 }
    259 extern "C" {
    260   // getPointerToNamedFunction - This function is used as a global wrapper to
    261   // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
    262   // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
    263   // need to resolve function(s) that are being mis-codegenerated, so we need to
    264   // resolve their addresses at runtime, and this is the way to do it.
    265   void *getPointerToNamedFunction(const char *Name) {
    266     return AllJits->getPointerToNamedFunction(Name);
    267   }
    268 }
    269 
    270 JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
    271          JITMemoryManager *jmm, bool GVsWithCode)
    272   : ExecutionEngine(M), TM(tm), TJI(tji),
    273     JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
    274     AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
    275   setDataLayout(TM.getDataLayout());
    276 
    277   jitstate = new JITState(M);
    278 
    279   // Initialize JCE
    280   JCE = createEmitter(*this, JMM, TM);
    281 
    282   // Register in global list of all JITs.
    283   AllJits->Add(this);
    284 
    285   // Add target data
    286   MutexGuard locked(lock);
    287   FunctionPassManager &PM = jitstate->getPM(locked);
    288   PM.add(new DataLayout(*TM.getDataLayout()));
    289 
    290   // Turn the machine code intermediate representation into bytes in memory that
    291   // may be executed.
    292   if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
    293     report_fatal_error("Target does not support machine code emission!");
    294   }
    295 
    296   // Register routine for informing unwinding runtime about new EH frames
    297 #if HAVE_EHTABLE_SUPPORT
    298 #if USE_KEYMGR
    299   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
    300     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
    301 
    302   // The key is created on demand, and libgcc creates it the first time an
    303   // exception occurs. Since we need the key to register frames, we create
    304   // it now.
    305   if (!LOI)
    306     LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
    307   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
    308   InstallExceptionTableRegister(DarwinRegisterFrame);
    309   // Not sure about how to deregister on Darwin.
    310 #else
    311   InstallExceptionTableRegister(__register_frame);
    312   InstallExceptionTableDeregister(__deregister_frame);
    313 #endif // __APPLE__
    314 #endif // HAVE_EHTABLE_SUPPORT
    315 
    316   // Initialize passes.
    317   PM.doInitialization();
    318 }
    319 
    320 JIT::~JIT() {
    321   // Unregister all exception tables registered by this JIT.
    322   DeregisterAllTables();
    323   // Cleanup.
    324   AllJits->Remove(this);
    325   delete jitstate;
    326   delete JCE;
    327   // JMM is a ownership of JCE, so we no need delete JMM here.
    328   delete &TM;
    329 }
    330 
    331 /// addModule - Add a new Module to the JIT.  If we previously removed the last
    332 /// Module, we need re-initialize jitstate with a valid Module.
    333 void JIT::addModule(Module *M) {
    334   MutexGuard locked(lock);
    335 
    336   if (Modules.empty()) {
    337     assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
    338 
    339     jitstate = new JITState(M);
    340 
    341     FunctionPassManager &PM = jitstate->getPM(locked);
    342     PM.add(new DataLayout(*TM.getDataLayout()));
    343 
    344     // Turn the machine code intermediate representation into bytes in memory
    345     // that may be executed.
    346     if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
    347       report_fatal_error("Target does not support machine code emission!");
    348     }
    349 
    350     // Initialize passes.
    351     PM.doInitialization();
    352   }
    353 
    354   ExecutionEngine::addModule(M);
    355 }
    356 
    357 /// removeModule - If we are removing the last Module, invalidate the jitstate
    358 /// since the PassManager it contains references a released Module.
    359 bool JIT::removeModule(Module *M) {
    360   bool result = ExecutionEngine::removeModule(M);
    361 
    362   MutexGuard locked(lock);
    363 
    364   if (jitstate && jitstate->getModule() == M) {
    365     delete jitstate;
    366     jitstate = 0;
    367   }
    368 
    369   if (!jitstate && !Modules.empty()) {
    370     jitstate = new JITState(Modules[0]);
    371 
    372     FunctionPassManager &PM = jitstate->getPM(locked);
    373     PM.add(new DataLayout(*TM.getDataLayout()));
    374 
    375     // Turn the machine code intermediate representation into bytes in memory
    376     // that may be executed.
