Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CodeGenModule.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/StmtCXX.h"
     23 #include "clang/Basic/OpenCL.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/MDBuilder.h"
     29 #include "llvm/IR/Operator.h"
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
     34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
     35     Builder(cgm.getModule().getContext()),
     36     CapturedStmtInfo(0),
     37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
     38                              CGM.getSanOpts().Alignment |
     39                              CGM.getSanOpts().ObjectSize |
     40                              CGM.getSanOpts().Vptr),
     41     SanOpts(&CGM.getSanOpts()),
     42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
     43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
     44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
     45     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
     46     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
     47     NumReturnExprs(0), NumSimpleReturnExprs(0),
     48     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
     49     CXXDefaultInitExprThis(0),
     50     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
     51     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
     52     TerminateHandler(0), TrapBB(0) {
     53   if (!suppressNewContext)
     54     CGM.getCXXABI().getMangleContext().startNewFunction();
     55 
     56   llvm::FastMathFlags FMF;
     57   if (CGM.getLangOpts().FastMath)
     58     FMF.setUnsafeAlgebra();
     59   if (CGM.getLangOpts().FiniteMathOnly) {
     60     FMF.setNoNaNs();
     61     FMF.setNoInfs();
     62   }
     63   Builder.SetFastMathFlags(FMF);
     64 }
     65 
     66 CodeGenFunction::~CodeGenFunction() {
     67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
     68 
     69   // If there are any unclaimed block infos, go ahead and destroy them
     70   // now.  This can happen if IR-gen gets clever and skips evaluating
     71   // something.
     72   if (FirstBlockInfo)
     73     destroyBlockInfos(FirstBlockInfo);
     74 }
     75 
     76 
     77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     78   return CGM.getTypes().ConvertTypeForMem(T);
     79 }
     80 
     81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     82   return CGM.getTypes().ConvertType(T);
     83 }
     84 
     85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
     86   type = type.getCanonicalType();
     87   while (true) {
     88     switch (type->getTypeClass()) {
     89 #define TYPE(name, parent)
     90 #define ABSTRACT_TYPE(name, parent)
     91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     92 #define DEPENDENT_TYPE(name, parent) case Type::name:
     93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     94 #include "clang/AST/TypeNodes.def"
     95       llvm_unreachable("non-canonical or dependent type in IR-generation");
     96 
     97     case Type::Auto:
     98       llvm_unreachable("undeduced auto type in IR-generation");
     99 
    100     // Various scalar types.
    101     case Type::Builtin:
    102     case Type::Pointer:
    103     case Type::BlockPointer:
    104     case Type::LValueReference:
    105     case Type::RValueReference:
    106     case Type::MemberPointer:
    107     case Type::Vector:
    108     case Type::ExtVector:
    109     case Type::FunctionProto:
    110     case Type::FunctionNoProto:
    111     case Type::Enum:
    112     case Type::ObjCObjectPointer:
    113       return TEK_Scalar;
    114 
    115     // Complexes.
    116     case Type::Complex:
    117       return TEK_Complex;
    118 
    119     // Arrays, records, and Objective-C objects.
    120     case Type::ConstantArray:
    121     case Type::IncompleteArray:
    122     case Type::VariableArray:
    123     case Type::Record:
    124     case Type::ObjCObject:
    125     case Type::ObjCInterface:
    126       return TEK_Aggregate;
    127 
    128     // We operate on atomic values according to their underlying type.
    129     case Type::Atomic:
    130       type = cast<AtomicType>(type)->getValueType();
    131       continue;
    132     }
    133     llvm_unreachable("unknown type kind!");
    134   }
    135 }
    136 
    137 void CodeGenFunction::EmitReturnBlock() {
    138   // For cleanliness, we try to avoid emitting the return block for
    139   // simple cases.
    140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    141 
    142   if (CurBB) {
    143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    144 
    145     // We have a valid insert point, reuse it if it is empty or there are no
    146     // explicit jumps to the return block.
    147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    149       delete ReturnBlock.getBlock();
    150     } else
    151       EmitBlock(ReturnBlock.getBlock());
    152     return;
    153   }
    154 
    155   // Otherwise, if the return block is the target of a single direct
    156   // branch then we can just put the code in that block instead. This
    157   // cleans up functions which started with a unified return block.
    158   if (ReturnBlock.getBlock()->hasOneUse()) {
    159     llvm::BranchInst *BI =
    160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
    161     if (BI && BI->isUnconditional() &&
    162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    163       // Reset insertion point, including debug location, and delete the
    164       // branch.  This is really subtle and only works because the next change
    165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
    166       // override this.
    167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
    168       Builder.SetInsertPoint(BI->getParent());
    169       BI->eraseFromParent();
    170       delete ReturnBlock.getBlock();
    171       return;
    172     }
    173   }
    174 
    175   // FIXME: We are at an unreachable point, there is no reason to emit the block
    176   // unless it has uses. However, we still need a place to put the debug
    177   // region.end for now.
    178 
    179   EmitBlock(ReturnBlock.getBlock());
    180 }
    181 
    182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    183   if (!BB) return;
    184   if (!BB->use_empty())
    185     return CGF.CurFn->getBasicBlockList().push_back(BB);
    186   delete BB;
    187 }
    188 
    189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    190   assert(BreakContinueStack.empty() &&
    191          "mismatched push/pop in break/continue stack!");
    192 
    193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
    194     && NumSimpleReturnExprs == NumReturnExprs
    195     && ReturnBlock.getBlock()->use_empty();
    196   // Usually the return expression is evaluated before the cleanup
    197   // code.  If the function contains only a simple return statement,
    198   // such as a constant, the location before the cleanup code becomes
    199   // the last useful breakpoint in the function, because the simple
    200   // return expression will be evaluated after the cleanup code. To be
    201   // safe, set the debug location for cleanup code to the location of
    202   // the return statement.  Otherwise the cleanup code should be at the
    203   // end of the function's lexical scope.
    204   //
    205   // If there are multiple branches to the return block, the branch
    206   // instructions will get the location of the return statements and
    207   // all will be fine.
