1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements sparse conditional constant propagation and merging: 11 // 12 // Specifically, this: 13 // * Assumes values are constant unless proven otherwise 14 // * Assumes BasicBlocks are dead unless proven otherwise 15 // * Proves values to be constant, and replaces them with constants 16 // * Proves conditional branches to be unconditional 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "sccp" 21 #include "llvm/Transforms/Scalar.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/InstVisitor.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CallSite.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetLibraryInfo.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 STATISTIC(NumInstRemoved, "Number of instructions removed"); 46 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 49 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 50 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 51 52 namespace { 53 /// LatticeVal class - This class represents the different lattice values that 54 /// an LLVM value may occupy. It is a simple class with value semantics. 55 /// 56 class LatticeVal { 57 enum LatticeValueTy { 58 /// undefined - This LLVM Value has no known value yet. 59 undefined, 60 61 /// constant - This LLVM Value has a specific constant value. 62 constant, 63 64 /// forcedconstant - This LLVM Value was thought to be undef until 65 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 66 /// with another (different) constant, it goes to overdefined, instead of 67 /// asserting. 68 forcedconstant, 69 70 /// overdefined - This instruction is not known to be constant, and we know 71 /// it has a value. 72 overdefined 73 }; 74 75 /// Val: This stores the current lattice value along with the Constant* for 76 /// the constant if this is a 'constant' or 'forcedconstant' value. 77 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 78 79 LatticeValueTy getLatticeValue() const { 80 return Val.getInt(); 81 } 82 83 public: 84 LatticeVal() : Val(0, undefined) {} 85 86 bool isUndefined() const { return getLatticeValue() == undefined; } 87 bool isConstant() const { 88 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 89 } 90 bool isOverdefined() const { return getLatticeValue() == overdefined; } 91 92 Constant *getConstant() const { 93 assert(isConstant() && "Cannot get the constant of a non-constant!"); 94 return Val.getPointer(); 95 } 96 97 /// markOverdefined - Return true if this is a change in status. 98 bool markOverdefined() { 99 if (isOverdefined()) 100 return false; 101 102 Val.setInt(overdefined); 103 return true; 104 } 105 106 /// markConstant - Return true if this is a change in status. 107 bool markConstant(Constant *V) { 108 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 109 assert(getConstant() == V && "Marking constant with different value"); 110 return false; 111 } 112 113 if (isUndefined()) { 114 Val.setInt(constant); 115 assert(V && "Marking constant with NULL"); 116 Val.setPointer(V); 117 } else { 118 assert(getLatticeValue() == forcedconstant && 119 "Cannot move from overdefined to constant!"); 120 // Stay at forcedconstant if the constant is the same. 121 if (V == getConstant()) return false; 122 123 // Otherwise, we go to overdefined. Assumptions made based on the 124 // forced value are possibly wrong. Assuming this is another constant 125 // could expose a contradiction. 126 Val.setInt(overdefined); 127 } 128 return true; 129 } 130 131 /// getConstantInt - If this is a constant with a ConstantInt value, return it 132 /// otherwise return null. 133 ConstantInt *getConstantInt() const { 134 if (isConstant()) 135 return dyn_cast<ConstantInt>(getConstant()); 136 return 0; 137 } 138 139 void markForcedConstant(Constant *V) { 140 assert(isUndefined() && "Can't force a defined value!"); 141 Val.setInt(forcedconstant); 142 Val.setPointer(V); 143 } 144 }; 145 } // end anonymous namespace. 146 147 148 namespace { 149 150 //===----------------------------------------------------------------------===// 151 // 152 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 153 /// Constant Propagation. 154 /// 155 class SCCPSolver : public InstVisitor<SCCPSolver> { 156 const DataLayout *TD; 157 const TargetLibraryInfo *TLI; 158 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 159 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 160 161 /// StructValueState - This maintains ValueState for values that have 162 /// StructType, for example for formal arguments, calls, insertelement, etc. 163 /// 164 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 165 166 /// GlobalValue - If we are tracking any values for the contents of a global 167 /// variable, we keep a mapping from the constant accessor to the element of 168 /// the global, to the currently known value. If the value becomes 169 /// overdefined, it's entry is simply removed from this map. 170 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 171 172 /// TrackedRetVals - If we are tracking arguments into and the return 173 /// value out of a function, it will have an entry in this map, indicating 174 /// what the known return value for the function is. 175 DenseMap<Function*, LatticeVal> TrackedRetVals; 176 177 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 178 /// that return multiple values. 179 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 180 181 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 182 /// represented here for efficient lookup. 183 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 184 185 /// TrackingIncomingArguments - This is the set of functions for whose 186 /// arguments we make optimistic assumptions about and try to prove as 187 /// constants. 188 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 189 190 /// The reason for two worklists is that overdefined is the lowest state 191 /// on the lattice, and moving things to overdefined as fast as possible 192 /// makes SCCP converge much faster. 193 /// 194 /// By having a separate worklist, we accomplish this because everything 195 /// possibly overdefined will become overdefined at the soonest possible 196 /// point. 197 SmallVector<Value*, 64> OverdefinedInstWorkList; 198 SmallVector<Value*, 64> InstWorkList; 199 200 201 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 202 203 /// KnownFeasibleEdges - Entries in this set are edges which have already had 204 /// PHI nodes retriggered. 205 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 206 DenseSet<Edge> KnownFeasibleEdges; 207 public: 208 SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli) 209 : TD(td), TLI(tli) {} 210 211 /// MarkBlockExecutable - This method can be used by clients to mark all of 212 /// the blocks that are known to be intrinsically live in the processed unit. 213 /// 214 /// This returns true if the block was not considered live before. 215 bool MarkBlockExecutable(BasicBlock *BB) { 216 if (!BBExecutable.insert(BB)) return false; 217 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 218 BBWorkList.push_back(BB); // Add the block to the work list! 219 return true; 220 } 221 222 /// TrackValueOfGlobalVariable - Clients can use this method to 223 /// inform the SCCPSolver that it should track loads and stores to the 224 /// specified global variable if it can. This is only legal to call if 225 /// performing Interprocedural SCCP. 226 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 227 // We only track the contents of scalar globals. 228 if (GV->getType()->getElementType()->isSingleValueType()) { 229 LatticeVal &IV = TrackedGlobals[GV]; 230 if (!isa<UndefValue>(GV->getInitializer())) 231 IV.markConstant(GV->getInitializer()); 232 } 233 } 234 235 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 236 /// and out of the specified function (which cannot have its address taken), 237 /// this method must be called. 238 void AddTrackedFunction(Function *F) { 239 // Add an entry, F -> undef. 240 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 241 MRVFunctionsTracked.insert(F); 242 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 243 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 244 LatticeVal())); 245 } else 246 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 247 } 248 249 void AddArgumentTrackedFunction(Function *F) { 250 TrackingIncomingArguments.insert(F); 251 } 252 253 /// Solve - Solve for constants and executable blocks. 254 /// 255 void Solve(); 256 257 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 258 /// that branches on undef values cannot reach any of their successors. 