    377     if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
    378       report_fatal_error("Target does not support machine code emission!");
    379     }
    380 
    381     // Initialize passes.
    382     PM.doInitialization();
    383   }
    384   return result;
    385 }
    386 
    387 /// run - Start execution with the specified function and arguments.
    388 ///
    389 GenericValue JIT::runFunction(Function *F,
    390                               const std::vector<GenericValue> &ArgValues) {
    391   assert(F && "Function *F was null at entry to run()");
    392 
    393   void *FPtr = getPointerToFunction(F);
    394   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
    395   FunctionType *FTy = F->getFunctionType();
    396   Type *RetTy = FTy->getReturnType();
    397 
    398   assert((FTy->getNumParams() == ArgValues.size() ||
    399           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
    400          "Wrong number of arguments passed into function!");
    401   assert(FTy->getNumParams() == ArgValues.size() &&
    402          "This doesn't support passing arguments through varargs (yet)!");
    403 
    404   // Handle some common cases first.  These cases correspond to common `main'
    405   // prototypes.
    406   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
    407     switch (ArgValues.size()) {
    408     case 3:
    409       if (FTy->getParamType(0)->isIntegerTy(32) &&
    410           FTy->getParamType(1)->isPointerTy() &&
    411           FTy->getParamType(2)->isPointerTy()) {
    412         int (*PF)(int, char **, const char **) =
    413           (int(*)(int, char **, const char **))(intptr_t)FPtr;
    414 
    415         // Call the function.
    416         GenericValue rv;
    417         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    418                                  (char **)GVTOP(ArgValues[1]),
    419                                  (const char **)GVTOP(ArgValues[2])));
    420         return rv;
    421       }
    422       break;
    423     case 2:
    424       if (FTy->getParamType(0)->isIntegerTy(32) &&
    425           FTy->getParamType(1)->isPointerTy()) {
    426         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
    427 
    428         // Call the function.
    429         GenericValue rv;
    430         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    431                                  (char **)GVTOP(ArgValues[1])));
    432         return rv;
    433       }
    434       break;
    435     case 1:
    436       if (FTy->getParamType(0)->isIntegerTy(32)) {
    437         GenericValue rv;
    438         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
    439         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
    440         return rv;
    441       }
    442       if (FTy->getParamType(0)->isPointerTy()) {
    443         GenericValue rv;
    444         int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
    445         rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
    446         return rv;
    447       }
    448       break;
    449     }
    450   }
    451 
    452   // Handle cases where no arguments are passed first.
    453   if (ArgValues.empty()) {
    454     GenericValue rv;
    455     switch (RetTy->getTypeID()) {
    456     default: llvm_unreachable("Unknown return type for function call!");
    457     case Type::IntegerTyID: {
    458       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
    459       if (BitWidth == 1)
    460         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
    461       else if (BitWidth <= 8)
    462         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
    463       else if (BitWidth <= 16)
    464         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
    465       else if (BitWidth <= 32)
    466         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
    467       else if (BitWidth <= 64)
    468         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
    469       else
    470         llvm_unreachable("Integer types > 64 bits not supported");
    471       return rv;
    472     }
    473     case Type::VoidTyID:
    474       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
    475       return rv;
    476     case Type::FloatTyID:
    477       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
    478       return rv;
    479     case Type::DoubleTyID:
    480       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
    481       return rv;
    482     case Type::X86_FP80TyID:
    483     case Type::FP128TyID:
    484     case Type::PPC_FP128TyID:
    485       llvm_unreachable("long double not supported yet");
    486     case Type::PointerTyID:
    487       return PTOGV(((void*(*)())(intptr_t)FPtr)());
    488     }
    489   }
    490 
    491   // Okay, this is not one of our quick and easy cases.  Because we don't have a
    492   // full FFI, we have to codegen a nullary stub function that just calls the
    493   // function we are interested in, passing in constants for all of the
    494   // arguments.  Make this function and return.
    495 
    496   // First, create the function.
    497   FunctionType *STy=FunctionType::get(RetTy, false);
    498   Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
    499                                     F->getParent());
    500 
    501   // Insert a basic block.