    208   if (CGDebugInfo *DI = getDebugInfo()) {
    209     if (OnlySimpleReturnStmts)
    210       DI->EmitLocation(Builder, LastStopPoint);
    211     else
    212       DI->EmitLocation(Builder, EndLoc);
    213   }
    214 
    215   // Pop any cleanups that might have been associated with the
    216   // parameters.  Do this in whatever block we're currently in; it's
    217   // important to do this before we enter the return block or return
    218   // edges will be *really* confused.
    219   bool EmitRetDbgLoc = true;
    220   if (EHStack.stable_begin() != PrologueCleanupDepth) {
    221     PopCleanupBlocks(PrologueCleanupDepth);
    222 
    223     // Make sure the line table doesn't jump back into the body for
    224     // the ret after it's been at EndLoc.
    225     EmitRetDbgLoc = false;
    226 
    227     if (CGDebugInfo *DI = getDebugInfo())
    228       if (OnlySimpleReturnStmts)
    229         DI->EmitLocation(Builder, EndLoc);
    230   }
    231 
    232   // Emit function epilog (to return).
    233   EmitReturnBlock();
    234 
    235   if (ShouldInstrumentFunction())
    236     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    237 
    238   // Emit debug descriptor for function end.
    239   if (CGDebugInfo *DI = getDebugInfo()) {
    240     DI->EmitFunctionEnd(Builder);
    241   }
    242 
    243   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
    244   EmitEndEHSpec(CurCodeDecl);
    245 
    246   assert(EHStack.empty() &&
    247          "did not remove all scopes from cleanup stack!");
    248 
    249   // If someone did an indirect goto, emit the indirect goto block at the end of
    250   // the function.
    251   if (IndirectBranch) {
    252     EmitBlock(IndirectBranch->getParent());
    253     Builder.ClearInsertionPoint();
    254   }
    255 
    256   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    257   llvm::Instruction *Ptr = AllocaInsertPt;
    258   AllocaInsertPt = 0;
    259   Ptr->eraseFromParent();
    260 
    261   // If someone took the address of a label but never did an indirect goto, we
    262   // made a zero entry PHI node, which is illegal, zap it now.
    263   if (IndirectBranch) {
    264     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    265     if (PN->getNumIncomingValues() == 0) {
    266       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    267       PN->eraseFromParent();
    268     }
    269   }
    270 
    271   EmitIfUsed(*this, EHResumeBlock);
    272   EmitIfUsed(*this, TerminateLandingPad);
    273   EmitIfUsed(*this, TerminateHandler);
    274   EmitIfUsed(*this, UnreachableBlock);
    275 
    276   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    277     EmitDeclMetadata();
    278 }
    279 
    280 /// ShouldInstrumentFunction - Return true if the current function should be
    281 /// instrumented with __cyg_profile_func_* calls
    282 bool CodeGenFunction::ShouldInstrumentFunction() {
    283   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    284     return false;
    285   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    286     return false;
    287   return true;
    288 }
    289 
    290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    291 /// instrumentation function with the current function and the call site, if
    292 /// function instrumentation is enabled.
    293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    294   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    295   llvm::PointerType *PointerTy = Int8PtrTy;
    296   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    297   llvm::FunctionType *FunctionTy =
    298     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    299 
    300   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    301   llvm::CallInst *CallSite = Builder.CreateCall(
    302     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    303     llvm::ConstantInt::get(Int32Ty, 0),
    304     "callsite");
    305 
    306   llvm::Value *args[] = {
    307     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    308     CallSite
    309   };
    310 
    311   EmitNounwindRuntimeCall(F, args);
    312 }
    313 
    314 void CodeGenFunction::EmitMCountInstrumentation() {
    315   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    316 
    317   llvm::Constant *MCountFn =
    318     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
    319   EmitNounwindRuntimeCall(MCountFn);
    320 }
    321 
    322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
    323 // information in the program executable. The argument information stored
    324 // includes the argument name, its type, the address and access qualifiers used.
    325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
    326                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
    327                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
    328                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
    329   // Create MDNodes that represent the kernel arg metadata.
    330   // Each MDNode is a list in the form of "key", N number of values which is
    331   // the same number of values as their are kernel arguments.
    332 
    333   // MDNode for the kernel argument address space qualifiers.
    334   SmallVector<llvm::Value*, 8> addressQuals;
    335   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
    336 
    337   // MDNode for the kernel argument access qualifiers (images only).
    338   SmallVector<llvm::Value*, 8> accessQuals;
    339   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
    340 
    341   // MDNode for the kernel argument type names.
    342   SmallVector<llvm::Value*, 8> argTypeNames;
    343   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
    344 
    345   // MDNode for the kernel argument type qualifiers.
    346   SmallVector<llvm::Value*, 8> argTypeQuals;
    347   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
    348 
    349   // MDNode for the kernel argument names.
    350   SmallVector<llvm::Value*, 8> argNames;
    351   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
    352 
    353   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    354     const ParmVarDecl *parm = FD->getParamDecl(i);
    355     QualType ty = parm->getType();
    356     std::string typeQuals;
    357 
    358     if (ty->isPointerType()) {
    359       QualType pointeeTy = ty->getPointeeType();
    360 
    361       // Get address qualifier.
    362       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
    363         pointeeTy.getAddressSpace())));
    364 
    365       // Get argument type name.
    366       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
    367 
    368       // Turn "unsigned type" to "utype"
    369       std::string::size_type pos = typeName.find("unsigned");
    370       if (pos != std::string::npos)
    371         typeName.erase(pos+1, 8);
    372 
    373       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    374 
    375       // Get argument type qualifiers:
    376       if (ty.isRestrictQualified())
    377         typeQuals = "restrict";
    378       if (pointeeTy.isConstQualified() ||
    379           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
    380         typeQuals += typeQuals.empty() ? "const" : " const";
    381       if (pointeeTy.isVolatileQualified())
    382         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    383     } else {
    384       addressQuals.push_back(Builder.getInt32(0));
    385 
    386       // Get argument type name.