259 /// However, this is not a safe assumption. After we solve dataflow, this 260 /// method should be use to handle this. If this returns true, the solver 261 /// should be rerun. 262 bool ResolvedUndefsIn(Function &F); 263 264 bool isBlockExecutable(BasicBlock *BB) const { 265 return BBExecutable.count(BB); 266 } 267 268 LatticeVal getLatticeValueFor(Value *V) const { 269 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 270 assert(I != ValueState.end() && "V is not in valuemap!"); 271 return I->second; 272 } 273 274 /// getTrackedRetVals - Get the inferred return value map. 275 /// 276 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 277 return TrackedRetVals; 278 } 279 280 /// getTrackedGlobals - Get and return the set of inferred initializers for 281 /// global variables. 282 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 283 return TrackedGlobals; 284 } 285 286 void markOverdefined(Value *V) { 287 assert(!V->getType()->isStructTy() && "Should use other method"); 288 markOverdefined(ValueState[V], V); 289 } 290 291 /// markAnythingOverdefined - Mark the specified value overdefined. This 292 /// works with both scalars and structs. 293 void markAnythingOverdefined(Value *V) { 294 if (StructType *STy = dyn_cast<StructType>(V->getType())) 295 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 296 markOverdefined(getStructValueState(V, i), V); 297 else 298 markOverdefined(V); 299 } 300 301 private: 302 // markConstant - Make a value be marked as "constant". If the value 303 // is not already a constant, add it to the instruction work list so that 304 // the users of the instruction are updated later. 305 // 306 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 307 if (!IV.markConstant(C)) return; 308 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 309 if (IV.isOverdefined()) 310 OverdefinedInstWorkList.push_back(V); 311 else 312 InstWorkList.push_back(V); 313 } 314 315 void markConstant(Value *V, Constant *C) { 316 assert(!V->getType()->isStructTy() && "Should use other method"); 317 markConstant(ValueState[V], V, C); 318 } 319 320 void markForcedConstant(Value *V, Constant *C) { 321 assert(!V->getType()->isStructTy() && "Should use other method"); 322 LatticeVal &IV = ValueState[V]; 323 IV.markForcedConstant(C); 324 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 325 if (IV.isOverdefined()) 326 OverdefinedInstWorkList.push_back(V); 327 else 328 InstWorkList.push_back(V); 329 } 330 331 332 // markOverdefined - Make a value be marked as "overdefined". If the 333 // value is not already overdefined, add it to the overdefined instruction 334 // work list so that the users of the instruction are updated later. 335 void markOverdefined(LatticeVal &IV, Value *V) { 336 if (!IV.markOverdefined()) return; 337 338 DEBUG(dbgs() << "markOverdefined: "; 339 if (Function *F = dyn_cast<Function>(V)) 340 dbgs() << "Function '" << F->getName() << "'\n"; 341 else 342 dbgs() << *V << '\n'); 343 // Only instructions go on the work list 344 OverdefinedInstWorkList.push_back(V); 345 } 346 347 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 348 if (IV.isOverdefined() || MergeWithV.isUndefined()) 349 return; // Noop. 350 if (MergeWithV.isOverdefined()) 351 markOverdefined(IV, V); 352 else if (IV.isUndefined()) 353 markConstant(IV, V, MergeWithV.getConstant()); 354 else if (IV.getConstant() != MergeWithV.getConstant()) 355 markOverdefined(IV, V); 356 } 357 358 void mergeInValue(Value *V, LatticeVal MergeWithV) { 359 assert(!V->getType()->isStructTy() && "Should use other method"); 360 mergeInValue(ValueState[V], V, MergeWithV); 361 } 362 363 364 /// getValueState - Return the LatticeVal object that corresponds to the 365 /// value. This function handles the case when the value hasn't been seen yet 366 /// by properly seeding constants etc. 367 LatticeVal &getValueState(Value *V) { 368 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 369 370 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 371 ValueState.insert(std::make_pair(V, LatticeVal())); 372 LatticeVal &LV = I.first->second; 373 374 if (!I.second) 375 return LV; // Common case, already in the map. 376 377 if (Constant *C = dyn_cast<Constant>(V)) { 378 // Undef values remain undefined. 379 if (!isa<UndefValue>(V)) 380 LV.markConstant(C); // Constants are constant 381 } 382 383 // All others are underdefined by default. 384 return LV; 385 } 386 387 /// getStructValueState - Return the LatticeVal object that corresponds to the 388 /// value/field pair. This function handles the case when the value hasn't 389 /// been seen yet by properly seeding constants etc. 390 LatticeVal &getStructValueState(Value *V, unsigned i) { 391 assert(V->getType()->isStructTy() && "Should use getValueState"); 392 assert(i < cast<StructType>(V->getType())->getNumElements() && 393 "Invalid element #"); 394 395 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 396 bool> I = StructValueState.insert( 397 std::make_pair(std::make_pair(V, i), LatticeVal())); 398 LatticeVal &LV = I.first->second; 399 400 if (!I.second) 401 return LV; // Common case, already in the map. 402 403 if (Constant *C = dyn_cast<Constant>(V)) { 404 Constant *Elt = C->getAggregateElement(i); 405 406 if (Elt == 0) 407 LV.markOverdefined(); // Unknown sort of constant. 408 else if (isa<UndefValue>(Elt)) 409 ; // Undef values remain undefined. 410 else 411 LV.markConstant(Elt); // Constants are constant. 412 } 413 414 // All others are underdefined by default. 415 return LV; 416 } 417 418 419 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 420 /// work list if it is not already executable. 421 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 422 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 423 return; // This edge is already known to be executable! 424 425 if (!MarkBlockExecutable(Dest)) { 426 // If the destination is already executable, we just made an *edge* 427 // feasible that wasn't before. Revisit the PHI nodes in the block 428 // because they have potentially new operands. 429 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 430 << " -> " << Dest->getName() << '\n'); 431 432 PHINode *PN; 433 for (BasicBlock::iterator I = Dest->begin(); 434 (PN = dyn_cast<PHINode>(I)); ++I) 435 visitPHINode(*PN); 436 } 437 } 438 439 // getFeasibleSuccessors - Return a vector of booleans to indicate which 440 // successors are reachable from a given terminator instruction. 441 // 442 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); 443 444 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 445 // block to the 'To' basic block is currently feasible. 446 // 447 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 448 449 // OperandChangedState - This method is invoked on all of the users of an 450 // instruction that was just changed state somehow. Based on this 451 // information, we need to update the specified user of this instruction. 452 // 453 void OperandChangedState(Instruction *I) { 454 if (BBExecutable.count(I->getParent())) // Inst is executable? 455 visit(*I); 456 } 457 458 private: 459 friend class InstVisitor<SCCPSolver>; 460 461 // visit implementations - Something changed in this instruction. Either an 462 // operand made a transition, or the instruction is newly executable. Change 463 // the value type of I to reflect these changes if appropriate. 464 void visitPHINode(PHINode &I); 465 466 // Terminators 467 void visitReturnInst(ReturnInst &I); 468 void visitTerminatorInst(TerminatorInst &TI); 469 470 void visitCastInst(CastInst &I); 471 void visitSelectInst(SelectInst &I); 472 void visitBinaryOperator(Instruction &I); 473 void visitCmpInst(CmpInst &I); 474 void visitExtractElementInst(ExtractElementInst &I); 475 void visitInsertElementInst(InsertElementInst &I); 476 void visitShuffleVectorInst(ShuffleVectorInst &I); 477 void visitExtractValueInst(ExtractValueInst &EVI); 478 void visitInsertValueInst(InsertValueInst &IVI); 479 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 480 481 // Instructions that cannot be folded away. 482 void visitStoreInst (StoreInst &I); 483 void visitLoadInst (LoadInst &I); 484 void visitGetElementPtrInst(GetElementPtrInst &I); 485 void visitCallInst (CallInst &I) { 486 visitCallSite(&I); 487 } 488 void visitInvokeInst (InvokeInst &II) { 489 visitCallSite(&II); 490 visitTerminatorInst(II); 491 } 492 void visitCallSite (CallSite CS); 493 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 494 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 495 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 496 void visitFenceInst (FenceInst &I) { /*returns void*/ } 497 void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } 498 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 499 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 500 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 501 502 void visitInstruction(Instruction &I) { 503 // If a new instruction is added to LLVM that we don't handle. 