    502   BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
    503 
    504   // Convert all of the GenericValue arguments over to constants.  Note that we
    505   // currently don't support varargs.
    506   SmallVector<Value*, 8> Args;
    507   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
    508     Constant *C = 0;
    509     Type *ArgTy = FTy->getParamType(i);
    510     const GenericValue &AV = ArgValues[i];
    511     switch (ArgTy->getTypeID()) {
    512     default: llvm_unreachable("Unknown argument type for function call!");
    513     case Type::IntegerTyID:
    514         C = ConstantInt::get(F->getContext(), AV.IntVal);
    515         break;
    516     case Type::FloatTyID:
    517         C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
    518         break;
    519     case Type::DoubleTyID:
    520         C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
    521         break;
    522     case Type::PPC_FP128TyID:
    523     case Type::X86_FP80TyID:
    524     case Type::FP128TyID:
    525         C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(),
    526                                                      AV.IntVal));
    527         break;
    528     case Type::PointerTyID:
    529       void *ArgPtr = GVTOP(AV);
    530       if (sizeof(void*) == 4)
    531         C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
    532                              (int)(intptr_t)ArgPtr);
    533       else
    534         C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
    535                              (intptr_t)ArgPtr);
    536       // Cast the integer to pointer
    537       C = ConstantExpr::getIntToPtr(C, ArgTy);
    538       break;
    539     }
    540     Args.push_back(C);
    541   }
    542 
    543   CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
    544   TheCall->setCallingConv(F->getCallingConv());
    545   TheCall->setTailCall();
    546   if (!TheCall->getType()->isVoidTy())
    547     // Return result of the call.
    548     ReturnInst::Create(F->getContext(), TheCall, StubBB);
    549   else
    550     ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
    551 
    552   // Finally, call our nullary stub function.
    553   GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
    554   // Erase it, since no other function can have a reference to it.
    555   Stub->eraseFromParent();
    556   // And return the result.
    557   return Result;
    558 }
    559 
    560 void JIT::RegisterJITEventListener(JITEventListener *L) {
    561   if (L == NULL)
    562     return;
    563   MutexGuard locked(lock);
    564   EventListeners.push_back(L);
    565 }
    566 void JIT::UnregisterJITEventListener(JITEventListener *L) {
    567   if (L == NULL)
    568     return;
    569   MutexGuard locked(lock);
    570   std::vector<JITEventListener*>::reverse_iterator I=
    571       std::find(EventListeners.rbegin(), EventListeners.rend(), L);
    572   if (I != EventListeners.rend()) {
    573     std::swap(*I, EventListeners.back());
    574     EventListeners.pop_back();
    575   }
    576 }
    577 void JIT::NotifyFunctionEmitted(
    578     const Function &F,
    579     void *Code, size_t Size,
    580     const JITEvent_EmittedFunctionDetails &Details) {
    581   MutexGuard locked(lock);
    582   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
    583     EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
    584   }
    585 }
    586 
    587 void JIT::NotifyFreeingMachineCode(void *OldPtr) {
    588   MutexGuard locked(lock);
    589   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
    590     EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
    591   }
    592 }
    593 
    594 /// runJITOnFunction - Run the FunctionPassManager full of
    595 /// just-in-time compilation passes on F, hopefully filling in
    596 /// GlobalAddress[F] with the address of F's machine code.
    597 ///
    598 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
    599   MutexGuard locked(lock);
    600 
    601   class MCIListener : public JITEventListener {
    602     MachineCodeInfo *const MCI;
    603    public:
    604     MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
    605     virtual void NotifyFunctionEmitted(const Function &,
    606                                        void *Code, size_t Size,
    607                                        const EmittedFunctionDetails &) {
    608       MCI->setAddress(Code);
    609       MCI->setSize(Size);
    610     }
    611   };
    612   MCIListener MCIL(MCI);
    613   if (MCI)
    614     RegisterJITEventListener(&MCIL);
    615 
    616   runJITOnFunctionUnlocked(F, locked);
    617 
    618   if (MCI)
    619     UnregisterJITEventListener(&MCIL);
    620 }
    621 
    622 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
    623   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
    624 
    625   jitTheFunction(F, locked);
    626 
    627   // If the function referred to another function that had not yet been
    628   // read from bitcode, and we are jitting non-lazily, emit it now.