    387       std::string typeName = ty.getUnqualifiedType().getAsString();
    388 
    389       // Turn "unsigned type" to "utype"
    390       std::string::size_type pos = typeName.find("unsigned");
    391       if (pos != std::string::npos)
    392         typeName.erase(pos+1, 8);
    393 
    394       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    395 
    396       // Get argument type qualifiers:
    397       if (ty.isConstQualified())
    398         typeQuals = "const";
    399       if (ty.isVolatileQualified())
    400         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    401     }
    402 
    403     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
    404 
    405     // Get image access qualifier:
    406     if (ty->isImageType()) {
    407       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
    408           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
    409         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
    410       else
    411         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
    412     } else
    413       accessQuals.push_back(llvm::MDString::get(Context, "none"));
    414 
    415     // Get argument name.
    416     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
    417   }
    418 
    419   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
    420   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
    421   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
    422   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
    423   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
    424 }
    425 
    426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
    427                                                llvm::Function *Fn)
    428 {
    429   if (!FD->hasAttr<OpenCLKernelAttr>())
    430     return;
    431 
    432   llvm::LLVMContext &Context = getLLVMContext();
    433 
    434   SmallVector <llvm::Value*, 5> kernelMDArgs;
    435   kernelMDArgs.push_back(Fn);
    436 
    437   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    438     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
    439                          Builder, getContext());
    440 
    441   if (FD->hasAttr<VecTypeHintAttr>()) {
    442     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
    443     QualType hintQTy = attr->getTypeHint();
    444     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
    445     bool isSignedInteger =
    446         hintQTy->isSignedIntegerType() ||
    447         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
    448     llvm::Value *attrMDArgs[] = {
    449       llvm::MDString::get(Context, "vec_type_hint"),
    450       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
    451       llvm::ConstantInt::get(
    452           llvm::IntegerType::get(Context, 32),
    453           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
    454     };
    455     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    456   }
    457 
    458   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
    459     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
    460     llvm::Value *attrMDArgs[] = {
    461       llvm::MDString::get(Context, "work_group_size_hint"),
    462       Builder.getInt32(attr->getXDim()),
    463       Builder.getInt32(attr->getYDim()),
    464       Builder.getInt32(attr->getZDim())
    465     };
    466     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    467   }
    468 
    469   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
    470     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
    471     llvm::Value *attrMDArgs[] = {
    472       llvm::MDString::get(Context, "reqd_work_group_size"),
    473       Builder.getInt32(attr->getXDim()),
    474       Builder.getInt32(attr->getYDim()),
    475       Builder.getInt32(attr->getZDim())
    476     };
    477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    478   }
    479 
    480   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
    481   llvm::NamedMDNode *OpenCLKernelMetadata =
    482     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    483   OpenCLKernelMetadata->addOperand(kernelMDNode);
    484 }
    485 
    486 void CodeGenFunction::StartFunction(GlobalDecl GD,
    487                                     QualType RetTy,
    488                                     llvm::Function *Fn,
    489                                     const CGFunctionInfo &FnInfo,
    490                                     const FunctionArgList &Args,
    491                                     SourceLocation StartLoc) {
    492   const Decl *D = GD.getDecl();
    493 
    494   DidCallStackSave = false;
    495   CurCodeDecl = D;
    496   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
    497   FnRetTy = RetTy;
    498   CurFn = Fn;
    499   CurFnInfo = &FnInfo;
    500   assert(CurFn->isDeclaration() && "Function already has body?");
    501 
    502   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
    503     SanOpts = &SanitizerOptions::Disabled;
    504     SanitizePerformTypeCheck = false;
    505   }
    506 
    507   // Pass inline keyword to optimizer if it appears explicitly on any
    508   // declaration.
    509   if (!CGM.getCodeGenOpts().NoInline)
    510     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    511       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
    512              RE = FD->redecls_end(); RI != RE; ++RI)
    513         if (RI->isInlineSpecified()) {
    514           Fn->addFnAttr(llvm::Attribute::InlineHint);
    515           break;
    516         }
    517 
    518   if (getLangOpts().OpenCL) {
    519     // Add metadata for a kernel function.
    520     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    521       EmitOpenCLKernelMetadata(FD, Fn);
    522   }
    523 
    524   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    525 
    526   // Create a marker to make it easy to insert allocas into the entryblock
    527   // later.  Don't create this with the builder, because we don't want it
    528   // folded.
    529   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    530   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    531   if (Builder.isNamePreserving())
    532     AllocaInsertPt->setName("allocapt");
    533 
    534   ReturnBlock = getJumpDestInCurrentScope("return");
    535 
    536   Builder.SetInsertPoint(EntryBB);
    537 
    538   // Emit subprogram debug descriptor.
    539   if (CGDebugInfo *DI = getDebugInfo()) {
    540     SmallVector<QualType, 16> ArgTypes;
    541     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    542 	 i != e; ++i) {
    543       ArgTypes.push_back((*i)->getType());
    544     }
    545 
    546     QualType FnType =
    547       getContext().getFunctionType(RetTy, ArgTypes,
    548                                    FunctionProtoType::ExtProtoInfo());
    549 
    550     DI->setLocation(StartLoc);
    551     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
    552   }
    553 
    554   if (ShouldInstrumentFunction())
    555     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    556 
    557   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    558     EmitMCountInstrumentation();
    559 
    560   if (RetTy->isVoidType()) {
    561     // Void type; nothing to return.
    562     ReturnValue = 0;
    563   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    564              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    565     // Indirect aggregate return; emit returned value directly into sret slot.
    566     // This reduces code size, and affects correctness in C++.
    567     ReturnValue = CurFn->arg_begin();
    568   } else {
    569     ReturnValue = CreateIRTemp(RetTy, "retval");
    570 
    571     // Tell the epilog emitter to autorelease the result.  We do this
    572     // now so that various specialized functions can suppress it
    573     // during their IR-generation.
