Home | History | Annotate | Download | only in ARM
      1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// ARM target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "armtti"
     18 #include "ARM.h"
     19 #include "ARMTargetMachine.h"
     20 #include "llvm/Analysis/TargetTransformInfo.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/TargetLowering.h"
     23 #include "llvm/Target/CostTable.h"
     24 using namespace llvm;
     25 
     26 // Declare the pass initialization routine locally as target-specific passes
     27 // don't havve a target-wide initialization entry point, and so we rely on the
     28 // pass constructor initialization.
     29 namespace llvm {
     30 void initializeARMTTIPass(PassRegistry &);
     31 }
     32 
     33 namespace {
     34 
     35 class ARMTTI : public ImmutablePass, public TargetTransformInfo {
     36   const ARMBaseTargetMachine *TM;
     37   const ARMSubtarget *ST;
     38   const ARMTargetLowering *TLI;
     39 
     40   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
     41   /// are set if the result needs to be inserted and/or extracted from vectors.
     42   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
     43 
     44 public:
     45   ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
     46     llvm_unreachable("This pass cannot be directly constructed");
     47   }
     48 
     49   ARMTTI(const ARMBaseTargetMachine *TM)
     50       : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
     51         TLI(TM->getTargetLowering()) {
     52     initializeARMTTIPass(*PassRegistry::getPassRegistry());
     53   }
     54 
     55   virtual void initializePass() {
     56     pushTTIStack(this);
     57   }
     58 
     59   virtual void finalizePass() {
     60     popTTIStack();
     61   }
     62 
     63   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     64     TargetTransformInfo::getAnalysisUsage(AU);
     65   }
     66 
     67   /// Pass identification.
     68   static char ID;
     69 
     70   /// Provide necessary pointer adjustments for the two base classes.
     71   virtual void *getAdjustedAnalysisPointer(const void *ID) {
     72     if (ID == &TargetTransformInfo::ID)
     73       return (TargetTransformInfo*)this;
     74     return this;
     75   }
     76 
     77   /// \name Scalar TTI Implementations
     78   /// @{
     79 
     80   virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
     81 
     82   /// @}
     83 
     84 
     85   /// \name Vector TTI Implementations
     86   /// @{
     87 
     88   unsigned getNumberOfRegisters(bool Vector) const {
     89     if (Vector) {
     90       if (ST->hasNEON())
     91         return 16;
     92       return 0;
     93     }
     94 
     95     if (ST->isThumb1Only())
     96       return 8;
     97     return 16;
     98   }
     99 
    100   unsigned getRegisterBitWidth(bool Vector) const {
    101     if (Vector) {
    102       if (ST->hasNEON())
    103         return 128;
    104       return 0;
    105     }
    106 
    107     return 32;
    108   }
    109 
    110   unsigned getMaximumUnrollFactor() const {
    111     // These are out of order CPUs:
    112     if (ST->isCortexA15() || ST->isSwift())
    113       return 2;
    114     return 1;
    115   }
    116 
    117   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
    118                           int Index, Type *SubTp) const;
    119 
    120   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
    121                                       Type *Src) const;
    122 
    123   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
    124 
    125   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
    126 
    127   unsigned getAddressComputationCost(Type *Val, bool IsComplex) const;
    128 
    129   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    130                                   OperandValueKind Op1Info = OK_AnyValue,
    131                                   OperandValueKind Op2Info = OK_AnyValue) const;
    132   /// @}
    133 };
    134 
    135 } // end anonymous namespace
    136 
    137 INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
    138                    "ARM Target Transform Info", true, true, false)
    139 char ARMTTI::ID = 0;
    140 
    141 ImmutablePass *
    142 llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
    143   return new ARMTTI(TM);
    144 }
    145 
    146 
    147 unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
    148   assert(Ty->isIntegerTy());
    149 
    150   unsigned Bits = Ty->getPrimitiveSizeInBits();
    151   if (Bits == 0 || Bits > 32)
    152     return 4;
    153 
    154   int32_t SImmVal = Imm.getSExtValue();
    155   uint32_t ZImmVal = Imm.getZExtValue();
    156   if (!ST->isThumb()) {
    157     if ((SImmVal >= 0 && SImmVal < 65536) ||
    158         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
    159         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
    160       return 1;
    161     return ST->hasV6T2Ops() ? 2 : 3;
    162   } else if (ST->isThumb2()) {
    163     if ((SImmVal >= 0 && SImmVal < 65536) ||
    164         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
    165         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
    166       return 1;
    167     return ST->hasV6T2Ops() ? 2 : 3;
    168   } else /*Thumb1*/ {
    169     if (SImmVal >= 0 && SImmVal < 256)
    170       return 1;
    171     if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
    172       return 2;
    173     // Load from constantpool.
