1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CaptureTracking.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include "llvm/Target/TargetLibraryInfo.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // Useful predicates 43 //===----------------------------------------------------------------------===// 44 45 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 46 /// object that never escapes from the function. 47 static bool isNonEscapingLocalObject(const Value *V) { 48 // If this is a local allocation, check to see if it escapes. 49 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 50 // Set StoreCaptures to True so that we can assume in our callers that the 51 // pointer is not the result of a load instruction. Currently 52 // PointerMayBeCaptured doesn't have any special analysis for the 53 // StoreCaptures=false case; if it did, our callers could be refined to be 54 // more precise. 55 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 56 57 // If this is an argument that corresponds to a byval or noalias argument, 58 // then it has not escaped before entering the function. Check if it escapes 59 // inside the function. 60 if (const Argument *A = dyn_cast<Argument>(V)) 61 if (A->hasByValAttr() || A->hasNoAliasAttr()) 62 // Note even if the argument is marked nocapture we still need to check 63 // for copies made inside the function. The nocapture attribute only 64 // specifies that there are no copies made that outlive the function. 65 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 66 67 return false; 68 } 69 70 /// isEscapeSource - Return true if the pointer is one which would have 71 /// been considered an escape by isNonEscapingLocalObject. 72 static bool isEscapeSource(const Value *V) { 73 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 74 return true; 75 76 // The load case works because isNonEscapingLocalObject considers all 77 // stores to be escapes (it passes true for the StoreCaptures argument 78 // to PointerMayBeCaptured). 79 if (isa<LoadInst>(V)) 80 return true; 81 82 return false; 83 } 84 85 /// getObjectSize - Return the size of the object specified by V, or 86 /// UnknownSize if unknown. 87 static uint64_t getObjectSize(const Value *V, const DataLayout &TD, 88 const TargetLibraryInfo &TLI, 89 bool RoundToAlign = false) { 90 uint64_t Size; 91 if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign)) 92 return Size; 93 return AliasAnalysis::UnknownSize; 94 } 95 96 /// isObjectSmallerThan - Return true if we can prove that the object specified 97 /// by V is smaller than Size. 98 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 99 const DataLayout &TD, 100 const TargetLibraryInfo &TLI) { 101 // Note that the meanings of the "object" are slightly different in the 102 // following contexts: 103 // c1: llvm::getObjectSize() 104 // c2: llvm.objectsize() intrinsic 105 // c3: isObjectSmallerThan() 106 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 107 // refers to the "entire object". 108 // 109 // Consider this example: 110 // char *p = (char*)malloc(100) 111 // char *q = p+80; 112 // 113 // In the context of c1 and c2, the "object" pointed by q refers to the 114 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 115 // 116 // However, in the context of c3, the "object" refers to the chunk of memory 117 // being allocated. So, the "object" has 100 bytes, and q points to the middle 118 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 119 // parameter, before the llvm::getObjectSize() is called to get the size of 120 // entire object, we should: 121 // - either rewind the pointer q to the base-address of the object in 122 // question (in this case rewind to p), or 123 // - just give up. It is up to caller to make sure the pointer is pointing 124 // to the base address the object. 125 // 126 // We go for 2nd option for simplicity. 127 if (!isIdentifiedObject(V)) 128 return false; 129 130 // This function needs to use the aligned object size because we allow 131 // reads a bit past the end given sufficient alignment. 132 uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true); 133 134 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 135 } 136 137 /// isObjectSize - Return true if we can prove that the object specified 138 /// by V has size Size. 139 static bool isObjectSize(const Value *V, uint64_t Size, 140 const DataLayout &TD, const TargetLibraryInfo &TLI) { 141 uint64_t ObjectSize = getObjectSize(V, TD, TLI); 142 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 143 } 144 145 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 146 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 147 /// Further, an IdentifiedFunctionLocal can not alias with any function 148 /// arguments other than itself, which is not neccessarily true for 149 /// IdentifiedObjects. 150 static bool isIdentifiedFunctionLocal(const Value *V) 151 { 152 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 153 } 154 155 156 //===----------------------------------------------------------------------===// 157 // GetElementPtr Instruction Decomposition and Analysis 158 //===----------------------------------------------------------------------===// 159 160 namespace { 161 enum ExtensionKind { 162 EK_NotExtended, 163 EK_SignExt, 164 EK_ZeroExt 165 }; 166 167 struct VariableGEPIndex { 168 const Value *V; 169 ExtensionKind Extension; 170 int64_t Scale; 171 172 bool operator==(const VariableGEPIndex &Other) const { 173 return V == Other.V && Extension == Other.Extension && 174 Scale == Other.Scale; 175 } 176 177 bool operator!=(const VariableGEPIndex &Other) const { 178 return !operator==(Other); 179 } 180 }; 181 } 182 183 184 /// GetLinearExpression - Analyze the specified value as a linear expression: 185 /// "A*V + B", where A and B are constant integers. Return the scale and offset 186 /// values as APInts and return V as a Value*, and return whether we looked 187 /// through any sign or zero extends. The incoming Value is known to have 188 /// IntegerType and it may already be sign or zero extended. 