    574     if (getLangOpts().ObjCAutoRefCount &&
    575         !CurFnInfo->isReturnsRetained() &&
    576         RetTy->isObjCRetainableType())
    577       AutoreleaseResult = true;
    578   }
    579 
    580   EmitStartEHSpec(CurCodeDecl);
    581 
    582   PrologueCleanupDepth = EHStack.stable_begin();
    583   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    584 
    585   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    586     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    587     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    588     if (MD->getParent()->isLambda() &&
    589         MD->getOverloadedOperator() == OO_Call) {
    590       // We're in a lambda; figure out the captures.
    591       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    592                                         LambdaThisCaptureField);
    593       if (LambdaThisCaptureField) {
    594         // If this lambda captures this, load it.
    595         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
    596         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
    597       }
    598     } else {
    599       // Not in a lambda; just use 'this' from the method.
    600       // FIXME: Should we generate a new load for each use of 'this'?  The
    601       // fast register allocator would be happier...
    602       CXXThisValue = CXXABIThisValue;
    603     }
    604   }
    605 
    606   // If any of the arguments have a variably modified type, make sure to
    607   // emit the type size.
    608   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    609        i != e; ++i) {
    610     const VarDecl *VD = *i;
    611 
    612     // Dig out the type as written from ParmVarDecls; it's unclear whether
    613     // the standard (C99 6.9.1p10) requires this, but we're following the
    614     // precedent set by gcc.
    615     QualType Ty;
    616     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
    617       Ty = PVD->getOriginalType();
    618     else
    619       Ty = VD->getType();
    620 
    621     if (Ty->isVariablyModifiedType())
    622       EmitVariablyModifiedType(Ty);
    623   }
    624   // Emit a location at the end of the prologue.
    625   if (CGDebugInfo *DI = getDebugInfo())
    626     DI->EmitLocation(Builder, StartLoc);
    627 }
    628 
    629 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
    630   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
    631   assert(FD->getBody());
    632   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
    633     EmitCompoundStmtWithoutScope(*S);
    634   else
    635     EmitStmt(FD->getBody());
    636 }
    637 
    638 /// Tries to mark the given function nounwind based on the
    639 /// non-existence of any throwing calls within it.  We believe this is
    640 /// lightweight enough to do at -O0.
    641 static void TryMarkNoThrow(llvm::Function *F) {
    642   // LLVM treats 'nounwind' on a function as part of the type, so we
    643   // can't do this on functions that can be overwritten.
    644   if (F->mayBeOverridden()) return;
    645 
    646   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    647     for (llvm::BasicBlock::iterator
    648            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    649       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    650         if (!Call->doesNotThrow())
    651           return;
    652       } else if (isa<llvm::ResumeInst>(&*BI)) {
    653         return;
    654       }
    655   F->setDoesNotThrow();
    656 }
    657 
    658 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    659                                    const CGFunctionInfo &FnInfo) {
    660   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    661 
    662   // Check if we should generate debug info for this function.
    663   if (!FD->hasAttr<NoDebugAttr>())
    664     maybeInitializeDebugInfo();
    665 
    666   FunctionArgList Args;
    667   QualType ResTy = FD->getResultType();
    668 
    669   CurGD = GD;
    670   const CXXMethodDecl *MD;
    671   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
    672     if (CGM.getCXXABI().HasThisReturn(GD))
    673       ResTy = MD->getThisType(getContext());
    674     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
    675   }
    676 
    677   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    678     Args.push_back(FD->getParamDecl(i));
    679 
    680   SourceRange BodyRange;
    681   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    682   CurEHLocation = BodyRange.getEnd();
    683 
    684   // Emit the standard function prologue.
    685   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
    686 
    687   // Generate the body of the function.
    688   if (isa<CXXDestructorDecl>(FD))
    689     EmitDestructorBody(Args);
    690   else if (isa<CXXConstructorDecl>(FD))
    691     EmitConstructorBody(Args);
    692   else if (getLangOpts().CUDA &&
    693            !CGM.getCodeGenOpts().CUDAIsDevice &&
    694            FD->hasAttr<CUDAGlobalAttr>())
    695     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    696   else if (isa<CXXConversionDecl>(FD) &&
    697            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    698     // The lambda conversion to block pointer is special; the semantics can't be
    699     // expressed in the AST, so IRGen needs to special-case it.
    700     EmitLambdaToBlockPointerBody(Args);
    701   } else if (isa<CXXMethodDecl>(FD) &&
    702              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    703     // The lambda "__invoke" function is special, because it forwards or
    704     // clones the body of the function call operator (but is actually static).
    705     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    706   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
    707              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
    708     // Implicit copy-assignment gets the same special treatment as implicit
    709     // copy-constructors.
    710     emitImplicitAssignmentOperatorBody(Args);
    711   }
    712   else
    713     EmitFunctionBody(Args);
    714 
    715   // C++11 [stmt.return]p2:
    716   //   Flowing off the end of a function [...] results in undefined behavior in
    717   //   a value-returning function.
    718   // C11 6.9.1p12:
    719   //   If the '}' that terminates a function is reached, and the value of the
    720   //   function call is used by the caller, the behavior is undefined.
    721   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
    722       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
    723     if (SanOpts->Return)
    724       EmitCheck(Builder.getFalse(), "missing_return",
    725                 EmitCheckSourceLocation(FD->getLocation()),
    726                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
    727     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    728       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
    729     Builder.CreateUnreachable();
    730     Builder.ClearInsertionPoint();
    731   }
    732 
    733   // Emit the standard function epilogue.
    734   FinishFunction(BodyRange.getEnd());
    735 
    736   // If we haven't marked the function nothrow through other means, do
    737   // a quick pass now to see if we can.
    738   if (!CurFn->doesNotThrow())
    739     TryMarkNoThrow(CurFn);
    740 }
    741 
    742 /// ContainsLabel - Return true if the statement contains a label in it.  If
    743 /// this statement is not executed normally, it not containing a label means
    744 /// that we can just remove the code.
    745 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    746   // Null statement, not a label!