504 dbgs() << "SCCP: Don't know how to handle: " << I << '\n'; 505 markAnythingOverdefined(&I); // Just in case 506 } 507 }; 508 509 } // end anonymous namespace 510 511 512 // getFeasibleSuccessors - Return a vector of booleans to indicate which 513 // successors are reachable from a given terminator instruction. 514 // 515 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 516 SmallVectorImpl<bool> &Succs) { 517 Succs.resize(TI.getNumSuccessors()); 518 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 519 if (BI->isUnconditional()) { 520 Succs[0] = true; 521 return; 522 } 523 524 LatticeVal BCValue = getValueState(BI->getCondition()); 525 ConstantInt *CI = BCValue.getConstantInt(); 526 if (CI == 0) { 527 // Overdefined condition variables, and branches on unfoldable constant 528 // conditions, mean the branch could go either way. 529 if (!BCValue.isUndefined()) 530 Succs[0] = Succs[1] = true; 531 return; 532 } 533 534 // Constant condition variables mean the branch can only go a single way. 535 Succs[CI->isZero()] = true; 536 return; 537 } 538 539 if (isa<InvokeInst>(TI)) { 540 // Invoke instructions successors are always executable. 541 Succs[0] = Succs[1] = true; 542 return; 543 } 544 545 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 546 if (!SI->getNumCases()) { 547 Succs[0] = true; 548 return; 549 } 550 LatticeVal SCValue = getValueState(SI->getCondition()); 551 ConstantInt *CI = SCValue.getConstantInt(); 552 553 if (CI == 0) { // Overdefined or undefined condition? 554 // All destinations are executable! 555 if (!SCValue.isUndefined()) 556 Succs.assign(TI.getNumSuccessors(), true); 557 return; 558 } 559 560 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; 561 return; 562 } 563 564 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 565 if (isa<IndirectBrInst>(&TI)) { 566 // Just mark all destinations executable! 567 Succs.assign(TI.getNumSuccessors(), true); 568 return; 569 } 570 571 #ifndef NDEBUG 572 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 573 #endif 574 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 575 } 576 577 578 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 579 // block to the 'To' basic block is currently feasible. 580 // 581 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 582 assert(BBExecutable.count(To) && "Dest should always be alive!"); 583 584 // Make sure the source basic block is executable!! 585 if (!BBExecutable.count(From)) return false; 586 587 // Check to make sure this edge itself is actually feasible now. 588 TerminatorInst *TI = From->getTerminator(); 589 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 590 if (BI->isUnconditional()) 591 return true; 592 593 LatticeVal BCValue = getValueState(BI->getCondition()); 594 595 // Overdefined condition variables mean the branch could go either way, 596 // undef conditions mean that neither edge is feasible yet. 597 ConstantInt *CI = BCValue.getConstantInt(); 598 if (CI == 0) 599 return !BCValue.isUndefined(); 600 601 // Constant condition variables mean the branch can only go a single way. 602 return BI->getSuccessor(CI->isZero()) == To; 603 } 604 605 // Invoke instructions successors are always executable. 606 if (isa<InvokeInst>(TI)) 607 return true; 608 609 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 610 if (SI->getNumCases() < 1) 611 return true; 612 613 LatticeVal SCValue = getValueState(SI->getCondition()); 614 ConstantInt *CI = SCValue.getConstantInt(); 615 616 if (CI == 0) 617 return !SCValue.isUndefined(); 618 619 return SI->findCaseValue(CI).getCaseSuccessor() == To; 620 } 621 622 // Just mark all destinations executable! 623 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 624 if (isa<IndirectBrInst>(TI)) 625 return true; 626 627 #ifndef NDEBUG 628 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 629 #endif 630 llvm_unreachable(0); 631 } 632 633 // visit Implementations - Something changed in this instruction, either an 634 // operand made a transition, or the instruction is newly executable. Change 635 // the value type of I to reflect these changes if appropriate. This method 636 // makes sure to do the following actions: 637 // 638 // 1. If a phi node merges two constants in, and has conflicting value coming 639 // from different branches, or if the PHI node merges in an overdefined 640 // value, then the PHI node becomes overdefined. 641 // 2. If a phi node merges only constants in, and they all agree on value, the 642 // PHI node becomes a constant value equal to that. 643 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 644 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 645 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 646 // 6. If a conditional branch has a value that is constant, make the selected 647 // destination executable 648 // 7. If a conditional branch has a value that is overdefined, make all 649 // successors executable. 650 // 651 void SCCPSolver::visitPHINode(PHINode &PN) { 652 // If this PN returns a struct, just mark the result overdefined. 653 // TODO: We could do a lot better than this if code actually uses this. 654 if (PN.getType()->isStructTy()) 655 return markAnythingOverdefined(&PN); 656 657 if (getValueState(&PN).isOverdefined()) 658 return; // Quick exit 659 660 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 661 // and slow us down a lot. Just mark them overdefined. 662 if (PN.getNumIncomingValues() > 64) 663 return markOverdefined(&PN); 664 665 // Look at all of the executable operands of the PHI node. If any of them 666 // are overdefined, the PHI becomes overdefined as well. If they are all 667 // constant, and they agree with each other, the PHI becomes the identical 668 // constant. If they are constant and don't agree, the PHI is overdefined. 669 // If there are no executable operands, the PHI remains undefined. 670 // 671 Constant *OperandVal = 0; 672 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 673 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 674 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 675 676 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 677 continue; 678 679 if (IV.isOverdefined()) // PHI node becomes overdefined! 680 return markOverdefined(&PN); 681 682 if (OperandVal == 0) { // Grab the first value. 683 OperandVal = IV.getConstant(); 684 continue; 685 } 686 687 // There is already a reachable operand. If we conflict with it, 688 // then the PHI node becomes overdefined. If we agree with it, we 689 // can continue on. 690 691 // Check to see if there are two different constants merging, if so, the PHI 692 // node is overdefined. 693 if (IV.getConstant() != OperandVal) 694 return markOverdefined(&PN); 695 } 696 697 // If we exited the loop, this means that the PHI node only has constant 698 // arguments that agree with each other(and OperandVal is the constant) or 699 // OperandVal is null because there are no defined incoming arguments. If 700 // this is the case, the PHI remains undefined. 701 // 702 if (OperandVal) 703 markConstant(&PN, OperandVal); // Acquire operand value 704 } 705 706 void SCCPSolver::visitReturnInst(ReturnInst &I) { 707 if (I.getNumOperands() == 0) return; // ret void 708 709 Function *F = I.getParent()->getParent(); 710 Value *ResultOp = I.getOperand(0); 711 712 // If we are tracking the return value of this function, merge it in. 713 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 714 DenseMap<Function*, LatticeVal>::iterator TFRVI = 715 TrackedRetVals.find(F); 716 if (TFRVI != TrackedRetVals.end()) { 717 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 718 return; 719 } 720 } 721 722 // Handle functions that return multiple values. 723 if (!TrackedMultipleRetVals.empty()) { 724 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 725 if (MRVFunctionsTracked.count(F)) 726 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 727 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 728 getStructValueState(ResultOp, i)); 729 730 } 731 } 732 733 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 734 SmallVector<bool, 16> SuccFeasible; 735 getFeasibleSuccessors(TI, SuccFeasible); 736 737 BasicBlock *BB = TI.getParent(); 738 739 // Mark all feasible successors executable. 