189 /// 190 /// Note that this looks through extends, so the high bits may not be 191 /// represented in the result. 192 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 193 ExtensionKind &Extension, 194 const DataLayout &TD, unsigned Depth) { 195 assert(V->getType()->isIntegerTy() && "Not an integer value"); 196 197 // Limit our recursion depth. 198 if (Depth == 6) { 199 Scale = 1; 200 Offset = 0; 201 return V; 202 } 203 204 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 205 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 206 switch (BOp->getOpcode()) { 207 default: break; 208 case Instruction::Or: 209 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 210 // analyze it. 211 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 212 break; 213 // FALL THROUGH. 214 case Instruction::Add: 215 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 216 TD, Depth+1); 217 Offset += RHSC->getValue(); 218 return V; 219 case Instruction::Mul: 220 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 221 TD, Depth+1); 222 Offset *= RHSC->getValue(); 223 Scale *= RHSC->getValue(); 224 return V; 225 case Instruction::Shl: 226 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 227 TD, Depth+1); 228 Offset <<= RHSC->getValue().getLimitedValue(); 229 Scale <<= RHSC->getValue().getLimitedValue(); 230 return V; 231 } 232 } 233 } 234 235 // Since GEP indices are sign extended anyway, we don't care about the high 236 // bits of a sign or zero extended value - just scales and offsets. The 237 // extensions have to be consistent though. 238 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 239 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 240 Value *CastOp = cast<CastInst>(V)->getOperand(0); 241 unsigned OldWidth = Scale.getBitWidth(); 242 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 243 Scale = Scale.trunc(SmallWidth); 244 Offset = Offset.trunc(SmallWidth); 245 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 246 247 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 248 TD, Depth+1); 249 Scale = Scale.zext(OldWidth); 250 Offset = Offset.zext(OldWidth); 251 252 return Result; 253 } 254 255 Scale = 1; 256 Offset = 0; 257 return V; 258 } 259 260 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 261 /// into a base pointer with a constant offset and a number of scaled symbolic 262 /// offsets. 263 /// 264 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 265 /// the VarIndices vector) are Value*'s that are known to be scaled by the 266 /// specified amount, but which may have other unrepresented high bits. As such, 267 /// the gep cannot necessarily be reconstructed from its decomposed form. 268 /// 269 /// When DataLayout is around, this function is capable of analyzing everything 270 /// that GetUnderlyingObject can look through. When not, it just looks 271 /// through pointer casts. 272 /// 273 static const Value * 274 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 275 SmallVectorImpl<VariableGEPIndex> &VarIndices, 276 const DataLayout *TD) { 277 // Limit recursion depth to limit compile time in crazy cases. 278 unsigned MaxLookup = 6; 279 280 BaseOffs = 0; 281 do { 282 // See if this is a bitcast or GEP. 283 const Operator *Op = dyn_cast<Operator>(V); 284 if (Op == 0) { 285 // The only non-operator case we can handle are GlobalAliases. 286 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 287 if (!GA->mayBeOverridden()) { 288 V = GA->getAliasee(); 289 continue; 290 } 291 } 292 return V; 293 } 294 295 if (Op->getOpcode() == Instruction::BitCast) { 296 V = Op->getOperand(0); 297 continue; 298 } 299 300 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 301 if (GEPOp == 0) { 302 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 303 // can come up with something. This matches what GetUnderlyingObject does. 304 if (const Instruction *I = dyn_cast<Instruction>(V)) 305 // TODO: Get a DominatorTree and use it here. 306 if (const Value *Simplified = 307 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 308 V = Simplified; 309 continue; 310 } 311 312 return V; 313 } 314 315 // Don't attempt to analyze GEPs over unsized objects. 316 if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) 317 ->getElementType()->isSized()) 318 return V; 319 320 // If we are lacking DataLayout information, we can't compute the offets of 321 // elements computed by GEPs. However, we can handle bitcast equivalent 322 // GEPs. 323 if (TD == 0) { 324 if (!GEPOp->hasAllZeroIndices()) 325 return V; 326 V = GEPOp->getOperand(0); 327 continue; 328 } 329 330 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 331 gep_type_iterator GTI = gep_type_begin(GEPOp); 332 for (User::const_op_iterator I = GEPOp->op_begin()+1, 333 E = GEPOp->op_end(); I != E; ++I) { 334 Value *Index = *I; 335 // Compute the (potentially symbolic) offset in bytes for this index. 336 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 337 // For a struct, add the member offset. 338 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 339 if (FieldNo == 0) continue; 340 341 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 342 continue; 343 } 344 345 // For an array/pointer, add the element offset, explicitly scaled. 