    747   if (S == 0) return false;
    748 
    749   // If this is a label, we have to emit the code, consider something like:
    750   // if (0) {  ...  foo:  bar(); }  goto foo;
    751   //
    752   // TODO: If anyone cared, we could track __label__'s, since we know that you
    753   // can't jump to one from outside their declared region.
    754   if (isa<LabelStmt>(S))
    755     return true;
    756 
    757   // If this is a case/default statement, and we haven't seen a switch, we have
    758   // to emit the code.
    759   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    760     return true;
    761 
    762   // If this is a switch statement, we want to ignore cases below it.
    763   if (isa<SwitchStmt>(S))
    764     IgnoreCaseStmts = true;
    765 
    766   // Scan subexpressions for verboten labels.
    767   for (Stmt::const_child_range I = S->children(); I; ++I)
    768     if (ContainsLabel(*I, IgnoreCaseStmts))
    769       return true;
    770 
    771   return false;
    772 }
    773 
    774 /// containsBreak - Return true if the statement contains a break out of it.
    775 /// If the statement (recursively) contains a switch or loop with a break
    776 /// inside of it, this is fine.
    777 bool CodeGenFunction::containsBreak(const Stmt *S) {
    778   // Null statement, not a label!
    779   if (S == 0) return false;
    780 
    781   // If this is a switch or loop that defines its own break scope, then we can
    782   // include it and anything inside of it.
    783   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    784       isa<ForStmt>(S))
    785     return false;
    786 
    787   if (isa<BreakStmt>(S))
    788     return true;
    789 
    790   // Scan subexpressions for verboten breaks.
    791   for (Stmt::const_child_range I = S->children(); I; ++I)
    792     if (containsBreak(*I))
    793       return true;
    794 
    795   return false;
    796 }
    797 
    798 
    799 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    800 /// to a constant, or if it does but contains a label, return false.  If it
    801 /// constant folds return true and set the boolean result in Result.
    802 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    803                                                    bool &ResultBool) {
    804   llvm::APSInt ResultInt;
    805   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    806     return false;
    807 
    808   ResultBool = ResultInt.getBoolValue();
    809   return true;
    810 }
    811 
    812 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    813 /// to a constant, or if it does but contains a label, return false.  If it
    814 /// constant folds return true and set the folded value.
    815 bool CodeGenFunction::
    816 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
    817   // FIXME: Rename and handle conversion of other evaluatable things
    818   // to bool.
    819   llvm::APSInt Int;
    820   if (!Cond->EvaluateAsInt(Int, getContext()))
    821     return false;  // Not foldable, not integer or not fully evaluatable.
    822 
    823   if (CodeGenFunction::ContainsLabel(Cond))
    824     return false;  // Contains a label.
    825 
    826   ResultInt = Int;
    827   return true;
    828 }
    829 
    830 
    831 
    832 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    833 /// statement) to the specified blocks.  Based on the condition, this might try
    834 /// to simplify the codegen of the conditional based on the branch.
    835 ///
    836 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    837                                            llvm::BasicBlock *TrueBlock,
    838                                            llvm::BasicBlock *FalseBlock) {
    839   Cond = Cond->IgnoreParens();
    840 
    841   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    842     // Handle X && Y in a condition.
    843     if (CondBOp->getOpcode() == BO_LAnd) {
    844       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    845       // folded if the case was simple enough.
    846       bool ConstantBool = false;
    847       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    848           ConstantBool) {
    849         // br(1 && X) -> br(X).
    850         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    851       }
    852 
    853       // If we have "X && 1", simplify the code to use an uncond branch.
    854       // "X && 0" would have been constant folded to 0.
    855       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    856           ConstantBool) {
    857         // br(X && 1) -> br(X).
    858         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    859       }
    860 
    861       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    862       // want to jump to the FalseBlock.
    863       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    864 
    865       ConditionalEvaluation eval(*this);
    866       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
    867       EmitBlock(LHSTrue);
    868 
    869       // Any temporaries created here are conditional.
    870       eval.begin(*this);
    871       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    872       eval.end(*this);
    873 
    874       return;
    875     }
    876 
    877     if (CondBOp->getOpcode() == BO_LOr) {
    878       // If we have "0 || X", simplify the code.  "1 || X" would have constant
    879       // folded if the case was simple enough.
    880       bool ConstantBool = false;
    881       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    882           !ConstantBool) {
    883         // br(0 || X) -> br(X).
    884         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    885       }
    886 
    887       // If we have "X || 0", simplify the code to use an uncond branch.
    888       // "X || 1" would have been constant folded to 1.
    889       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    890           !ConstantBool) {
    891         // br(X || 0) -> br(X).
    892         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    893       }
    894 
    895       // Emit the LHS as a conditional.  If the LHS conditional is true, we
    896       // want to jump to the TrueBlock.
    897       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
    898 
    899       ConditionalEvaluation eval(*this);
    900       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
    901       EmitBlock(LHSFalse);
    902 
    903       // Any temporaries created here are conditional.
    904       eval.begin(*this);
    905       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    906       eval.end(*this);
    907 
    908       return;
    909     }
    910   }
    911 
    912   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    913     // br(!x, t, f) -> br(x, f, t)
    914     if (CondUOp->getOpcode() == UO_LNot)
    915       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
    916   }
    917 
    918   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    919     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    920     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    921     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
    922 
    923     ConditionalEvaluation cond(*this);
    924     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
    925 
    926     cond.begin(*this);
    927     EmitBlock(LHSBlock);
    928     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
    929     cond.end(*this);
    930 
    931     cond.begin(*this);
    932     EmitBlock(RHSBlock);
    933     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
    934     cond.end(*this);
    935 
    936     return;
    937   }
    938 
    939   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
    940     // Conditional operator handling can give us a throw expression as a
    941     // condition for a case like:
    942     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
    943     // Fold this to:
    944     //   br(c, throw x, br(y, t, f))
    945     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
    946     return;
    947   }
    948 
    949   // Emit the code with the fully general case.
    950   llvm::Value *CondV = EvaluateExprAsBool(Cond);
    951   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
    952 }
    953 
    954 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    955 /// specified stmt yet.