    174     return 3;
    175   }
    176   return 2;
    177 }
    178 
    179 unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
    180                                     Type *Src) const {
    181   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    182   assert(ISD && "Invalid opcode");
    183 
    184   // Single to/from double precision conversions.
    185   static const CostTblEntry<MVT> NEONFltDblTbl[] = {
    186     // Vector fptrunc/fpext conversions.
    187     { ISD::FP_ROUND,   MVT::v2f64, 2 },
    188     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
    189     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
    190   };
    191 
    192   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
    193                                           ISD == ISD::FP_EXTEND)) {
    194     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
    195     int Idx = CostTableLookup<MVT>(NEONFltDblTbl, array_lengthof(NEONFltDblTbl),
    196                                 ISD, LT.second);
    197     if (Idx != -1)
    198       return LT.first * NEONFltDblTbl[Idx].Cost;
    199   }
    200 
    201   EVT SrcTy = TLI->getValueType(Src);
    202   EVT DstTy = TLI->getValueType(Dst);
    203 
    204   if (!SrcTy.isSimple() || !DstTy.isSimple())
    205     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    206 
    207   // Some arithmetic, load and store operations have specific instructions
    208   // to cast up/down their types automatically at no extra cost.
    209   // TODO: Get these tables to know at least what the related operations are.
    210   static const TypeConversionCostTblEntry<MVT> NEONVectorConversionTbl[] = {
    211     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    212     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    213     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    214     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    215     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
    216     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
    217 
    218     // The number of vmovl instructions for the extension.
    219     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    220     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    221     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    222     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    223     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    224     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    225     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    226     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    227     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    228     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    229 
    230     // Operations that we legalize using splitting.
    231     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
    232     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
    233 
    234     // Vector float <-> i32 conversions.
    235     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    236     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    237 
    238     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    239     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    240     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    241     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    242     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    243     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    244     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    245     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    246     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    247     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    248     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    249     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    250     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    251     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    252     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    253     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    254     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    255     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    256     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    257     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    258 
    259     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
    260     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
    261     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
    262     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
    263     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
    264     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
    265 
    266     // Vector double <-> i32 conversions.
    267     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    268     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    269 
    270     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    271     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    272     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    273     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    274     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    275     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    276 
    277     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
    278     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
    279     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
    280     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
    281     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
    282     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
    283   };
    284 
    285   if (SrcTy.isVector() && ST->hasNEON()) {
    286     int Idx = ConvertCostTableLookup<MVT>(NEONVectorConversionTbl,
    287                                 array_lengthof(NEONVectorConversionTbl),
    288                                 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
    289     if (Idx != -1)
    290       return NEONVectorConversionTbl[Idx].Cost;
    291   }
    292 
    293   // Scalar float to integer conversions.
    294   static const TypeConversionCostTblEntry<MVT> NEONFloatConversionTbl[] = {
    295     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
    296     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
    297     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
    298     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
    299     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
    300     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
    301     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
    302     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
    303     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
    304     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
    305     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
    306     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
    307     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
    308     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
    309     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
    310     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
    311     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
    312     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
    313     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
    314     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
    315   };
    316   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
    317     int Idx = ConvertCostTableLookup<MVT>(NEONFloatConversionTbl,
    318                                         array_lengthof(NEONFloatConversionTbl),
    319                                         ISD, DstTy.getSimpleVT(),
    320                                         SrcTy.getSimpleVT());
    321     if (Idx != -1)
    322         return NEONFloatConversionTbl[Idx].Cost;
    323   }
    324 
    325   // Scalar integer to float conversions.
    326   static const TypeConversionCostTblEntry<MVT> NEONIntegerConversionTbl[] = {
    327     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    328     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    329     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    330     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    331     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    332     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    333     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    334     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    335     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    336     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    337     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    338     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    339     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    340     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    341     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    342     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    343     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    344     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    345     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
    346     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
    347   };
    348 
    349   if (SrcTy.isInteger() && ST->hasNEON()) {
    350     int Idx = ConvertCostTableLookup<MVT>(NEONIntegerConversionTbl,
    351                                        array_lengthof(NEONIntegerConversionTbl),
    352                                        ISD, DstTy.getSimpleVT(),
    353                                        SrcTy.getSimpleVT());
    354     if (Idx != -1)
    355       return NEONIntegerConversionTbl[Idx].Cost;
    356   }
    357 
    358   // Scalar integer conversion costs.
    359   static const TypeConversionCostTblEntry<MVT> ARMIntegerConversionTbl[] = {
    360     // i16 -> i64 requires two dependent operations.
    361     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
    362 
    363     // Truncates on i64 are assumed to be free.