346 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 347 if (CIdx->isZero()) continue; 348 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 349 continue; 350 } 351 352 uint64_t Scale = TD->getTypeAllocSize(*GTI); 353 ExtensionKind Extension = EK_NotExtended; 354 355 // If the integer type is smaller than the pointer size, it is implicitly 356 // sign extended to pointer size. 357 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); 358 if (TD->getPointerSizeInBits() > Width) 359 Extension = EK_SignExt; 360 361 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 362 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 363 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 364 *TD, 0); 365 366 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 367 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 368 BaseOffs += IndexOffset.getSExtValue()*Scale; 369 Scale *= IndexScale.getSExtValue(); 370 371 372 // If we already had an occurrence of this index variable, merge this 373 // scale into it. For example, we want to handle: 374 // A[x][x] -> x*16 + x*4 -> x*20 375 // This also ensures that 'x' only appears in the index list once. 376 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 377 if (VarIndices[i].V == Index && 378 VarIndices[i].Extension == Extension) { 379 Scale += VarIndices[i].Scale; 380 VarIndices.erase(VarIndices.begin()+i); 381 break; 382 } 383 } 384 385 // Make sure that we have a scale that makes sense for this target's 386 // pointer size. 387 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 388 Scale <<= ShiftBits; 389 Scale = (int64_t)Scale >> ShiftBits; 390 } 391 392 if (Scale) { 393 VariableGEPIndex Entry = {Index, Extension, 394 static_cast<int64_t>(Scale)}; 395 VarIndices.push_back(Entry); 396 } 397 } 398 399 // Analyze the base pointer next. 400 V = GEPOp->getOperand(0); 401 } while (--MaxLookup); 402 403 // If the chain of expressions is too deep, just return early. 404 return V; 405 } 406 407 /// GetIndexDifference - Dest and Src are the variable indices from two 408 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 409 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 410 /// difference between the two pointers. 411 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 412 const SmallVectorImpl<VariableGEPIndex> &Src) { 413 if (Src.empty()) return; 414 415 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 416 const Value *V = Src[i].V; 417 ExtensionKind Extension = Src[i].Extension; 418 int64_t Scale = Src[i].Scale; 419 420 // Find V in Dest. This is N^2, but pointer indices almost never have more 421 // than a few variable indexes. 422 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 423 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 424 425 // If we found it, subtract off Scale V's from the entry in Dest. If it 426 // goes to zero, remove the entry. 427 if (Dest[j].Scale != Scale) 428 Dest[j].Scale -= Scale; 429 else 430 Dest.erase(Dest.begin()+j); 431 Scale = 0; 432 break; 433 } 434 435 // If we didn't consume this entry, add it to the end of the Dest list. 436 if (Scale) { 437 VariableGEPIndex Entry = { V, Extension, -Scale }; 438 Dest.push_back(Entry); 439 } 440 } 441 } 442 443 //===----------------------------------------------------------------------===// 444 // BasicAliasAnalysis Pass 445 //===----------------------------------------------------------------------===// 446 447 #ifndef NDEBUG 448 static const Function *getParent(const Value *V) { 449 if (const Instruction *inst = dyn_cast<Instruction>(V)) 450 return inst->getParent()->getParent(); 451 452 if (const Argument *arg = dyn_cast<Argument>(V)) 453 return arg->getParent(); 454 455 return NULL; 456 } 457 458 static bool notDifferentParent(const Value *O1, const Value *O2) { 459 460 const Function *F1 = getParent(O1); 461 const Function *F2 = getParent(O2); 462 463 return !F1 || !F2 || F1 == F2; 464 } 465 #endif 466 467 namespace { 468 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 469 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 470 static char ID; // Class identification, replacement for typeinfo 471 BasicAliasAnalysis() : ImmutablePass(ID) { 472 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 473 } 474 475 virtual void initializePass() { 476 InitializeAliasAnalysis(this); 477 } 478 479 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 480 AU.addRequired<AliasAnalysis>(); 481 AU.addRequired<TargetLibraryInfo>(); 482 } 483 484 virtual AliasResult alias(const Location &LocA, 485 const Location &LocB) { 486 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 487 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 488 "BasicAliasAnalysis doesn't support interprocedural queries."); 489 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 490 LocB.Ptr, LocB.Size, LocB.TBAATag); 491 // AliasCache rarely has more than 1 or 2 elements, always use 492 // shrink_and_clear so it quickly returns to the inline capacity of the 493 // SmallDenseMap if it ever grows larger. 494 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 495 AliasCache.shrink_and_clear(); 496 return Alias; 497 } 498 499 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 500 const Location &Loc); 501 502 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 503 ImmutableCallSite CS2) { 504 // The AliasAnalysis base class has some smarts, lets use them. 505 return AliasAnalysis::getModRefInfo(CS1, CS2); 506 } 507 508 /// pointsToConstantMemory - Chase pointers until we find a (constant 509 /// global) or not. 510 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 511 512 /// getModRefBehavior - Return the behavior when calling the given 513 /// call site. 514 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 515 516 /// getModRefBehavior - Return the behavior when calling the given function. 517 /// For use when the call site is not known. 518 virtual ModRefBehavior getModRefBehavior(const Function *F); 519 520 /// getAdjustedAnalysisPointer - This method is used when a pass implements 521 /// an analysis interface through multiple inheritance. If needed, it 522 /// should override this to adjust the this pointer as needed for the 523 /// specified pass info. 524 virtual void *getAdjustedAnalysisPointer(const void *ID) { 525 if (ID == &AliasAnalysis::ID) 526 return (AliasAnalysis*)this; 527 return this; 528 } 529 530 private: 531 // AliasCache - Track alias queries to guard against recursion. 