    629   while (!jitstate->getPendingFunctions(locked).empty()) {
    630     Function *PF = jitstate->getPendingFunctions(locked).back();
    631     jitstate->getPendingFunctions(locked).pop_back();
    632 
    633     assert(!PF->hasAvailableExternallyLinkage() &&
    634            "Externally-defined function should not be in pending list.");
    635 
    636     jitTheFunction(PF, locked);
    637 
    638     // Now that the function has been jitted, ask the JITEmitter to rewrite
    639     // the stub with real address of the function.
    640     updateFunctionStub(PF);
    641   }
    642 }
    643 
    644 void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
    645   isAlreadyCodeGenerating = true;
    646   jitstate->getPM(locked).run(*F);
    647   isAlreadyCodeGenerating = false;
    648 
    649   // clear basic block addresses after this function is done
    650   getBasicBlockAddressMap(locked).clear();
    651 }
    652 
    653 /// getPointerToFunction - This method is used to get the address of the
    654 /// specified function, compiling it if necessary.
    655 ///
    656 void *JIT::getPointerToFunction(Function *F) {
    657 
    658   if (void *Addr = getPointerToGlobalIfAvailable(F))
    659     return Addr;   // Check if function already code gen'd
    660 
    661   MutexGuard locked(lock);
    662 
    663   // Now that this thread owns the lock, make sure we read in the function if it
    664   // exists in this Module.
    665   std::string ErrorMsg;
    666   if (F->Materialize(&ErrorMsg)) {
    667     report_fatal_error("Error reading function '" + F->getName()+
    668                       "' from bitcode file: " + ErrorMsg);
    669   }
    670 
    671   // ... and check if another thread has already code gen'd the function.
    672   if (void *Addr = getPointerToGlobalIfAvailable(F))
    673     return Addr;
    674 
    675   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
    676     bool AbortOnFailure = !F->hasExternalWeakLinkage();
    677     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
    678     addGlobalMapping(F, Addr);
    679     return Addr;
    680   }
    681 
    682   runJITOnFunctionUnlocked(F, locked);
    683 
    684   void *Addr = getPointerToGlobalIfAvailable(F);
    685   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
    686   return Addr;
    687 }
    688 
    689 void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
    690   MutexGuard locked(lock);
    691 
    692   BasicBlockAddressMapTy::iterator I =
    693     getBasicBlockAddressMap(locked).find(BB);
    694   if (I == getBasicBlockAddressMap(locked).end()) {
    695     getBasicBlockAddressMap(locked)[BB] = Addr;
    696   } else {
    697     // ignore repeats: some BBs can be split into few MBBs?
    698   }
    699 }
    700 
    701 void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
    702   MutexGuard locked(lock);
    703   getBasicBlockAddressMap(locked).erase(BB);
    704 }
    705 
    706 void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
    707   // make sure it's function is compiled by JIT
    708   (void)getPointerToFunction(BB->getParent());
    709 
    710   // resolve basic block address
    711   MutexGuard locked(lock);
    712 
    713   BasicBlockAddressMapTy::iterator I =
    714     getBasicBlockAddressMap(locked).find(BB);
    715   if (I != getBasicBlockAddressMap(locked).end()) {
    716     return I->second;
    717   } else {
    718     llvm_unreachable("JIT does not have BB address for address-of-label, was"
    719                      " it eliminated by optimizer?");
    720   }
    721 }
    722 
    723 void *JIT::getPointerToNamedFunction(const std::string &Name,
    724                                      bool AbortOnFailure){
    725   if (!isSymbolSearchingDisabled()) {
    726     void *ptr = JMM->getPointerToNamedFunction(Name, false);
    727     if (ptr)
    728       return ptr;
    729   }
    730 
    731   /// If a LazyFunctionCreator is installed, use it to get/create the function.
    732   if (LazyFunctionCreator)
    733     if (void *RP = LazyFunctionCreator(Name))
    734       return RP;
    735 
    736   if (AbortOnFailure) {
    737     report_fatal_error("Program used external function '"+Name+
    738                       "' which could not be resolved!");
    739   }
    740   return 0;
    741 }
    742 
    743 
    744 /// getOrEmitGlobalVariable - Return the address of the specified global
    745 /// variable, possibly emitting it to memory if needed.  This is used by the
    746 /// Emitter.