740 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 741 if (SuccFeasible[i]) 742 markEdgeExecutable(BB, TI.getSuccessor(i)); 743 } 744 745 void SCCPSolver::visitCastInst(CastInst &I) { 746 LatticeVal OpSt = getValueState(I.getOperand(0)); 747 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 748 markOverdefined(&I); 749 else if (OpSt.isConstant()) // Propagate constant value 750 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 751 OpSt.getConstant(), I.getType())); 752 } 753 754 755 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 756 // If this returns a struct, mark all elements over defined, we don't track 757 // structs in structs. 758 if (EVI.getType()->isStructTy()) 759 return markAnythingOverdefined(&EVI); 760 761 // If this is extracting from more than one level of struct, we don't know. 762 if (EVI.getNumIndices() != 1) 763 return markOverdefined(&EVI); 764 765 Value *AggVal = EVI.getAggregateOperand(); 766 if (AggVal->getType()->isStructTy()) { 767 unsigned i = *EVI.idx_begin(); 768 LatticeVal EltVal = getStructValueState(AggVal, i); 769 mergeInValue(getValueState(&EVI), &EVI, EltVal); 770 } else { 771 // Otherwise, must be extracting from an array. 772 return markOverdefined(&EVI); 773 } 774 } 775 776 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 777 StructType *STy = dyn_cast<StructType>(IVI.getType()); 778 if (STy == 0) 779 return markOverdefined(&IVI); 780 781 // If this has more than one index, we can't handle it, drive all results to 782 // undef. 783 if (IVI.getNumIndices() != 1) 784 return markAnythingOverdefined(&IVI); 785 786 Value *Aggr = IVI.getAggregateOperand(); 787 unsigned Idx = *IVI.idx_begin(); 788 789 // Compute the result based on what we're inserting. 790 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 791 // This passes through all values that aren't the inserted element. 792 if (i != Idx) { 793 LatticeVal EltVal = getStructValueState(Aggr, i); 794 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 795 continue; 796 } 797 798 Value *Val = IVI.getInsertedValueOperand(); 799 if (Val->getType()->isStructTy()) 800 // We don't track structs in structs. 801 markOverdefined(getStructValueState(&IVI, i), &IVI); 802 else { 803 LatticeVal InVal = getValueState(Val); 804 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 805 } 806 } 807 } 808 809 void SCCPSolver::visitSelectInst(SelectInst &I) { 810 // If this select returns a struct, just mark the result overdefined. 811 // TODO: We could do a lot better than this if code actually uses this. 812 if (I.getType()->isStructTy()) 813 return markAnythingOverdefined(&I); 814 815 LatticeVal CondValue = getValueState(I.getCondition()); 816 if (CondValue.isUndefined()) 817 return; 818 819 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 820 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 821 mergeInValue(&I, getValueState(OpVal)); 822 return; 823 } 824 825 // Otherwise, the condition is overdefined or a constant we can't evaluate. 826 // See if we can produce something better than overdefined based on the T/F 827 // value. 828 LatticeVal TVal = getValueState(I.getTrueValue()); 829 LatticeVal FVal = getValueState(I.getFalseValue()); 830 831 // select ?, C, C -> C. 832 if (TVal.isConstant() && FVal.isConstant() && 833 TVal.getConstant() == FVal.getConstant()) 834 return markConstant(&I, FVal.getConstant()); 835 836 if (TVal.isUndefined()) // select ?, undef, X -> X. 837 return mergeInValue(&I, FVal); 838 if (FVal.isUndefined()) // select ?, X, undef -> X. 839 return mergeInValue(&I, TVal); 840 markOverdefined(&I); 841 } 842 843 // Handle Binary Operators. 844 void SCCPSolver::visitBinaryOperator(Instruction &I) { 845 LatticeVal V1State = getValueState(I.getOperand(0)); 846 LatticeVal V2State = getValueState(I.getOperand(1)); 847 848 LatticeVal &IV = ValueState[&I]; 849 if (IV.isOverdefined()) return; 850 851 if (V1State.isConstant() && V2State.isConstant()) 852 return markConstant(IV, &I, 853 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 854 V2State.getConstant())); 855 856 // If something is undef, wait for it to resolve. 857 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 858 return; 859 860 // Otherwise, one of our operands is overdefined. Try to produce something 861 // better than overdefined with some tricks. 862 863 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 864 // operand is overdefined. 865 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 866 LatticeVal *NonOverdefVal = 0; 867 if (!V1State.isOverdefined()) 868 NonOverdefVal = &V1State; 869 else if (!V2State.isOverdefined()) 870 NonOverdefVal = &V2State; 871 872 if (NonOverdefVal) { 873 if (NonOverdefVal->isUndefined()) { 874 // Could annihilate value. 875 if (I.getOpcode() == Instruction::And) 876 markConstant(IV, &I, Constant::getNullValue(I.getType())); 877 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 878 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 879 else 880 markConstant(IV, &I, 881 Constant::getAllOnesValue(I.getType())); 882 return; 883 } 884 885 if (I.getOpcode() == Instruction::And) { 886 // X and 0 = 0 887 if (NonOverdefVal->getConstant()->isNullValue()) 888 return markConstant(IV, &I, NonOverdefVal->getConstant()); 889 } else { 890 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 891 if (CI->isAllOnesValue()) // X or -1 = -1 892 return markConstant(IV, &I, NonOverdefVal->getConstant()); 893 } 894 } 895 } 896 897 898 markOverdefined(&I); 899 } 900 901 // Handle ICmpInst instruction. 902 void SCCPSolver::visitCmpInst(CmpInst &I) { 903 LatticeVal V1State = getValueState(I.getOperand(0)); 904 LatticeVal V2State = getValueState(I.getOperand(1)); 905 906 LatticeVal &IV = ValueState[&I]; 907 if (IV.isOverdefined()) return; 908 909 if (V1State.isConstant() && V2State.isConstant()) 910 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 911 V1State.getConstant(), 912 V2State.getConstant())); 913 914 // If operands are still undefined, wait for it to resolve. 915 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 916 return; 917 918 markOverdefined(&I); 919 } 920 921 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 922 // TODO : SCCP does not handle vectors properly. 923 return markOverdefined(&I); 924 925 #if 0 926 LatticeVal &ValState = getValueState(I.getOperand(0)); 927 LatticeVal &IdxState = getValueState(I.getOperand(1)); 928 929 if (ValState.isOverdefined() || IdxState.isOverdefined()) 930 markOverdefined(&I); 931 else if(ValState.isConstant() && IdxState.isConstant()) 932 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 933 IdxState.getConstant())); 934 #endif 935 } 936 937 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 938 // TODO : SCCP does not handle vectors properly. 939 return markOverdefined(&I); 940 #if 0 941 LatticeVal &ValState = getValueState(I.getOperand(0)); 942 LatticeVal &EltState = getValueState(I.getOperand(1)); 943 LatticeVal &IdxState = getValueState(I.getOperand(2)); 944 945 if (ValState.isOverdefined() || EltState.isOverdefined() || 946 IdxState.isOverdefined()) 947 markOverdefined(&I); 948 else if(ValState.isConstant() && EltState.isConstant() && 949 IdxState.isConstant()) 950 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 951 EltState.getConstant(), 952 IdxState.getConstant())); 953 else if (ValState.isUndefined() && EltState.isConstant() && 954 IdxState.isConstant()) 955 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 956 EltState.getConstant(), 957 IdxState.getConstant())); 958 #endif 959 } 960 961 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 962 // TODO : SCCP does not handle vectors properly. 963 return markOverdefined(&I); 964 #if 0 965 LatticeVal &V1State = getValueState(I.getOperand(0)); 966 LatticeVal &V2State = getValueState(I.getOperand(1)); 967 LatticeVal &MaskState = getValueState(I.getOperand(2)); 968 969 if (MaskState.isUndefined() || 970 (V1State.isUndefined() && V2State.isUndefined())) 971 return; // Undefined output if mask or both inputs undefined. 972 973 if (V1State.isOverdefined() || V2State.isOverdefined() || 974 MaskState.isOverdefined()) { 975 markOverdefined(&I); 976 } else { 977 // A mix of constant/undef inputs. 978 Constant *V1 = V1State.isConstant() ? 979 V1State.getConstant() : UndefValue::get(I.getType()); 980 Constant *V2 = V2State.isConstant() ? 981 V2State.getConstant() : UndefValue::get(I.getType()); 982 Constant *Mask = MaskState.isConstant() ? 