532 typedef std::pair<Location, Location> LocPair; 533 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 534 AliasCacheTy AliasCache; 535 536 // Visited - Track instructions visited by pointsToConstantMemory. 537 SmallPtrSet<const Value*, 16> Visited; 538 539 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 540 // instruction against another. 541 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 542 const MDNode *V1TBAAInfo, 543 const Value *V2, uint64_t V2Size, 544 const MDNode *V2TBAAInfo, 545 const Value *UnderlyingV1, const Value *UnderlyingV2); 546 547 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 548 // instruction against another. 549 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 550 const MDNode *PNTBAAInfo, 551 const Value *V2, uint64_t V2Size, 552 const MDNode *V2TBAAInfo); 553 554 /// aliasSelect - Disambiguate a Select instruction against another value. 555 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 556 const MDNode *SITBAAInfo, 557 const Value *V2, uint64_t V2Size, 558 const MDNode *V2TBAAInfo); 559 560 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 561 const MDNode *V1TBAATag, 562 const Value *V2, uint64_t V2Size, 563 const MDNode *V2TBAATag); 564 }; 565 } // End of anonymous namespace 566 567 // Register this pass... 568 char BasicAliasAnalysis::ID = 0; 569 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 570 "Basic Alias Analysis (stateless AA impl)", 571 false, true, false) 572 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 573 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 574 "Basic Alias Analysis (stateless AA impl)", 575 false, true, false) 576 577 578 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 579 return new BasicAliasAnalysis(); 580 } 581 582 /// pointsToConstantMemory - Returns whether the given pointer value 583 /// points to memory that is local to the function, with global constants being 584 /// considered local to all functions. 585 bool 586 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 587 assert(Visited.empty() && "Visited must be cleared after use!"); 588 589 unsigned MaxLookup = 8; 590 SmallVector<const Value *, 16> Worklist; 591 Worklist.push_back(Loc.Ptr); 592 do { 593 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 594 if (!Visited.insert(V)) { 595 Visited.clear(); 596 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 597 } 598 599 // An alloca instruction defines local memory. 600 if (OrLocal && isa<AllocaInst>(V)) 601 continue; 602 603 // A global constant counts as local memory for our purposes. 604 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 605 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 606 // global to be marked constant in some modules and non-constant in 607 // others. GV may even be a declaration, not a definition. 608 if (!GV->isConstant()) { 609 Visited.clear(); 610 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 611 } 612 continue; 613 } 614 615 // If both select values point to local memory, then so does the select. 616 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 617 Worklist.push_back(SI->getTrueValue()); 618 Worklist.push_back(SI->getFalseValue()); 619 continue; 620 } 621 622 // If all values incoming to a phi node point to local memory, then so does 623 // the phi. 624 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 625 // Don't bother inspecting phi nodes with many operands. 626 if (PN->getNumIncomingValues() > MaxLookup) { 627 Visited.clear(); 628 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 629 } 630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 631 Worklist.push_back(PN->getIncomingValue(i)); 632 continue; 633 } 634 635 // Otherwise be conservative. 636 Visited.clear(); 637 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 638 639 } while (!Worklist.empty() && --MaxLookup); 640 641 Visited.clear(); 642 return Worklist.empty(); 643 } 644 645 /// getModRefBehavior - Return the behavior when calling the given call site. 646 AliasAnalysis::ModRefBehavior 647 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 648 if (CS.doesNotAccessMemory()) 649 // Can't do better than this. 650 return DoesNotAccessMemory; 651 652 ModRefBehavior Min = UnknownModRefBehavior; 653 654 // If the callsite knows it only reads memory, don't return worse 655 // than that. 656 if (CS.onlyReadsMemory()) 657 Min = OnlyReadsMemory; 658 659 // The AliasAnalysis base class has some smarts, lets use them. 660 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 661 } 662 663 /// getModRefBehavior - Return the behavior when calling the given function. 664 /// For use when the call site is not known. 665 AliasAnalysis::ModRefBehavior 666 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 667 // If the function declares it doesn't access memory, we can't do better. 668 if (F->doesNotAccessMemory()) 669 return DoesNotAccessMemory; 670 671 // For intrinsics, we can check the table. 672 if (unsigned iid = F->getIntrinsicID()) { 673 #define GET_INTRINSIC_MODREF_BEHAVIOR 674 #include "llvm/IR/Intrinsics.gen" 675 #undef GET_INTRINSIC_MODREF_BEHAVIOR 676 } 677 678 ModRefBehavior Min = UnknownModRefBehavior; 679 680 // If the function declares it only reads memory, go with that. 681 if (F->onlyReadsMemory()) 682 Min = OnlyReadsMemory; 683 684 // Otherwise be conservative. 685 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 686 } 687 688 /// getModRefInfo - Check to see if the specified callsite can clobber the 689 /// specified memory object. Since we only look at local properties of this 690 /// function, we really can't say much about this query. We do, however, use 691 /// simple "address taken" analysis on local objects. 