    956 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
    957                                        bool OmitOnError) {
    958   CGM.ErrorUnsupported(S, Type, OmitOnError);
    959 }
    960 
    961 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
    962 /// variable-length array whose elements have a non-zero bit-pattern.
    963 ///
    964 /// \param baseType the inner-most element type of the array
    965 /// \param src - a char* pointing to the bit-pattern for a single
    966 /// base element of the array
    967 /// \param sizeInChars - the total size of the VLA, in chars
    968 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
    969                                llvm::Value *dest, llvm::Value *src,
    970                                llvm::Value *sizeInChars) {
    971   std::pair<CharUnits,CharUnits> baseSizeAndAlign
    972     = CGF.getContext().getTypeInfoInChars(baseType);
    973 
    974   CGBuilderTy &Builder = CGF.Builder;
    975 
    976   llvm::Value *baseSizeInChars
    977     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
    978 
    979   llvm::Type *i8p = Builder.getInt8PtrTy();
    980 
    981   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
    982   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
    983 
    984   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
    985   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
    986   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
    987 
    988   // Make a loop over the VLA.  C99 guarantees that the VLA element
    989   // count must be nonzero.
    990   CGF.EmitBlock(loopBB);
    991 
    992   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
    993   cur->addIncoming(begin, originBB);
    994 
    995   // memcpy the individual element bit-pattern.
    996   Builder.CreateMemCpy(cur, src, baseSizeInChars,
    997                        baseSizeAndAlign.second.getQuantity(),
    998                        /*volatile*/ false);
    999 
   1000   // Go to the next element.
   1001   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
   1002 
   1003   // Leave if that's the end of the VLA.
   1004   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
   1005   Builder.CreateCondBr(done, contBB, loopBB);
   1006   cur->addIncoming(next, loopBB);
   1007 
   1008   CGF.EmitBlock(contBB);
   1009 }
   1010 
   1011 void
   1012 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
   1013   // Ignore empty classes in C++.
   1014   if (getLangOpts().CPlusPlus) {
   1015     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1016       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
   1017         return;
   1018     }
   1019   }
   1020 
   1021   // Cast the dest ptr to the appropriate i8 pointer type.
   1022   unsigned DestAS =
   1023     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
   1024   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
   1025   if (DestPtr->getType() != BP)
   1026     DestPtr = Builder.CreateBitCast(DestPtr, BP);
   1027 
   1028   // Get size and alignment info for this aggregate.
   1029   std::pair<CharUnits, CharUnits> TypeInfo =
   1030     getContext().getTypeInfoInChars(Ty);
   1031   CharUnits Size = TypeInfo.first;
   1032   CharUnits Align = TypeInfo.second;
   1033 
   1034   llvm::Value *SizeVal;
   1035   const VariableArrayType *vla;
   1036 
   1037   // Don't bother emitting a zero-byte memset.
   1038   if (Size.isZero()) {
   1039     // But note that getTypeInfo returns 0 for a VLA.
   1040     if (const VariableArrayType *vlaType =
   1041           dyn_cast_or_null<VariableArrayType>(
   1042                                           getContext().getAsArrayType(Ty))) {
   1043       QualType eltType;
   1044       llvm::Value *numElts;
   1045       llvm::tie(numElts, eltType) = getVLASize(vlaType);
   1046 
   1047       SizeVal = numElts;
   1048       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
   1049       if (!eltSize.isOne())
   1050         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
   1051       vla = vlaType;
   1052     } else {
   1053       return;
   1054     }
   1055   } else {
   1056     SizeVal = CGM.getSize(Size);
   1057     vla = 0;
   1058   }
   1059 
   1060   // If the type contains a pointer to data member we can't memset it to zero.
   1061   // Instead, create a null constant and copy it to the destination.
   1062   // TODO: there are other patterns besides zero that we can usefully memset,
   1063   // like -1, which happens to be the pattern used by member-pointers.
   1064   if (!CGM.getTypes().isZeroInitializable(Ty)) {
   1065     // For a VLA, emit a single element, then splat that over the VLA.
   1066     if (vla) Ty = getContext().getBaseElementType(vla);
   1067 
   1068     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
   1069 
   1070     llvm::GlobalVariable *NullVariable =
   1071       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
   1072                                /*isConstant=*/true,
   1073                                llvm::GlobalVariable::PrivateLinkage,
   1074                                NullConstant, Twine());
   1075     llvm::Value *SrcPtr =
   1076       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
   1077 
   1078     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
   1079 
   1080     // Get and call the appropriate llvm.memcpy overload.
   1081     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
   1082     return;
   1083   }
   1084 
   1085   // Otherwise, just memset the whole thing to zero.  This is legal
   1086   // because in LLVM, all default initializers (other than the ones we just
   1087   // handled above) are guaranteed to have a bit pattern of all zeros.
   1088   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
   1089                        Align.getQuantity(), false);
   1090 }
   1091 
   1092 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
   1093   // Make sure that there is a block for the indirect goto.
   1094   if (IndirectBranch == 0)
   1095     GetIndirectGotoBlock();
   1096 
   1097   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
   1098 
   1099   // Make sure the indirect branch includes all of the address-taken blocks.
   1100   IndirectBranch->addDestination(BB);
   1101   return llvm::BlockAddress::get(CurFn, BB);
   1102 }
   1103 
   1104 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
   1105   // If we already made the indirect branch for indirect goto, return its block.
   1106   if (IndirectBranch) return IndirectBranch->getParent();
   1107 
   1108   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
   1109 
   1110   // Create the PHI node that indirect gotos will add entries to.
   1111   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
   1112                                               "indirect.goto.dest");
   1113 
   1114   // Create the indirect branch instruction.
   1115   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
   1116   return IndirectBranch->getParent();
   1117 }
   1118 
   1119 /// Computes the length of an array in elements, as well as the base
   1120 /// element type and a properly-typed first element pointer.
   1121 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
   1122                                               QualType &baseType,
   1123                                               llvm::Value *&addr) {
   1124   const ArrayType *arrayType = origArrayType;
   1125 
   1126   // If it's a VLA, we have to load the stored size.  Note that
   1127   // this is the size of the VLA in bytes, not its size in elements.