983 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 984 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 985 } 986 #endif 987 } 988 989 // Handle getelementptr instructions. If all operands are constants then we 990 // can turn this into a getelementptr ConstantExpr. 991 // 992 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 993 if (ValueState[&I].isOverdefined()) return; 994 995 SmallVector<Constant*, 8> Operands; 996 Operands.reserve(I.getNumOperands()); 997 998 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 999 LatticeVal State = getValueState(I.getOperand(i)); 1000 if (State.isUndefined()) 1001 return; // Operands are not resolved yet. 1002 1003 if (State.isOverdefined()) 1004 return markOverdefined(&I); 1005 1006 assert(State.isConstant() && "Unknown state!"); 1007 Operands.push_back(State.getConstant()); 1008 } 1009 1010 Constant *Ptr = Operands[0]; 1011 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); 1012 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); 1013 } 1014 1015 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1016 // If this store is of a struct, ignore it. 1017 if (SI.getOperand(0)->getType()->isStructTy()) 1018 return; 1019 1020 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1021 return; 1022 1023 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1024 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1025 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1026 1027 // Get the value we are storing into the global, then merge it. 1028 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1029 if (I->second.isOverdefined()) 1030 TrackedGlobals.erase(I); // No need to keep tracking this! 1031 } 1032 1033 1034 // Handle load instructions. If the operand is a constant pointer to a constant 1035 // global, we can replace the load with the loaded constant value! 1036 void SCCPSolver::visitLoadInst(LoadInst &I) { 1037 // If this load is of a struct, just mark the result overdefined. 1038 if (I.getType()->isStructTy()) 1039 return markAnythingOverdefined(&I); 1040 1041 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1042 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1043 1044 LatticeVal &IV = ValueState[&I]; 1045 if (IV.isOverdefined()) return; 1046 1047 if (!PtrVal.isConstant() || I.isVolatile()) 1048 return markOverdefined(IV, &I); 1049 1050 Constant *Ptr = PtrVal.getConstant(); 1051 1052 // load null -> null 1053 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1054 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1055 1056 // Transform load (constant global) into the value loaded. 1057 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1058 if (!TrackedGlobals.empty()) { 1059 // If we are tracking this global, merge in the known value for it. 1060 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1061 TrackedGlobals.find(GV); 1062 if (It != TrackedGlobals.end()) { 1063 mergeInValue(IV, &I, It->second); 1064 return; 1065 } 1066 } 1067 } 1068 1069 // Transform load from a constant into a constant if possible. 1070 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1071 return markConstant(IV, &I, C); 1072 1073 // Otherwise we cannot say for certain what value this load will produce. 1074 // Bail out. 1075 markOverdefined(IV, &I); 1076 } 1077 1078 void SCCPSolver::visitCallSite(CallSite CS) { 1079 Function *F = CS.getCalledFunction(); 1080 Instruction *I = CS.getInstruction(); 1081 1082 // The common case is that we aren't tracking the callee, either because we 1083 // are not doing interprocedural analysis or the callee is indirect, or is 1084 // external. Handle these cases first. 1085 if (F == 0 || F->isDeclaration()) { 1086 CallOverdefined: 1087 // Void return and not tracking callee, just bail. 1088 if (I->getType()->isVoidTy()) return; 1089 1090 // Otherwise, if we have a single return value case, and if the function is 1091 // a declaration, maybe we can constant fold it. 1092 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1093 canConstantFoldCallTo(F)) { 1094 1095 SmallVector<Constant*, 8> Operands; 1096 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1097 AI != E; ++AI) { 1098 LatticeVal State = getValueState(*AI); 1099 1100 if (State.isUndefined()) 1101 return; // Operands are not resolved yet. 1102 if (State.isOverdefined()) 1103 return markOverdefined(I); 1104 assert(State.isConstant() && "Unknown state!"); 1105 Operands.push_back(State.getConstant()); 1106 } 1107 1108 // If we can constant fold this, mark the result of the call as a 1109 // constant. 1110 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1111 return markConstant(I, C); 1112 } 1113 1114 // Otherwise, we don't know anything about this call, mark it overdefined. 1115 return markAnythingOverdefined(I); 1116 } 1117 1118 // If this is a local function that doesn't have its address taken, mark its 1119 // entry block executable and merge in the actual arguments to the call into 1120 // the formal arguments of the function. 1121 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1122 MarkBlockExecutable(F->begin()); 1123 1124 // Propagate information from this call site into the callee. 1125 CallSite::arg_iterator CAI = CS.arg_begin(); 1126 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1127 AI != E; ++AI, ++CAI) { 1128 // If this argument is byval, and if the function is not readonly, there 1129 // will be an implicit copy formed of the input aggregate. 1130 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1131 markOverdefined(AI); 1132 continue; 1133 } 1134 1135 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1136 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1137 LatticeVal CallArg = getStructValueState(*CAI, i); 1138 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1139 } 1140 } else { 1141 mergeInValue(AI, getValueState(*CAI)); 1142 } 1143 } 1144 } 1145 1146 // If this is a single/zero retval case, see if we're tracking the function. 1147 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1148 if (!MRVFunctionsTracked.count(F)) 1149 goto CallOverdefined; // Not tracking this callee. 1150 1151 // If we are tracking this callee, propagate the result of the function 1152 // into this call site. 1153 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1154 mergeInValue(getStructValueState(I, i), I, 1155 TrackedMultipleRetVals[std::make_pair(F, i)]); 1156 } else { 1157 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1158 if (TFRVI == TrackedRetVals.end()) 1159 goto CallOverdefined; // Not tracking this callee. 1160 1161 // If so, propagate the return value of the callee into this call result. 1162 mergeInValue(I, TFRVI->second); 1163 } 1164 } 1165 1166 void SCCPSolver::Solve() { 1167 // Process the work lists until they are empty! 1168 while (!BBWorkList.empty() || !InstWorkList.empty() || 1169 !OverdefinedInstWorkList.empty()) { 1170 // Process the overdefined instruction's work list first, which drives other 1171 // things to overdefined more quickly. 1172 while (!OverdefinedInstWorkList.empty()) { 1173 Value *I = OverdefinedInstWorkList.pop_back_val(); 1174 1175 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1176 1177 // "I" got into the work list because it either made the transition from 1178 // bottom to constant, or to overdefined. 1179 // 1180 // Anything on this worklist that is overdefined need not be visited 1181 // since all of its users will have already been marked as overdefined 1182 // Update all of the users of this instruction's value. 1183 // 1184 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1185 UI != E; ++UI) 1186 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1187 OperandChangedState(I); 1188 } 1189 1190 // Process the instruction work list. 1191 while (!InstWorkList.empty()) { 1192 Value *I = InstWorkList.pop_back_val(); 1193 1194 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1195 1196 // "I" got into the work list because it made the transition from undef to 1197 // constant. 1198 // 1199 // Anything on this worklist that is overdefined need not be visited 1200 // since all of its users will have already been marked as overdefined. 1201 // Update all of the users of this instruction's value. 1202 // 1203 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1204 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1205 UI != E; ++UI) 1206 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1207 OperandChangedState(I); 1208 } 1209 1210 // Process the basic block work list. 1211 while (!BBWorkList.empty()) { 1212 BasicBlock *BB = BBWorkList.back(); 1213 BBWorkList.pop_back(); 1214 1215 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1216 1217 // Notify all instructions in this basic block that they are newly 1218 // executable. 