    364     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
    365     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
    366     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
    367     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
    368   };
    369 
    370   if (SrcTy.isInteger()) {
    371     int Idx =
    372       ConvertCostTableLookup<MVT>(ARMIntegerConversionTbl,
    373                                   array_lengthof(ARMIntegerConversionTbl),
    374                                   ISD, DstTy.getSimpleVT(),
    375                                   SrcTy.getSimpleVT());
    376     if (Idx != -1)
    377       return ARMIntegerConversionTbl[Idx].Cost;
    378   }
    379 
    380   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    381 }
    382 
    383 unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
    384                                     unsigned Index) const {
    385   // Penalize inserting into an D-subregister. We end up with a three times
    386   // lower estimated throughput on swift.
    387   if (ST->isSwift() &&
    388       Opcode == Instruction::InsertElement &&
    389       ValTy->isVectorTy() &&
    390       ValTy->getScalarSizeInBits() <= 32)
    391     return 3;
    392 
    393   return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
    394 }
    395 
    396 unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    397                                     Type *CondTy) const {
    398 
    399   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    400   // On NEON a a vector select gets lowered to vbsl.
    401   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
    402     // Lowering of some vector selects is currently far from perfect.
    403     static const TypeConversionCostTblEntry<MVT> NEONVectorSelectTbl[] = {
    404       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
    405       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
    406       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
    407       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
    408       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
    409       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
    410     };
    411 
    412     EVT SelCondTy = TLI->getValueType(CondTy);
    413     EVT SelValTy = TLI->getValueType(ValTy);
    414     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
    415       int Idx = ConvertCostTableLookup<MVT>(NEONVectorSelectTbl,
    416                                             array_lengthof(NEONVectorSelectTbl),
    417                                             ISD, SelCondTy.getSimpleVT(),
    418                                             SelValTy.getSimpleVT());
    419       if (Idx != -1)
    420         return NEONVectorSelectTbl[Idx].Cost;
    421     }
    422 
    423     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    424     return LT.first;
    425   }
    426 
    427   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    428 }
    429 
    430 unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
    431   // Address computations in vectorized code with non-consecutive addresses will
    432   // likely result in more instructions compared to scalar code where the
    433   // computation can more often be merged into the index mode. The resulting
    434   // extra micro-ops can significantly decrease throughput.
    435   unsigned NumVectorInstToHideOverhead = 10;
    436 
    437   if (Ty->isVectorTy() && IsComplex)
    438     return NumVectorInstToHideOverhead;
    439 
    440   // In many cases the address computation is not merged into the instruction
    441   // addressing mode.
    442   return 1;
    443 }
    444 
    445 unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    446                                 Type *SubTp) const {
    447   // We only handle costs of reverse shuffles for now.
    448   if (Kind != SK_Reverse)
    449     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    450 
    451   static const CostTblEntry<MVT> NEONShuffleTbl[] = {
    452     // Reverse shuffle cost one instruction if we are shuffling within a double
    453     // word (vrev) or two if we shuffle a quad word (vrev, vext).
    454     { ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
    455     { ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
    456     { ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
    457     { ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
    458 
    459     { ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
    460     { ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
    461     { ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
    462     { ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
    463   };
    464 
    465   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    466 
    467   int Idx = CostTableLookup<MVT>(NEONShuffleTbl, array_lengthof(NEONShuffleTbl),
    468                                  ISD::VECTOR_SHUFFLE, LT.second);
    469   if (Idx == -1)
    470     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    471 
    472   return LT.first * NEONShuffleTbl[Idx].Cost;
    473 }
    474 
    475 unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
    476                                         OperandValueKind Op2Info) const {
    477 
    478   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
    479   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
    480 
    481   const unsigned FunctionCallDivCost = 20;
    482   const unsigned ReciprocalDivCost = 10;
    483   static const CostTblEntry<MVT> CostTbl[] = {
    484     // Division.
    485     // These costs are somewhat random. Choose a cost of 20 to indicate that
    486     // vectorizing devision (added function call) is going to be very expensive.
    487     // Double registers types.
    488     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    489     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    490     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
    491     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
    492     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    493     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    494     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
    495     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
    496     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
    497     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
    498     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
    499     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
    500     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
    501     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
    502     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
    503     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
    504     // Quad register types.
    505     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    506     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    507     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
    508     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
    509     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    510     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    511     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
    512     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
    513     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    514     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    515     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
    516     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
    517     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    518     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    519     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
    520     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
    521     // Multiplication.
    522   };
    523 
    524   int Idx = -1;
    525 
    526   if (ST->hasNEON())
    527     Idx = CostTableLookup<MVT>(CostTbl, array_lengthof(CostTbl), ISDOpcode,
    528                                LT.second);
    529 
    530   if (Idx != -1)
    531     return LT.first * CostTbl[Idx].Cost;
    532 
    533 
    534   return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
    535                                                      Op2Info);
    536 }
    537 
    538