   1128   llvm::Value *numVLAElements = 0;
   1129   if (isa<VariableArrayType>(arrayType)) {
   1130     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
   1131 
   1132     // Walk into all VLAs.  This doesn't require changes to addr,
   1133     // which has type T* where T is the first non-VLA element type.
   1134     do {
   1135       QualType elementType = arrayType->getElementType();
   1136       arrayType = getContext().getAsArrayType(elementType);
   1137 
   1138       // If we only have VLA components, 'addr' requires no adjustment.
   1139       if (!arrayType) {
   1140         baseType = elementType;
   1141         return numVLAElements;
   1142       }
   1143     } while (isa<VariableArrayType>(arrayType));
   1144 
   1145     // We get out here only if we find a constant array type
   1146     // inside the VLA.
   1147   }
   1148 
   1149   // We have some number of constant-length arrays, so addr should
   1150   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
   1151   // down to the first element of addr.
   1152   SmallVector<llvm::Value*, 8> gepIndices;
   1153 
   1154   // GEP down to the array type.
   1155   llvm::ConstantInt *zero = Builder.getInt32(0);
   1156   gepIndices.push_back(zero);
   1157 
   1158   uint64_t countFromCLAs = 1;
   1159   QualType eltType;
   1160 
   1161   llvm::ArrayType *llvmArrayType =
   1162     dyn_cast<llvm::ArrayType>(
   1163       cast<llvm::PointerType>(addr->getType())->getElementType());
   1164   while (llvmArrayType) {
   1165     assert(isa<ConstantArrayType>(arrayType));
   1166     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
   1167              == llvmArrayType->getNumElements());
   1168 
   1169     gepIndices.push_back(zero);
   1170     countFromCLAs *= llvmArrayType->getNumElements();
   1171     eltType = arrayType->getElementType();
   1172 
   1173     llvmArrayType =
   1174       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
   1175     arrayType = getContext().getAsArrayType(arrayType->getElementType());
   1176     assert((!llvmArrayType || arrayType) &&
   1177            "LLVM and Clang types are out-of-synch");
   1178   }
   1179 
   1180   if (arrayType) {
   1181     // From this point onwards, the Clang array type has been emitted
   1182     // as some other type (probably a packed struct). Compute the array
   1183     // size, and just emit the 'begin' expression as a bitcast.
   1184     while (arrayType) {
   1185       countFromCLAs *=
   1186           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
   1187       eltType = arrayType->getElementType();
   1188       arrayType = getContext().getAsArrayType(eltType);
   1189     }
   1190 
   1191     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
   1192     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
   1193     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
   1194   } else {
   1195     // Create the actual GEP.
   1196     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
   1197   }
   1198 
   1199   baseType = eltType;
   1200 
   1201   llvm::Value *numElements
   1202     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
   1203 
   1204   // If we had any VLA dimensions, factor them in.
   1205   if (numVLAElements)
   1206     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
   1207 
   1208   return numElements;
   1209 }
   1210 
   1211 std::pair<llvm::Value*, QualType>
   1212 CodeGenFunction::getVLASize(QualType type) {
   1213   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
   1214   assert(vla && "type was not a variable array type!");
   1215   return getVLASize(vla);
   1216 }
   1217 
   1218 std::pair<llvm::Value*, QualType>
   1219 CodeGenFunction::getVLASize(const VariableArrayType *type) {
   1220   // The number of elements so far; always size_t.
   1221   llvm::Value *numElements = 0;
   1222 
   1223   QualType elementType;
   1224   do {
   1225     elementType = type->getElementType();
   1226     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
   1227     assert(vlaSize && "no size for VLA!");
   1228     assert(vlaSize->getType() == SizeTy);
   1229 
   1230     if (!numElements) {
   1231       numElements = vlaSize;
   1232     } else {
   1233       // It's undefined behavior if this wraps around, so mark it that way.
   1234       // FIXME: Teach -fcatch-undefined-behavior to trap this.
   1235       numElements = Builder.CreateNUWMul(numElements, vlaSize);
   1236     }
   1237   } while ((type = getContext().getAsVariableArrayType(elementType)));
   1238 
   1239   return std::pair<llvm::Value*,QualType>(numElements, elementType);
   1240 }
   1241 
   1242 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
   1243   assert(type->isVariablyModifiedType() &&
   1244          "Must pass variably modified type to EmitVLASizes!");
   1245 
   1246   EnsureInsertPoint();
   1247 
   1248   // We're going to walk down into the type and look for VLA
   1249   // expressions.
   1250   do {
   1251     assert(type->isVariablyModifiedType());
   1252 
   1253     const Type *ty = type.getTypePtr();
   1254     switch (ty->getTypeClass()) {
   1255 
   1256 #define TYPE(Class, Base)
   1257 #define ABSTRACT_TYPE(Class, Base)
   1258 #define NON_CANONICAL_TYPE(Class, Base)
   1259 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   1261 #include "clang/AST/TypeNodes.def"
   1262       llvm_unreachable("unexpected dependent type!");
   1263 
   1264     // These types are never variably-modified.
   1265     case Type::Builtin:
   1266     case Type::Complex:
   1267     case Type::Vector:
   1268     case Type::ExtVector:
   1269     case Type::Record:
   1270     case Type::Enum:
   1271     case Type::Elaborated:
   1272     case Type::TemplateSpecialization:
   1273     case Type::ObjCObject:
   1274     case Type::ObjCInterface:
   1275     case Type::ObjCObjectPointer:
   1276       llvm_unreachable("type class is never variably-modified!");
   1277 
   1278     case Type::Decayed:
   1279       type = cast<DecayedType>(ty)->getPointeeType();
   1280       break;
   1281 
   1282     case Type::Pointer:
   1283       type = cast<PointerType>(ty)->getPointeeType();
   1284       break;
   1285 
   1286     case Type::BlockPointer:
   1287       type = cast<BlockPointerType>(ty)->getPointeeType();
   1288       break;
   1289 
   1290     case Type::LValueReference:
   1291     case Type::RValueReference:
   1292       type = cast<ReferenceType>(ty)->getPointeeType();
   1293       break;
   1294 
   1295     case Type::MemberPointer:
   1296       type = cast<MemberPointerType>(ty)->getPointeeType();
   1297       break;
   1298 
   1299     case Type::ConstantArray:
   1300     case Type::IncompleteArray:
   1301       // Losing element qualification here is fine.