    747 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
    748   MutexGuard locked(lock);
    749 
    750   void *Ptr = getPointerToGlobalIfAvailable(GV);
    751   if (Ptr) return Ptr;
    752 
    753   // If the global is external, just remember the address.
    754   if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
    755 #if HAVE___DSO_HANDLE
    756     if (GV->getName() == "__dso_handle")
    757       return (void*)&__dso_handle;
    758 #endif
    759     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
    760     if (Ptr == 0) {
    761       report_fatal_error("Could not resolve external global address: "
    762                         +GV->getName());
    763     }
    764     addGlobalMapping(GV, Ptr);
    765   } else {
    766     // If the global hasn't been emitted to memory yet, allocate space and
    767     // emit it into memory.
    768     Ptr = getMemoryForGV(GV);
    769     addGlobalMapping(GV, Ptr);
    770     EmitGlobalVariable(GV);  // Initialize the variable.
    771   }
    772   return Ptr;
    773 }
    774 
    775 /// recompileAndRelinkFunction - This method is used to force a function
    776 /// which has already been compiled, to be compiled again, possibly
    777 /// after it has been modified. Then the entry to the old copy is overwritten
    778 /// with a branch to the new copy. If there was no old copy, this acts
    779 /// just like JIT::getPointerToFunction().
    780 ///
    781 void *JIT::recompileAndRelinkFunction(Function *F) {
    782   void *OldAddr = getPointerToGlobalIfAvailable(F);
    783 
    784   // If it's not already compiled there is no reason to patch it up.
    785   if (OldAddr == 0) { return getPointerToFunction(F); }
    786 
    787   // Delete the old function mapping.
    788   addGlobalMapping(F, 0);
    789 
    790   // Recodegen the function
    791   runJITOnFunction(F);
    792 
    793   // Update state, forward the old function to the new function.
    794   void *Addr = getPointerToGlobalIfAvailable(F);
    795   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
    796   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
    797   return Addr;
    798 }
    799 
    800 /// getMemoryForGV - This method abstracts memory allocation of global
    801 /// variable so that the JIT can allocate thread local variables depending
    802 /// on the target.
    803 ///
    804 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
    805   char *Ptr;
    806 
    807   // GlobalVariable's which are not "constant" will cause trouble in a server
    808   // situation. It's returned in the same block of memory as code which may
    809   // not be writable.
    810   if (isGVCompilationDisabled() && !GV->isConstant()) {
    811     report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
    812   }
    813 
    814   // Some applications require globals and code to live together, so they may
    815   // be allocated into the same buffer, but in general globals are allocated
    816   // through the memory manager which puts them near the code but not in the
    817   // same buffer.
    818   Type *GlobalType = GV->getType()->getElementType();
    819   size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
    820   size_t A = getDataLayout()->getPreferredAlignment(GV);
    821   if (GV->isThreadLocal()) {
    822     MutexGuard locked(lock);
    823     Ptr = TJI.allocateThreadLocalMemory(S);
    824   } else if (TJI.allocateSeparateGVMemory()) {
    825     if (A <= 8) {
    826       Ptr = (char*)malloc(S);
    827     } else {
    828       // Allocate S+A bytes of memory, then use an aligned pointer within that
    829       // space.
    830       Ptr = (char*)malloc(S+A);
    831       unsigned MisAligned = ((intptr_t)Ptr & (A-1));
    832       Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
    833     }
    834   } else if (AllocateGVsWithCode) {
    835     Ptr = (char*)JCE->allocateSpace(S, A);
    836   } else {
    837     Ptr = (char*)JCE->allocateGlobal(S, A);
    838   }
    839   return Ptr;
    840 }
    841 
    842 void JIT::addPendingFunction(Function *F) {
    843   MutexGuard locked(lock);
    844   jitstate->getPendingFunctions(locked).push_back(F);
    845 }
    846 
    847 
    848 JITEventListener::~JITEventListener() {}
    849