Home | History | Annotate | Download | only in IPO
      1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an _extremely_ simple interprocedural constant
     11 // propagation pass.  It could certainly be improved in many different ways,
     12 // like using a worklist.  This pass makes arguments dead, but does not remove
     13 // them.  The existing dead argument elimination pass should be run after this
     14 // to clean up the mess.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "ipconstprop"
     19 #include "llvm/Transforms/IPO.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/Pass.h"
     27 #include "llvm/Support/CallSite.h"
     28 using namespace llvm;
     29 
     30 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
     31 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
     32 
     33 namespace {
     34   /// IPCP - The interprocedural constant propagation pass
     35   ///
     36   struct IPCP : public ModulePass {
     37     static char ID; // Pass identification, replacement for typeid
     38     IPCP() : ModulePass(ID) {
     39       initializeIPCPPass(*PassRegistry::getPassRegistry());
     40     }
     41 
     42     bool runOnModule(Module &M);
     43   private:
     44     bool PropagateConstantsIntoArguments(Function &F);
     45     bool PropagateConstantReturn(Function &F);
     46   };
     47 }
     48 
     49 char IPCP::ID = 0;
     50 INITIALIZE_PASS(IPCP, "ipconstprop",
     51                 "Interprocedural constant propagation", false, false)
     52 
     53 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
     54 
     55 bool IPCP::runOnModule(Module &M) {
     56   bool Changed = false;
     57   bool LocalChange = true;
     58 
     59   // FIXME: instead of using smart algorithms, we just iterate until we stop
     60   // making changes.
     61   while (LocalChange) {
     62     LocalChange = false;
     63     for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
     64       if (!I->isDeclaration()) {
     65         // Delete any klingons.
     66         I->removeDeadConstantUsers();
     67         if (I->hasLocalLinkage())
     68           LocalChange |= PropagateConstantsIntoArguments(*I);
     69         Changed |= PropagateConstantReturn(*I);
     70       }
     71     Changed |= LocalChange;
     72   }
     73   return Changed;
     74 }
     75 
     76 /// PropagateConstantsIntoArguments - Look at all uses of the specified
     77 /// function.  If all uses are direct call sites, and all pass a particular
     78 /// constant in for an argument, propagate that constant in as the argument.
     79 ///
     80 bool IPCP::PropagateConstantsIntoArguments(Function &F) {
     81   if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
     82 
     83   // For each argument, keep track of its constant value and whether it is a
     84   // constant or not.  The bool is driven to true when found to be non-constant.
     85   SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
     86   ArgumentConstants.resize(F.arg_size());
     87 
     88   unsigned NumNonconstant = 0;
     89   for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
     90     User *U = *UI;
     91     // Ignore blockaddress uses.
     92     if (isa<BlockAddress>(U)) continue;
     93 
     94     // Used by a non-instruction, or not the callee of a function, do not
     95     // transform.
     96     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
     97       return false;
     98 
     99     CallSite CS(cast<Instruction>(U));
    100     if (!CS.isCallee(UI))
    101       return false;
    102 
    103     // Check out all of the potentially constant arguments.  Note that we don't
    104     // inspect varargs here.
    105     CallSite::arg_iterator AI = CS.arg_begin();
    106     Function::arg_iterator Arg = F.arg_begin();
    107     for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
    108          ++i, ++AI, ++Arg) {
    109 
    110       // If this argument is known non-constant, ignore it.
    111       if (ArgumentConstants[i].second)
    112         continue;
    113 
    114       Constant *C = dyn_cast<Constant>(*AI);
    115       if (C && ArgumentConstants[i].first == 0) {
    116         ArgumentConstants[i].first = C;   // First constant seen.
    117       } else if (C && ArgumentConstants[i].first == C) {
    118         // Still the constant value we think it is.
    119       } else if (*AI == &*Arg) {
    120         // Ignore recursive calls passing argument down.
    121       } else {
    122         // Argument became non-constant.  If all arguments are non-constant now,
    123         // give up on this function.
    124         if (++NumNonconstant == ArgumentConstants.size())
    125           return false;
    126         ArgumentConstants[i].second = true;
    127       }
    128     }
    129   }
    130 
    131   // If we got to this point, there is a constant argument!
    132   assert(NumNonconstant != ArgumentConstants.size());
    133   bool MadeChange = false;
    134   Function::arg_iterator AI = F.arg_begin();
    135   for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
    136     // Do we have a constant argument?