1219 visit(BB); 1220 } 1221 } 1222 } 1223 1224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1225 /// that branches on undef values cannot reach any of their successors. 1226 /// However, this is not a safe assumption. After we solve dataflow, this 1227 /// method should be use to handle this. If this returns true, the solver 1228 /// should be rerun. 1229 /// 1230 /// This method handles this by finding an unresolved branch and marking it one 1231 /// of the edges from the block as being feasible, even though the condition 1232 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1233 /// CFG and only slightly pessimizes the analysis results (by marking one, 1234 /// potentially infeasible, edge feasible). This cannot usefully modify the 1235 /// constraints on the condition of the branch, as that would impact other users 1236 /// of the value. 1237 /// 1238 /// This scan also checks for values that use undefs, whose results are actually 1239 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1240 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1241 /// even if X isn't defined. 1242 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1243 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1244 if (!BBExecutable.count(BB)) 1245 continue; 1246 1247 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1248 // Look for instructions which produce undef values. 1249 if (I->getType()->isVoidTy()) continue; 1250 1251 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1252 // Only a few things that can be structs matter for undef. 1253 1254 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1255 if (CallSite CS = CallSite(I)) 1256 if (Function *F = CS.getCalledFunction()) 1257 if (MRVFunctionsTracked.count(F)) 1258 continue; 1259 1260 // extractvalue and insertvalue don't need to be marked; they are 1261 // tracked as precisely as their operands. 1262 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1263 continue; 1264 1265 // Send the results of everything else to overdefined. We could be 1266 // more precise than this but it isn't worth bothering. 1267 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1268 LatticeVal &LV = getStructValueState(I, i); 1269 if (LV.isUndefined()) 1270 markOverdefined(LV, I); 1271 } 1272 continue; 1273 } 1274 1275 LatticeVal &LV = getValueState(I); 1276 if (!LV.isUndefined()) continue; 1277 1278 // extractvalue is safe; check here because the argument is a struct. 1279 if (isa<ExtractValueInst>(I)) 1280 continue; 1281 1282 // Compute the operand LatticeVals, for convenience below. 1283 // Anything taking a struct is conservatively assumed to require 1284 // overdefined markings. 1285 if (I->getOperand(0)->getType()->isStructTy()) { 1286 markOverdefined(I); 1287 return true; 1288 } 1289 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1290 LatticeVal Op1LV; 1291 if (I->getNumOperands() == 2) { 1292 if (I->getOperand(1)->getType()->isStructTy()) { 1293 markOverdefined(I); 1294 return true; 1295 } 1296 1297 Op1LV = getValueState(I->getOperand(1)); 1298 } 1299 // If this is an instructions whose result is defined even if the input is 1300 // not fully defined, propagate the information. 1301 Type *ITy = I->getType(); 1302 switch (I->getOpcode()) { 1303 case Instruction::Add: 1304 case Instruction::Sub: 1305 case Instruction::Trunc: 1306 case Instruction::FPTrunc: 1307 case Instruction::BitCast: 1308 break; // Any undef -> undef 1309 case Instruction::FSub: 1310 case Instruction::FAdd: 1311 case Instruction::FMul: 1312 case Instruction::FDiv: 1313 case Instruction::FRem: 1314 // Floating-point binary operation: be conservative. 1315 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1316 markForcedConstant(I, Constant::getNullValue(ITy)); 1317 else 1318 markOverdefined(I); 1319 return true; 1320 case Instruction::ZExt: 1321 case Instruction::SExt: 1322 case Instruction::FPToUI: 1323 case Instruction::FPToSI: 1324 case Instruction::FPExt: 1325 case Instruction::PtrToInt: 1326 case Instruction::IntToPtr: 1327 case Instruction::SIToFP: 1328 case Instruction::UIToFP: 1329 // undef -> 0; some outputs are impossible 1330 markForcedConstant(I, Constant::getNullValue(ITy)); 1331 return true; 1332 case Instruction::Mul: 1333 case Instruction::And: 1334 // Both operands undef -> undef 1335 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1336 break; 1337 // undef * X -> 0. X could be zero. 1338 // undef & X -> 0. X could be zero. 1339 markForcedConstant(I, Constant::getNullValue(ITy)); 1340 return true; 1341 1342 case Instruction::Or: 1343 // Both operands undef -> undef 1344 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1345 break; 1346 // undef | X -> -1. X could be -1. 1347 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1348 return true; 1349 1350 case Instruction::Xor: 1351 // undef ^ undef -> 0; strictly speaking, this is not strictly 1352 // necessary, but we try to be nice to people who expect this 1353 // behavior in simple cases 1354 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1355 markForcedConstant(I, Constant::getNullValue(ITy)); 1356 return true; 1357 } 1358 // undef ^ X -> undef 1359 break; 1360 1361 case Instruction::SDiv: 1362 case Instruction::UDiv: 1363 case Instruction::SRem: 1364 case Instruction::URem: 1365 // X / undef -> undef. No change. 1366 // X % undef -> undef. No change. 1367 if (Op1LV.isUndefined()) break; 1368 1369 // undef / X -> 0. X could be maxint. 1370 // undef % X -> 0. X could be 1. 1371 markForcedConstant(I, Constant::getNullValue(ITy)); 1372 return true; 1373 1374 case Instruction::AShr: 1375 // X >>a undef -> undef. 1376 if (Op1LV.isUndefined()) break; 1377 1378 // undef >>a X -> all ones 1379 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1380 return true; 1381 case Instruction::LShr: 1382 case Instruction::Shl: 1383 // X << undef -> undef. 1384 // X >> undef -> undef. 1385 if (Op1LV.isUndefined()) break; 1386 1387 // undef << X -> 0 1388 // undef >> X -> 0 1389 markForcedConstant(I, Constant::getNullValue(ITy)); 1390 return true; 1391 case Instruction::Select: 1392 Op1LV = getValueState(I->getOperand(1)); 1393 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1394 if (Op0LV.isUndefined()) { 1395 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1396 Op1LV = getValueState(I->getOperand(2)); 1397 } else if (Op1LV.isUndefined()) { 1398 // c ? undef : undef -> undef. No change. 1399 Op1LV = getValueState(I->getOperand(2)); 1400 if (Op1LV.isUndefined()) 1401 break; 1402 // Otherwise, c ? undef : x -> x. 1403 } else { 1404 // Leave Op1LV as Operand(1)'s LatticeValue. 1405 } 1406 1407 if (Op1LV.isConstant()) 1408 markForcedConstant(I, Op1LV.getConstant()); 1409 else 1410 markOverdefined(I); 1411 return true; 1412 case Instruction::Load: 1413 // A load here means one of two things: a load of undef from a global, 1414 // a load from an unknown pointer. Either way, having it return undef 1415 // is okay. 1416 break; 1417 case Instruction::ICmp: 1418 // X == undef -> undef. Other comparisons get more complicated. 1419 if (cast<ICmpInst>(I)->isEquality()) 1420 break; 1421 markOverdefined(I); 1422 return true; 1423 case Instruction::Call: 1424 case Instruction::Invoke: { 1425 // There are two reasons a call can have an undef result 1426 // 1. It could be tracked. 1427 // 2. It could be constant-foldable. 1428 // Because of the way we solve return values, tracked calls must 1429 // never be marked overdefined in ResolvedUndefsIn. 1430 if (Function *F = CallSite(I).getCalledFunction()) 1431 if (TrackedRetVals.count(F)) 1432 break; 1433 1434 // If the call is constant-foldable, we mark it overdefined because 1435 // we do not know what return values are valid. 1436 markOverdefined(I); 1437 return true; 1438 } 1439 default: 1440 // If we don't know what should happen here, conservatively mark it 1441 // overdefined. 1442 markOverdefined(I); 1443 return true; 1444 } 1445 } 1446 1447 // Check to see if we have a branch or switch on an undefined value. If so 1448 // we force the branch to go one way or the other to make the successor 1449 // values live. It doesn't really matter which way we force it. 1450 TerminatorInst *TI = BB->getTerminator(); 1451 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1452 if (!BI->isConditional()) continue; 1453 if (!getValueState(BI->getCondition()).isUndefined()) 1454 continue; 1455 1456 // If the input to SCCP is actually branch on undef, fix the undef to 1457 // false. 