692 AliasAnalysis::ModRefResult 693 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 694 const Location &Loc) { 695 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 696 "AliasAnalysis query involving multiple functions!"); 697 698 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 699 700 // If this is a tail call and Loc.Ptr points to a stack location, we know that 701 // the tail call cannot access or modify the local stack. 702 // We cannot exclude byval arguments here; these belong to the caller of 703 // the current function not to the current function, and a tail callee 704 // may reference them. 705 if (isa<AllocaInst>(Object)) 706 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 707 if (CI->isTailCall()) 708 return NoModRef; 709 710 // If the pointer is to a locally allocated object that does not escape, 711 // then the call can not mod/ref the pointer unless the call takes the pointer 712 // as an argument, and itself doesn't capture it. 713 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 714 isNonEscapingLocalObject(Object)) { 715 bool PassedAsArg = false; 716 unsigned ArgNo = 0; 717 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 718 CI != CE; ++CI, ++ArgNo) { 719 // Only look at the no-capture or byval pointer arguments. If this 720 // pointer were passed to arguments that were neither of these, then it 721 // couldn't be no-capture. 722 if (!(*CI)->getType()->isPointerTy() || 723 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 724 continue; 725 726 // If this is a no-capture pointer argument, see if we can tell that it 727 // is impossible to alias the pointer we're checking. If not, we have to 728 // assume that the call could touch the pointer, even though it doesn't 729 // escape. 730 if (!isNoAlias(Location(*CI), Location(Object))) { 731 PassedAsArg = true; 732 break; 733 } 734 } 735 736 if (!PassedAsArg) 737 return NoModRef; 738 } 739 740 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 741 ModRefResult Min = ModRef; 742 743 // Finally, handle specific knowledge of intrinsics. 744 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 745 if (II != 0) 746 switch (II->getIntrinsicID()) { 747 default: break; 748 case Intrinsic::memcpy: 749 case Intrinsic::memmove: { 750 uint64_t Len = UnknownSize; 751 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 752 Len = LenCI->getZExtValue(); 753 Value *Dest = II->getArgOperand(0); 754 Value *Src = II->getArgOperand(1); 755 // If it can't overlap the source dest, then it doesn't modref the loc. 756 if (isNoAlias(Location(Dest, Len), Loc)) { 757 if (isNoAlias(Location(Src, Len), Loc)) 758 return NoModRef; 759 // If it can't overlap the dest, then worst case it reads the loc. 760 Min = Ref; 761 } else if (isNoAlias(Location(Src, Len), Loc)) { 762 // If it can't overlap the source, then worst case it mutates the loc. 763 Min = Mod; 764 } 765 break; 766 } 767 case Intrinsic::memset: 768 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 769 // will handle it for the variable length case. 770 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 771 uint64_t Len = LenCI->getZExtValue(); 772 Value *Dest = II->getArgOperand(0); 773 if (isNoAlias(Location(Dest, Len), Loc)) 774 return NoModRef; 775 } 776 // We know that memset doesn't load anything. 777 Min = Mod; 778 break; 779 case Intrinsic::lifetime_start: 780 case Intrinsic::lifetime_end: 781 case Intrinsic::invariant_start: { 782 uint64_t PtrSize = 783 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 784 if (isNoAlias(Location(II->getArgOperand(1), 785 PtrSize, 786 II->getMetadata(LLVMContext::MD_tbaa)), 787 Loc)) 788 return NoModRef; 789 break; 790 } 791 case Intrinsic::invariant_end: { 792 uint64_t PtrSize = 793 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 794 if (isNoAlias(Location(II->getArgOperand(2), 795 PtrSize, 796 II->getMetadata(LLVMContext::MD_tbaa)), 797 Loc)) 798 return NoModRef; 799 break; 800 } 801 case Intrinsic::arm_neon_vld1: { 802 // LLVM's vld1 and vst1 intrinsics currently only support a single 803 // vector register. 804 uint64_t Size = 805 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 806 if (isNoAlias(Location(II->getArgOperand(0), Size, 807 II->getMetadata(LLVMContext::MD_tbaa)), 808 Loc)) 809 return NoModRef; 810 break; 811 } 812 case Intrinsic::arm_neon_vst1: { 813 uint64_t Size = 814 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 815 if (isNoAlias(Location(II->getArgOperand(0), Size, 816 II->getMetadata(LLVMContext::MD_tbaa)), 817 Loc)) 818 return NoModRef; 819 break; 820 } 821 } 822 823 // We can bound the aliasing properties of memset_pattern16 just as we can 824 // for memcpy/memset. This is particularly important because the 825 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 826 // whenever possible. 827 else if (TLI.has(LibFunc::memset_pattern16) && 828 CS.getCalledFunction() && 829 CS.getCalledFunction()->getName() == "memset_pattern16") { 830 const Function *MS = CS.getCalledFunction(); 831 FunctionType *MemsetType = MS->getFunctionType(); 832 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 833 isa<PointerType>(MemsetType->getParamType(0)) && 834 isa<PointerType>(MemsetType->getParamType(1)) && 835 isa<IntegerType>(MemsetType->getParamType(2))) { 836 uint64_t Len = UnknownSize; 837 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 838 Len = LenCI->getZExtValue(); 839 const Value *Dest = CS.getArgument(0); 840 const Value *Src = CS.getArgument(1); 841 // If it can't overlap the source dest, then it doesn't modref the loc. 842 if (isNoAlias(Location(Dest, Len), Loc)) { 843 // Always reads 16 bytes of the source. 844 if (isNoAlias(Location(Src, 16), Loc)) 845 return NoModRef; 846 // If it can't overlap the dest, then worst case it reads the loc. 847 Min = Ref; 848 // Always reads 16 bytes of the source. 