    137     if (ArgumentConstants[i].second || AI->use_empty() ||
    138         (AI->hasByValAttr() && !F.onlyReadsMemory()))
    139       continue;
    140 
    141     Value *V = ArgumentConstants[i].first;
    142     if (V == 0) V = UndefValue::get(AI->getType());
    143     AI->replaceAllUsesWith(V);
    144     ++NumArgumentsProped;
    145     MadeChange = true;
    146   }
    147   return MadeChange;
    148 }
    149 
    150 
    151 // Check to see if this function returns one or more constants. If so, replace
    152 // all callers that use those return values with the constant value. This will
    153 // leave in the actual return values and instructions, but deadargelim will
    154 // clean that up.
    155 //
    156 // Additionally if a function always returns one of its arguments directly,
    157 // callers will be updated to use the value they pass in directly instead of
    158 // using the return value.
    159 bool IPCP::PropagateConstantReturn(Function &F) {
    160   if (F.getReturnType()->isVoidTy())
    161     return false; // No return value.
    162 
    163   // If this function could be overridden later in the link stage, we can't
    164   // propagate information about its results into callers.
    165   if (F.mayBeOverridden())
    166     return false;
    167 
    168   // Check to see if this function returns a constant.
    169   SmallVector<Value *,4> RetVals;
    170   StructType *STy = dyn_cast<StructType>(F.getReturnType());
    171   if (STy)
    172     for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
    173       RetVals.push_back(UndefValue::get(STy->getElementType(i)));
    174   else
    175     RetVals.push_back(UndefValue::get(F.getReturnType()));
    176 
    177   unsigned NumNonConstant = 0;
    178   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    179     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    180       for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
    181         // Already found conflicting return values?
    182         Value *RV = RetVals[i];
    183         if (!RV)
    184           continue;
    185 
    186         // Find the returned value
    187         Value *V;
    188         if (!STy)
    189           V = RI->getOperand(0);
    190         else
    191           V = FindInsertedValue(RI->getOperand(0), i);
    192 
    193         if (V) {
    194           // Ignore undefs, we can change them into anything
    195           if (isa<UndefValue>(V))
    196             continue;
    197 
    198           // Try to see if all the rets return the same constant or argument.
    199           if (isa<Constant>(V) || isa<Argument>(V)) {
    200             if (isa<UndefValue>(RV)) {
    201               // No value found yet? Try the current one.
    202               RetVals[i] = V;
    203               continue;
    204             }
    205             // Returning the same value? Good.
    206             if (RV == V)
    207               continue;
    208           }
    209         }
    210         // Different or no known return value? Don't propagate this return
    211         // value.
    212         RetVals[i] = 0;
    213         // All values non constant? Stop looking.
    214         if (++NumNonConstant == RetVals.size())
    215           return false;
    216       }
    217     }
    218 
    219   // If we got here, the function returns at least one constant value.  Loop
    220   // over all users, replacing any uses of the return value with the returned
    221   // constant.
    222   bool MadeChange = false;
    223   for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
    224     CallSite CS(*UI);
    225     Instruction* Call = CS.getInstruction();
    226 
    227     // Not a call instruction or a call instruction that's not calling F
    228     // directly?
    229     if (!Call || !CS.isCallee(UI))
    230       continue;
    231 
    232     // Call result not used?
    233     if (Call->use_empty())
    234       continue;
    235 
    236     MadeChange = true;
    237 
    238     if (STy == 0) {
    239       Value* New = RetVals[0];
    240       if (Argument *A = dyn_cast<Argument>(New))
    241         // Was an argument returned? Then find the corresponding argument in
    242         // the call instruction and use that.
    243         New = CS.getArgument(A->getArgNo());
    244       Call->replaceAllUsesWith(New);
    245       continue;
    246     }
    247 
    248     for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
    249          I != E;) {
    250       Instruction *Ins = cast<Instruction>(*I);
    251 
    252       // Increment now, so we can remove the use
    253       ++I;
    254 
    255       // Find the index of the retval to replace with
    256       int index = -1;
    257       if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
    258         if (EV->hasIndices())
    259           index = *EV->idx_begin();
    260 
    261       // If this use uses a specific return value, and we have a replacement,
    262       // replace it.
    263       if (index != -1) {
    264         Value *New = RetVals[index];
    265         if (New) {
    266           if (Argument *A = dyn_cast<Argument>(New))
    267             // Was an argument returned? Then find the corresponding argument in
    268             // the call instruction and use that.
    269             New = CS.getArgument(A->getArgNo());
    270           Ins->replaceAllUsesWith(New);
    271           Ins->eraseFromParent();
    272         }
    273       }
    274     }
    275   }
    276 
    277   if (MadeChange) ++NumReturnValProped;
    278   return MadeChange;
    279 }
    280