1458 if (isa<UndefValue>(BI->getCondition())) { 1459 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1460 markEdgeExecutable(BB, TI->getSuccessor(1)); 1461 return true; 1462 } 1463 1464 // Otherwise, it is a branch on a symbolic value which is currently 1465 // considered to be undef. Handle this by forcing the input value to the 1466 // branch to false. 1467 markForcedConstant(BI->getCondition(), 1468 ConstantInt::getFalse(TI->getContext())); 1469 return true; 1470 } 1471 1472 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1473 if (!SI->getNumCases()) 1474 continue; 1475 if (!getValueState(SI->getCondition()).isUndefined()) 1476 continue; 1477 1478 // If the input to SCCP is actually switch on undef, fix the undef to 1479 // the first constant. 1480 if (isa<UndefValue>(SI->getCondition())) { 1481 SI->setCondition(SI->case_begin().getCaseValue()); 1482 markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor()); 1483 return true; 1484 } 1485 1486 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); 1487 return true; 1488 } 1489 } 1490 1491 return false; 1492 } 1493 1494 1495 namespace { 1496 //===--------------------------------------------------------------------===// 1497 // 1498 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1499 /// Sparse Conditional Constant Propagator. 1500 /// 1501 struct SCCP : public FunctionPass { 1502 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1503 AU.addRequired<TargetLibraryInfo>(); 1504 } 1505 static char ID; // Pass identification, replacement for typeid 1506 SCCP() : FunctionPass(ID) { 1507 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1508 } 1509 1510 // runOnFunction - Run the Sparse Conditional Constant Propagation 1511 // algorithm, and return true if the function was modified. 1512 // 1513 bool runOnFunction(Function &F); 1514 }; 1515 } // end anonymous namespace 1516 1517 char SCCP::ID = 0; 1518 INITIALIZE_PASS(SCCP, "sccp", 1519 "Sparse Conditional Constant Propagation", false, false) 1520 1521 // createSCCPPass - This is the public interface to this file. 1522 FunctionPass *llvm::createSCCPPass() { 1523 return new SCCP(); 1524 } 1525 1526 static void DeleteInstructionInBlock(BasicBlock *BB) { 1527 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1528 ++NumDeadBlocks; 1529 1530 // Check to see if there are non-terminating instructions to delete. 1531 if (isa<TerminatorInst>(BB->begin())) 1532 return; 1533 1534 // Delete the instructions backwards, as it has a reduced likelihood of having 1535 // to update as many def-use and use-def chains. 1536 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1537 while (EndInst != BB->begin()) { 1538 // Delete the next to last instruction. 1539 BasicBlock::iterator I = EndInst; 1540 Instruction *Inst = --I; 1541 if (!Inst->use_empty()) 1542 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1543 if (isa<LandingPadInst>(Inst)) { 1544 EndInst = Inst; 1545 continue; 1546 } 1547 BB->getInstList().erase(Inst); 1548 ++NumInstRemoved; 1549 } 1550 } 1551 1552 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1553 // and return true if the function was modified. 1554 // 1555 bool SCCP::runOnFunction(Function &F) { 1556 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1557 const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); 1558 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1559 SCCPSolver Solver(TD, TLI); 1560 1561 // Mark the first block of the function as being executable. 1562 Solver.MarkBlockExecutable(F.begin()); 1563 1564 // Mark all arguments to the function as being overdefined. 1565 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1566 Solver.markAnythingOverdefined(AI); 1567 1568 // Solve for constants. 1569 bool ResolvedUndefs = true; 1570 while (ResolvedUndefs) { 1571 Solver.Solve(); 1572 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1573 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1574 } 1575 1576 bool MadeChanges = false; 1577 1578 // If we decided that there are basic blocks that are dead in this function, 1579 // delete their contents now. Note that we cannot actually delete the blocks, 1580 // as we cannot modify the CFG of the function. 1581 1582 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1583 if (!Solver.isBlockExecutable(BB)) { 1584 DeleteInstructionInBlock(BB); 1585 MadeChanges = true; 1586 continue; 1587 } 1588 1589 // Iterate over all of the instructions in a function, replacing them with 1590 // constants if we have found them to be of constant values. 1591 // 1592 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1593 Instruction *Inst = BI++; 1594 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1595 continue; 1596 1597 // TODO: Reconstruct structs from their elements. 1598 if (Inst->getType()->isStructTy()) 1599 continue; 1600 1601 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1602 if (IV.isOverdefined()) 1603 continue; 1604 1605 Constant *Const = IV.isConstant() 1606 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1607 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1608 1609 // Replaces all of the uses of a variable with uses of the constant. 1610 Inst->replaceAllUsesWith(Const); 1611 1612 // Delete the instruction. 1613 Inst->eraseFromParent(); 1614 1615 // Hey, we just changed something! 1616 MadeChanges = true; 1617 ++NumInstRemoved; 1618 } 1619 } 1620 1621 return MadeChanges; 1622 } 1623 1624 namespace { 1625 //===--------------------------------------------------------------------===// 1626 // 1627 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1628 /// Constant Propagation. 1629 /// 1630 struct IPSCCP : public ModulePass { 1631 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1632 AU.addRequired<TargetLibraryInfo>(); 1633 } 1634 static char ID; 1635 IPSCCP() : ModulePass(ID) { 1636 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1637 } 1638 bool runOnModule(Module &M); 1639 }; 1640 } // end anonymous namespace 1641 1642 char IPSCCP::ID = 0; 1643 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1644 "Interprocedural Sparse Conditional Constant Propagation", 1645 false, false) 1646 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1647 INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1648 "Interprocedural Sparse Conditional Constant Propagation", 1649 false, false) 1650 1651 // createIPSCCPPass - This is the public interface to this file. 1652 ModulePass *llvm::createIPSCCPPass() { 1653 return new IPSCCP(); 1654 } 1655 1656 1657 static bool AddressIsTaken(const GlobalValue *GV) { 1658 // Delete any dead constantexpr klingons. 1659 GV->removeDeadConstantUsers(); 1660 1661 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1662 UI != E; ++UI) { 1663 const User *U = *UI; 1664 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 1665 if (SI->getOperand(0) == GV || SI->isVolatile()) 1666 return true; // Storing addr of GV. 1667 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { 1668 // Make sure we are calling the function, not passing the address. 1669 ImmutableCallSite CS(cast<Instruction>(U)); 1670 if (!CS.isCallee(UI)) 1671 return true; 1672 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1673 if (LI->isVolatile()) 1674 return true; 1675 } else if (isa<BlockAddress>(U)) { 1676 // blockaddress doesn't take the address of the function, it takes addr 1677 // of label. 1678 } else { 1679 return true; 1680 } 1681 } 1682 return false; 1683 } 1684 1685 bool IPSCCP::runOnModule(Module &M) { 1686 const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); 1687 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1688 SCCPSolver Solver(TD, TLI); 1689 1690 // AddressTakenFunctions - This set keeps track of the address-taken functions 1691 // that are in the input. As IPSCCP runs through and simplifies code, 1692 // functions that were address taken can end up losing their 1693 // address-taken-ness. Because of this, we keep track of their addresses from 1694 // the first pass so we can use them for the later simplification pass. 1695 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1696 1697 // Loop over all functions, marking arguments to those with their addresses 1698 // taken or that are external as overdefined. 