   1302       type = cast<ArrayType>(ty)->getElementType();
   1303       break;
   1304 
   1305     case Type::VariableArray: {
   1306       // Losing element qualification here is fine.
   1307       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1308 
   1309       // Unknown size indication requires no size computation.
   1310       // Otherwise, evaluate and record it.
   1311       if (const Expr *size = vat->getSizeExpr()) {
   1312         // It's possible that we might have emitted this already,
   1313         // e.g. with a typedef and a pointer to it.
   1314         llvm::Value *&entry = VLASizeMap[size];
   1315         if (!entry) {
   1316           llvm::Value *Size = EmitScalarExpr(size);
   1317 
   1318           // C11 6.7.6.2p5:
   1319           //   If the size is an expression that is not an integer constant
   1320           //   expression [...] each time it is evaluated it shall have a value
   1321           //   greater than zero.
   1322           if (SanOpts->VLABound &&
   1323               size->getType()->isSignedIntegerType()) {
   1324             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
   1325             llvm::Constant *StaticArgs[] = {
   1326               EmitCheckSourceLocation(size->getLocStart()),
   1327               EmitCheckTypeDescriptor(size->getType())
   1328             };
   1329             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
   1330                       "vla_bound_not_positive", StaticArgs, Size,
   1331                       CRK_Recoverable);
   1332           }
   1333 
   1334           // Always zexting here would be wrong if it weren't
   1335           // undefined behavior to have a negative bound.
   1336           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
   1337         }
   1338       }
   1339       type = vat->getElementType();
   1340       break;
   1341     }
   1342 
   1343     case Type::FunctionProto:
   1344     case Type::FunctionNoProto:
   1345       type = cast<FunctionType>(ty)->getResultType();
   1346       break;
   1347 
   1348     case Type::Paren:
   1349     case Type::TypeOf:
   1350     case Type::UnaryTransform:
   1351     case Type::Attributed:
   1352     case Type::SubstTemplateTypeParm:
   1353     case Type::PackExpansion:
   1354       // Keep walking after single level desugaring.
   1355       type = type.getSingleStepDesugaredType(getContext());
   1356       break;
   1357 
   1358     case Type::Typedef:
   1359     case Type::Decltype:
   1360     case Type::Auto:
   1361       // Stop walking: nothing to do.
   1362       return;
   1363 
   1364     case Type::TypeOfExpr:
   1365       // Stop walking: emit typeof expression.
   1366       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1367       return;
   1368 
   1369     case Type::Atomic:
   1370       type = cast<AtomicType>(ty)->getValueType();
   1371       break;
   1372     }
   1373   } while (type->isVariablyModifiedType());
   1374 }
   1375 
   1376 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1377   if (getContext().getBuiltinVaListType()->isArrayType())
   1378     return EmitScalarExpr(E);
   1379   return EmitLValue(E).getAddress();
   1380 }
   1381 
   1382 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1383                                               llvm::Constant *Init) {
   1384   assert (Init && "Invalid DeclRefExpr initializer!");
   1385   if (CGDebugInfo *Dbg = getDebugInfo())
   1386     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
   1387       Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1388 }
   1389 
   1390 CodeGenFunction::PeepholeProtection
   1391 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1392   // At the moment, the only aggressive peephole we do in IR gen
   1393   // is trunc(zext) folding, but if we add more, we can easily
   1394   // extend this protection.
   1395 
   1396   if (!rvalue.isScalar()) return PeepholeProtection();
   1397   llvm::Value *value = rvalue.getScalarVal();
   1398   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1399 
   1400   // Just make an extra bitcast.
   1401   assert(HaveInsertPoint());
   1402   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1403                                                   Builder.GetInsertBlock());
   1404 
   1405   PeepholeProtection protection;
   1406   protection.Inst = inst;
   1407   return protection;
   1408 }
   1409 
   1410 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1411   if (!protection.Inst) return;
   1412 
   1413   // In theory, we could try to duplicate the peepholes now, but whatever.
   1414   protection.Inst->eraseFromParent();
   1415 }
   1416 
   1417 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1418                                                  llvm::Value *AnnotatedVal,
   1419                                                  StringRef AnnotationStr,
   1420                                                  SourceLocation Location) {
   1421   llvm::Value *Args[4] = {
   1422     AnnotatedVal,
   1423     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1424     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1425     CGM.EmitAnnotationLineNo(Location)
   1426   };
   1427   return Builder.CreateCall(AnnotationFn, Args);
   1428 }
   1429 
   1430 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1431   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1432   // FIXME We create a new bitcast for every annotation because that's what
   1433   // llvm-gcc was doing.
   1434   for (specific_attr_iterator<AnnotateAttr>
   1435        ai = D->specific_attr_begin<AnnotateAttr>(),
   1436        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
   1437     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1438                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1439                        (*ai)->getAnnotation(), D->getLocation());
   1440 }
   1441 
   1442 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1443                                                    llvm::Value *V) {
   1444   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1445   llvm::Type *VTy = V->getType();
   1446   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1447                                     CGM.Int8PtrTy);
   1448 
   1449   for (specific_attr_iterator<AnnotateAttr>
   1450        ai = D->specific_attr_begin<AnnotateAttr>(),
   1451        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
   1452     // FIXME Always emit the cast inst so we can differentiate between
   1453     // annotation on the first field of a struct and annotation on the struct
   1454     // itself.
   1455     if (VTy != CGM.Int8PtrTy)
   1456       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1457     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
   1458     V = Builder.CreateBitCast(V, VTy);
   1459   }
   1460 
   1461   return V;
   1462 }
   1463 
   1464 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
   1465