849 } else if (isNoAlias(Location(Src, 16), Loc)) { 850 // If it can't overlap the source, then worst case it mutates the loc. 851 Min = Mod; 852 } 853 } 854 } 855 856 // The AliasAnalysis base class has some smarts, lets use them. 857 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 858 } 859 860 static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1, 861 SmallVectorImpl<VariableGEPIndex> &Indices2) { 862 unsigned Size1 = Indices1.size(); 863 unsigned Size2 = Indices2.size(); 864 865 if (Size1 != Size2) 866 return false; 867 868 for (unsigned I = 0; I != Size1; ++I) 869 if (Indices1[I] != Indices2[I]) 870 return false; 871 872 return true; 873 } 874 875 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 876 /// against another pointer. We know that V1 is a GEP, but we don't know 877 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 878 /// UnderlyingV2 is the same for V2. 879 /// 880 AliasAnalysis::AliasResult 881 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 882 const MDNode *V1TBAAInfo, 883 const Value *V2, uint64_t V2Size, 884 const MDNode *V2TBAAInfo, 885 const Value *UnderlyingV1, 886 const Value *UnderlyingV2) { 887 int64_t GEP1BaseOffset; 888 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 889 890 // If we have two gep instructions with must-alias or not-alias'ing base 891 // pointers, figure out if the indexes to the GEP tell us anything about the 892 // derived pointer. 893 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 894 // Do the base pointers alias? 895 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 896 UnderlyingV2, UnknownSize, 0); 897 898 // Check for geps of non-aliasing underlying pointers where the offsets are 899 // identical. 900 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 901 // Do the base pointers alias assuming type and size. 902 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 903 V1TBAAInfo, UnderlyingV2, 904 V2Size, V2TBAAInfo); 905 if (PreciseBaseAlias == NoAlias) { 906 // See if the computed offset from the common pointer tells us about the 907 // relation of the resulting pointer. 908 int64_t GEP2BaseOffset; 909 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 910 const Value *GEP2BasePtr = 911 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 912 const Value *GEP1BasePtr = 913 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 914 // DecomposeGEPExpression and GetUnderlyingObject should return the 915 // same result except when DecomposeGEPExpression has no DataLayout. 916 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 917 assert(TD == 0 && 918 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 919 return MayAlias; 920 } 921 // Same offsets. 922 if (GEP1BaseOffset == GEP2BaseOffset && 923 areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices)) 924 return NoAlias; 925 GEP1VariableIndices.clear(); 926 } 927 } 928 929 // If we get a No or May, then return it immediately, no amount of analysis 930 // will improve this situation. 931 if (BaseAlias != MustAlias) return BaseAlias; 932 933 // Otherwise, we have a MustAlias. Since the base pointers alias each other 934 // exactly, see if the computed offset from the common pointer tells us 935 // about the relation of the resulting pointer. 936 const Value *GEP1BasePtr = 937 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 938 939 int64_t GEP2BaseOffset; 940 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 941 const Value *GEP2BasePtr = 942 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 943 944 // DecomposeGEPExpression and GetUnderlyingObject should return the 945 // same result except when DecomposeGEPExpression has no DataLayout. 946 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 947 assert(TD == 0 && 948 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 949 return MayAlias; 950 } 951 952 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 953 // symbolic difference. 954 GEP1BaseOffset -= GEP2BaseOffset; 955 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 956 957 } else { 958 // Check to see if these two pointers are related by the getelementptr 959 // instruction. If one pointer is a GEP with a non-zero index of the other 960 // pointer, we know they cannot alias. 961 962 // If both accesses are unknown size, we can't do anything useful here. 963 if (V1Size == UnknownSize && V2Size == UnknownSize) 964 return MayAlias; 965 966 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 967 V2, V2Size, V2TBAAInfo); 968 if (R != MustAlias) 969 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 970 // If V2 is known not to alias GEP base pointer, then the two values 971 // cannot alias per GEP semantics: "A pointer value formed from a 972 // getelementptr instruction is associated with the addresses associated 973 // with the first operand of the getelementptr". 974 return R; 975 976 const Value *GEP1BasePtr = 977 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 978 979 // DecomposeGEPExpression and GetUnderlyingObject should return the 980 // same result except when DecomposeGEPExpression has no DataLayout. 981 if (GEP1BasePtr != UnderlyingV1) { 982 assert(TD == 0 && 983 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 984 return MayAlias; 985 } 986 } 987 988 // In the two GEP Case, if there is no difference in the offsets of the 989 // computed pointers, the resultant pointers are a must alias. This 990 // hapens when we have two lexically identical GEP's (for example). 991 // 992 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 993 // must aliases the GEP, the end result is a must alias also. 994 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 995 return MustAlias; 996 997 // If there is a constant difference between the pointers, but the difference 998 // is less than the size of the associated memory object, then we know 999 // that the objects are partially overlapping. If the difference is 1000 // greater, we know they do not overlap. 