1699 // 1700 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1701 if (F->isDeclaration()) 1702 continue; 1703 1704 // If this is a strong or ODR definition of this function, then we can 1705 // propagate information about its result into callsites of it. 1706 if (!F->mayBeOverridden()) 1707 Solver.AddTrackedFunction(F); 1708 1709 // If this function only has direct calls that we can see, we can track its 1710 // arguments and return value aggressively, and can assume it is not called 1711 // unless we see evidence to the contrary. 1712 if (F->hasLocalLinkage()) { 1713 if (AddressIsTaken(F)) 1714 AddressTakenFunctions.insert(F); 1715 else { 1716 Solver.AddArgumentTrackedFunction(F); 1717 continue; 1718 } 1719 } 1720 1721 // Assume the function is called. 1722 Solver.MarkBlockExecutable(F->begin()); 1723 1724 // Assume nothing about the incoming arguments. 1725 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1726 AI != E; ++AI) 1727 Solver.markAnythingOverdefined(AI); 1728 } 1729 1730 // Loop over global variables. We inform the solver about any internal global 1731 // variables that do not have their 'addresses taken'. If they don't have 1732 // their addresses taken, we can propagate constants through them. 1733 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1734 G != E; ++G) 1735 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1736 Solver.TrackValueOfGlobalVariable(G); 1737 1738 // Solve for constants. 1739 bool ResolvedUndefs = true; 1740 while (ResolvedUndefs) { 1741 Solver.Solve(); 1742 1743 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1744 ResolvedUndefs = false; 1745 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1746 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1747 } 1748 1749 bool MadeChanges = false; 1750 1751 // Iterate over all of the instructions in the module, replacing them with 1752 // constants if we have found them to be of constant values. 1753 // 1754 SmallVector<BasicBlock*, 512> BlocksToErase; 1755 1756 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1757 if (Solver.isBlockExecutable(F->begin())) { 1758 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1759 AI != E; ++AI) { 1760 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1761 1762 // TODO: Could use getStructLatticeValueFor to find out if the entire 1763 // result is a constant and replace it entirely if so. 1764 1765 LatticeVal IV = Solver.getLatticeValueFor(AI); 1766 if (IV.isOverdefined()) continue; 1767 1768 Constant *CST = IV.isConstant() ? 1769 IV.getConstant() : UndefValue::get(AI->getType()); 1770 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1771 1772 // Replaces all of the uses of a variable with uses of the 1773 // constant. 1774 AI->replaceAllUsesWith(CST); 1775 ++IPNumArgsElimed; 1776 } 1777 } 1778 1779 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1780 if (!Solver.isBlockExecutable(BB)) { 1781 DeleteInstructionInBlock(BB); 1782 MadeChanges = true; 1783 1784 TerminatorInst *TI = BB->getTerminator(); 1785 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1786 BasicBlock *Succ = TI->getSuccessor(i); 1787 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1788 TI->getSuccessor(i)->removePredecessor(BB); 1789 } 1790 if (!TI->use_empty()) 1791 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1792 TI->eraseFromParent(); 1793 1794 if (&*BB != &F->front()) 1795 BlocksToErase.push_back(BB); 1796 else 1797 new UnreachableInst(M.getContext(), BB); 1798 continue; 1799 } 1800 1801 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1802 Instruction *Inst = BI++; 1803 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1804 continue; 1805 1806 // TODO: Could use getStructLatticeValueFor to find out if the entire 1807 // result is a constant and replace it entirely if so. 1808 1809 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1810 if (IV.isOverdefined()) 1811 continue; 1812 1813 Constant *Const = IV.isConstant() 1814 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1815 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1816 1817 // Replaces all of the uses of a variable with uses of the 1818 // constant. 1819 Inst->replaceAllUsesWith(Const); 1820 1821 // Delete the instruction. 1822 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1823 Inst->eraseFromParent(); 1824 1825 // Hey, we just changed something! 1826 MadeChanges = true; 1827 ++IPNumInstRemoved; 1828 } 1829 } 1830 1831 // Now that all instructions in the function are constant folded, erase dead 1832 // blocks, because we can now use ConstantFoldTerminator to get rid of 1833 // in-edges. 1834 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1835 // If there are any PHI nodes in this successor, drop entries for BB now. 1836 BasicBlock *DeadBB = BlocksToErase[i]; 1837 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 1838 UI != UE; ) { 1839 // Grab the user and then increment the iterator early, as the user 1840 // will be deleted. Step past all adjacent uses from the same user. 1841 Instruction *I = dyn_cast<Instruction>(*UI); 1842 do { ++UI; } while (UI != UE && *UI == I); 1843 1844 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1845 if (!I) continue; 1846 1847 bool Folded = ConstantFoldTerminator(I->getParent()); 1848 if (!Folded) { 1849 // The constant folder may not have been able to fold the terminator 1850 // if this is a branch or switch on undef. Fold it manually as a 1851 // branch to the first successor. 1852 #ifndef NDEBUG 1853 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1854 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1855 "Branch should be foldable!"); 1856 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1857 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1858 } else { 1859 llvm_unreachable("Didn't fold away reference to block!"); 1860 } 1861 #endif 1862 1863 // Make this an uncond branch to the first successor. 1864 TerminatorInst *TI = I->getParent()->getTerminator(); 1865 BranchInst::Create(TI->getSuccessor(0), TI); 1866 1867 // Remove entries in successor phi nodes to remove edges. 1868 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1869 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1870 1871 // Remove the old terminator. 1872 TI->eraseFromParent(); 1873 } 1874 } 1875 1876 // Finally, delete the basic block. 1877 F->getBasicBlockList().erase(DeadBB); 1878 } 1879 BlocksToErase.clear(); 1880 } 1881 1882 // If we inferred constant or undef return values for a function, we replaced 1883 // all call uses with the inferred value. This means we don't need to bother 1884 // actually returning anything from the function. Replace all return 1885 // instructions with return undef. 1886 // 1887 // Do this in two stages: first identify the functions we should process, then 1888 // actually zap their returns. This is important because we can only do this 1889 // if the address of the function isn't taken. In cases where a return is the 1890 // last use of a function, the order of processing functions would affect 1891 // whether other functions are optimizable. 1892 SmallVector<ReturnInst*, 8> ReturnsToZap; 1893 1894 // TODO: Process multiple value ret instructions also. 1895 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1896 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1897 E = RV.end(); I != E; ++I) { 1898 Function *F = I->first; 1899 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1900 continue; 1901 1902 // We can only do this if we know that nothing else can call the function. 1903 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1904 continue; 1905 1906 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1907 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1908 if (!isa<UndefValue>(RI->getOperand(0))) 1909 ReturnsToZap.push_back(RI); 1910 } 1911 1912 // Zap all returns which we've identified as zap to change. 1913 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1914 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1915 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1916 } 1917 1918 // If we inferred constant or undef values for globals variables, we can 1919 // delete the global and any stores that remain to it. 1920 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1921 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1922 E = TG.end(); I != E; ++I) { 1923 GlobalVariable *GV = I->first; 1924 assert(!I->second.isOverdefined() && 1925 "Overdefined values should have been taken out of the map!"); 1926 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1927 while (!GV->use_empty()) { 1928 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1929 SI->eraseFromParent(); 1930 } 1931 M.getGlobalList().erase(GV); 1932 ++IPNumGlobalConst; 1933 } 1934 1935 return MadeChanges; 1936 } 1937