1001 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1002 if (GEP1BaseOffset >= 0) { 1003 if (V2Size != UnknownSize) { 1004 if ((uint64_t)GEP1BaseOffset < V2Size) 1005 return PartialAlias; 1006 return NoAlias; 1007 } 1008 } else { 1009 if (V1Size != UnknownSize) { 1010 if (-(uint64_t)GEP1BaseOffset < V1Size) 1011 return PartialAlias; 1012 return NoAlias; 1013 } 1014 } 1015 } 1016 1017 // Try to distinguish something like &A[i][1] against &A[42][0]. 1018 // Grab the least significant bit set in any of the scales. 1019 if (!GEP1VariableIndices.empty()) { 1020 uint64_t Modulo = 0; 1021 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1022 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1023 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1024 1025 // We can compute the difference between the two addresses 1026 // mod Modulo. Check whether that difference guarantees that the 1027 // two locations do not alias. 1028 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1029 if (V1Size != UnknownSize && V2Size != UnknownSize && 1030 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1031 return NoAlias; 1032 } 1033 1034 // Statically, we can see that the base objects are the same, but the 1035 // pointers have dynamic offsets which we can't resolve. And none of our 1036 // little tricks above worked. 1037 // 1038 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1039 // practical effect of this is protecting TBAA in the case of dynamic 1040 // indices into arrays of unions or malloc'd memory. 1041 return PartialAlias; 1042 } 1043 1044 static AliasAnalysis::AliasResult 1045 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1046 // If the results agree, take it. 1047 if (A == B) 1048 return A; 1049 // A mix of PartialAlias and MustAlias is PartialAlias. 1050 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1051 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1052 return AliasAnalysis::PartialAlias; 1053 // Otherwise, we don't know anything. 1054 return AliasAnalysis::MayAlias; 1055 } 1056 1057 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1058 /// instruction against another. 1059 AliasAnalysis::AliasResult 1060 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1061 const MDNode *SITBAAInfo, 1062 const Value *V2, uint64_t V2Size, 1063 const MDNode *V2TBAAInfo) { 1064 // If the values are Selects with the same condition, we can do a more precise 1065 // check: just check for aliases between the values on corresponding arms. 1066 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1067 if (SI->getCondition() == SI2->getCondition()) { 1068 AliasResult Alias = 1069 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1070 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1071 if (Alias == MayAlias) 1072 return MayAlias; 1073 AliasResult ThisAlias = 1074 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1075 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1076 return MergeAliasResults(ThisAlias, Alias); 1077 } 1078 1079 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1080 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1081 AliasResult Alias = 1082 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1083 if (Alias == MayAlias) 1084 return MayAlias; 1085 1086 AliasResult ThisAlias = 1087 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1088 return MergeAliasResults(ThisAlias, Alias); 1089 } 1090 1091 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1092 // against another. 1093 AliasAnalysis::AliasResult 1094 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1095 const MDNode *PNTBAAInfo, 1096 const Value *V2, uint64_t V2Size, 1097 const MDNode *V2TBAAInfo) { 1098 // If the values are PHIs in the same block, we can do a more precise 1099 // as well as efficient check: just check for aliases between the values 1100 // on corresponding edges. 1101 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1102 if (PN2->getParent() == PN->getParent()) { 1103 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1104 Location(V2, V2Size, V2TBAAInfo)); 1105 if (PN > V2) 1106 std::swap(Locs.first, Locs.second); 1107 // Analyse the PHIs' inputs under the assumption that the PHIs are 1108 // NoAlias. 1109 // If the PHIs are May/MustAlias there must be (recursively) an input 1110 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1111 // there must be an operation on the PHIs within the PHIs' value cycle 1112 // that causes a MayAlias. 1113 // Pretend the phis do not alias. 1114 AliasResult Alias = NoAlias; 1115 assert(AliasCache.count(Locs) && 1116 "There must exist an entry for the phi node"); 1117 AliasResult OrigAliasResult = AliasCache[Locs]; 1118 AliasCache[Locs] = NoAlias; 1119 1120 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1121 AliasResult ThisAlias = 1122 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1123 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1124 V2Size, V2TBAAInfo); 1125 Alias = MergeAliasResults(ThisAlias, Alias); 1126 if (Alias == MayAlias) 1127 break; 1128 } 1129 1130 // Reset if speculation failed. 1131 if (Alias != NoAlias) 1132 AliasCache[Locs] = OrigAliasResult; 1133 1134 return Alias; 1135 } 1136 1137 SmallPtrSet<Value*, 4> UniqueSrc; 1138 SmallVector<Value*, 4> V1Srcs; 1139 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1140 Value *PV1 = PN->getIncomingValue(i); 1141 if (isa<PHINode>(PV1)) 1142 // If any of the source itself is a PHI, return MayAlias conservatively 1143 // to avoid compile time explosion. The worst possible case is if both 1144 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1145 // and 'n' are the number of PHI sources. 1146 return MayAlias; 1147 if (UniqueSrc.insert(PV1)) 1148 V1Srcs.push_back(PV1); 1149 } 1150 1151 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1152 V1Srcs[0], PNSize, PNTBAAInfo); 1153 // Early exit if the check of the first PHI source against V2 is MayAlias. 1154 // Other results are not possible. 1155 if (Alias == MayAlias) 1156 return MayAlias; 1157 1158 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1159 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1160 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1161 Value *V = V1Srcs[i]; 1162 1163 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1164 V, PNSize, PNTBAAInfo); 1165 Alias = MergeAliasResults(ThisAlias, Alias); 1166 if (Alias == MayAlias) 1167 break; 1168 } 1169 1170 return Alias; 1171 } 1172 1173 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1174 // such as array references. 1175 // 1176 AliasAnalysis::AliasResult 1177 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1178 const MDNode *V1TBAAInfo, 1179 const Value *V2, uint64_t V2Size, 1180 const MDNode *V2TBAAInfo) { 1181 // If either of the memory references is empty, it doesn't matter what the 1182 // pointer values are. 1183 if (V1Size == 0 || V2Size == 0) 1184 return NoAlias; 1185 1186 // Strip off any casts if they exist. 1187 V1 = V1->stripPointerCasts(); 1188 V2 = V2->stripPointerCasts(); 1189 1190 // Are we checking for alias of the same value? 1191 if (V1 == V2) return MustAlias; 1192 1193 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1194 return NoAlias; // Scalars cannot alias each other 1195 1196 // Figure out what objects these things are pointing to if we can. 1197 const Value *O1 = GetUnderlyingObject(V1, TD); 1198 const Value *O2 = GetUnderlyingObject(V2, TD); 1199 1200 // Null values in the default address space don't point to any object, so they 1201 // don't alias any other pointer. 1202 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1203 if (CPN->getType()->getAddressSpace() == 0) 1204 return NoAlias; 1205 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1206 if (CPN->getType()->getAddressSpace() == 0) 1207 return NoAlias; 1208 1209 if (O1 != O2) { 1210 // If V1/V2 point to two different objects we know that we have no alias. 1211 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1212 return NoAlias; 1213 1214 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1215 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1216 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1217 return NoAlias; 1218 1219 // Function arguments can't alias with things that are known to be 1220 // unambigously identified at the function level. 1221 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1222 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1223 return NoAlias; 1224 1225 // Most objects can't alias null. 1226 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1227 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1228 return NoAlias; 1229 1230 // If one pointer is the result of a call/invoke or load and the other is a 1231 // non-escaping local object within the same function, then we know the 1232 // object couldn't escape to a point where the call could return it. 1233 // 1234 // Note that if the pointers are in different functions, there are a 1235 // variety of complications. A call with a nocapture argument may still 1236 // temporary store the nocapture argument's value in a temporary memory 1237 // location if that memory location doesn't escape. Or it may pass a 1238 // nocapture value to other functions as long as they don't capture it. 1239 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1240 return NoAlias; 1241 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1242 return NoAlias; 1243 } 1244 1245 // If the size of one access is larger than the entire object on the other 1246 // side, then we know such behavior is undefined and can assume no alias. 1247 if (TD) 1248 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) || 1249 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI))) 1250 return NoAlias; 1251 1252 // Check the cache before climbing up use-def chains. This also terminates 1253 // otherwise infinitely recursive queries. 1254 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1255 Location(V2, V2Size, V2TBAAInfo)); 1256 if (V1 > V2) 1257 std::swap(Locs.first, Locs.second); 1258 std::pair<AliasCacheTy::iterator, bool> Pair = 1259 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1260 if (!Pair.second) 1261 return Pair.first->second; 1262 1263 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1264 // GEP can't simplify, we don't even look at the PHI cases. 1265 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1266 std::swap(V1, V2); 1267 std::swap(V1Size, V2Size); 1268 std::swap(O1, O2); 1269 std::swap(V1TBAAInfo, V2TBAAInfo); 1270 } 1271 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1272 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1273 if (Result != MayAlias) return AliasCache[Locs] = Result; 1274 } 1275 1276 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1277 std::swap(V1, V2); 1278 std::swap(V1Size, V2Size); 1279 std::swap(V1TBAAInfo, V2TBAAInfo); 1280 } 1281 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1282 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1283 V2, V2Size, V2TBAAInfo); 1284 if (Result != MayAlias) return AliasCache[Locs] = Result; 1285 } 1286 1287 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1288 std::swap(V1, V2); 1289 std::swap(V1Size, V2Size); 1290 std::swap(V1TBAAInfo, V2TBAAInfo); 1291 } 1292 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1293 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1294 V2, V2Size, V2TBAAInfo); 1295 if (Result != MayAlias) return AliasCache[Locs] = Result; 1296 } 1297 1298 // If both pointers are pointing into the same object and one of them 1299 // accesses is accessing the entire object, then the accesses must 1300 // overlap in some way. 1301 if (TD && O1 == O2) 1302 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) || 1303 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI))) 1304 return AliasCache[Locs] = PartialAlias; 1305 1306 AliasResult Result = 1307 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1308 Location(V2, V2Size, V2TBAAInfo)); 1309 return AliasCache[Locs] = Result; 1310 } 1311