Home | History | Annotate | Download | only in Mips
      1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsTargetLowering specialized for mips16.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #define DEBUG_TYPE "mips-lower"
     14 #include "Mips16ISelLowering.h"
     15 #include "MipsRegisterInfo.h"
     16 #include "MipsTargetMachine.h"
     17 #include "MCTargetDesc/MipsBaseInfo.h"
     18 #include "llvm/CodeGen/MachineInstrBuilder.h"
     19 #include "llvm/Support/CommandLine.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 
     22 using namespace llvm;
     23 
     24 static cl::opt<bool> DontExpandCondPseudos16(
     25   "mips16-dont-expand-cond-pseudo",
     26   cl::init(false),
     27   cl::desc("Dont expand conditional move related "
     28            "pseudos for Mips 16"),
     29   cl::Hidden);
     30 
     31 namespace {
     32 struct Mips16Libcall {
     33   RTLIB::Libcall Libcall;
     34   const char *Name;
     35 
     36   bool operator<(const Mips16Libcall &RHS) const {
     37     return std::strcmp(Name, RHS.Name) < 0;
     38   }
     39 };
     40 
     41 struct Mips16IntrinsicHelperType{
     42   const char* Name;
     43   const char* Helper;
     44 
     45   bool operator<(const Mips16IntrinsicHelperType &RHS) const {
     46     return std::strcmp(Name, RHS.Name) < 0;
     47   }
     48   bool operator==(const Mips16IntrinsicHelperType &RHS) const {
     49     return std::strcmp(Name, RHS.Name) == 0;
     50   }
     51 };
     52 }
     53 
     54 // Libcalls for which no helper is generated. Sorted by name for binary search.
     55 static const Mips16Libcall HardFloatLibCalls[] = {
     56   { RTLIB::ADD_F64, "__mips16_adddf3" },
     57   { RTLIB::ADD_F32, "__mips16_addsf3" },
     58   { RTLIB::DIV_F64, "__mips16_divdf3" },
     59   { RTLIB::DIV_F32, "__mips16_divsf3" },
     60   { RTLIB::OEQ_F64, "__mips16_eqdf2" },
     61   { RTLIB::OEQ_F32, "__mips16_eqsf2" },
     62   { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
     63   { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
     64   { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
     65   { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
     66   { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
     67   { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
     68   { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
     69   { RTLIB::OGE_F64, "__mips16_gedf2" },
     70   { RTLIB::OGE_F32, "__mips16_gesf2" },
     71   { RTLIB::OGT_F64, "__mips16_gtdf2" },
     72   { RTLIB::OGT_F32, "__mips16_gtsf2" },
     73   { RTLIB::OLE_F64, "__mips16_ledf2" },
     74   { RTLIB::OLE_F32, "__mips16_lesf2" },
     75   { RTLIB::OLT_F64, "__mips16_ltdf2" },
     76   { RTLIB::OLT_F32, "__mips16_ltsf2" },
     77   { RTLIB::MUL_F64, "__mips16_muldf3" },
     78   { RTLIB::MUL_F32, "__mips16_mulsf3" },
     79   { RTLIB::UNE_F64, "__mips16_nedf2" },
     80   { RTLIB::UNE_F32, "__mips16_nesf2" },
     81   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
     82   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
     83   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
     84   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
     85   { RTLIB::SUB_F64, "__mips16_subdf3" },
     86   { RTLIB::SUB_F32, "__mips16_subsf3" },
     87   { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
     88   { RTLIB::UO_F64, "__mips16_unorddf2" },
     89   { RTLIB::UO_F32, "__mips16_unordsf2" }
     90 };
     91 
     92 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
     93   {"ceil",  "__mips16_call_stub_df_2"},
     94   {"ceilf", "__mips16_call_stub_sf_1"},
     95   {"copysign",  "__mips16_call_stub_df_10"},
     96   {"copysignf", "__mips16_call_stub_sf_5"},
     97   {"cos",  "__mips16_call_stub_df_2"},
     98   {"cosf", "__mips16_call_stub_sf_1"},
     99   {"exp2",  "__mips16_call_stub_df_2"},
    100   {"exp2f", "__mips16_call_stub_sf_1"},
    101   {"floor",  "__mips16_call_stub_df_2"},
    102   {"floorf", "__mips16_call_stub_sf_1"},
    103   {"log2",  "__mips16_call_stub_df_2"},
    104   {"log2f", "__mips16_call_stub_sf_1"},
    105   {"nearbyint",  "__mips16_call_stub_df_2"},
    106   {"nearbyintf", "__mips16_call_stub_sf_1"},
    107   {"rint",  "__mips16_call_stub_df_2"},
    108   {"rintf", "__mips16_call_stub_sf_1"},
    109   {"sin",  "__mips16_call_stub_df_2"},
    110   {"sinf", "__mips16_call_stub_sf_1"},
    111   {"sqrt",  "__mips16_call_stub_df_2"},
    112   {"sqrtf", "__mips16_call_stub_sf_1"},
    113   {"trunc",  "__mips16_call_stub_df_2"},
    114   {"truncf", "__mips16_call_stub_sf_1"},
    115 };
    116 
    117 Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
    118   : MipsTargetLowering(TM) {
    119   //
    120   // set up as if mips32 and then revert so we can test the mechanism
    121   // for switching
    122   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
    123   addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
    124   computeRegisterProperties();
    125   clearRegisterClasses();
    126 
    127   // Set up the register classes
    128   addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
    129 
    130   if (Subtarget->inMips16HardFloat())
    131     setMips16HardFloatLibCalls();
    132 
    133   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
    134   setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
    135   setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
    136   setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
    137   setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
    138   setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
    139   setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
    140   setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
    141   setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
    142   setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
    143   setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
    144   setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
    145   setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
    146 
    147   computeRegisterProperties();
    148 }
    149 
    150 const MipsTargetLowering *
    151 llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
    152   return new Mips16TargetLowering(TM);
    153 }
    154 
    155 bool
    156 Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
    157   return false;
    158 }
    159 
    160 MachineBasicBlock *
    161 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    162                                                   MachineBasicBlock *BB) const {
    163   switch (MI->getOpcode()) {
    164   default:
    165     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
    166   case Mips::SelBeqZ:
    167     return emitSel16(Mips::BeqzRxImm16, MI, BB);
    168   case Mips::SelBneZ:
    169     return emitSel16(Mips::BnezRxImm16, MI, BB);
    170   case Mips::SelTBteqZCmpi:
    171     return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
    172   case Mips::SelTBteqZSlti:
    173     return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
    174   case Mips::SelTBteqZSltiu:
    175     return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
    176   case Mips::SelTBtneZCmpi:
    177     return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
    178   case Mips::SelTBtneZSlti:
    179     return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
    180   case Mips::SelTBtneZSltiu:
    181     return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
    182   case Mips::SelTBteqZCmp:
    183     return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
    184   case Mips::SelTBteqZSlt:
    185     return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
    186   case Mips::SelTBteqZSltu:
    187     return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
    188   case Mips::SelTBtneZCmp:
    189     return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
    190   case Mips::SelTBtneZSlt:
    191     return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
    192   case Mips::SelTBtneZSltu:
    193     return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
    194   case Mips::BteqzT8CmpX16:
    195     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
    196   case Mips::BteqzT8SltX16:
    197     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
    198   case Mips::BteqzT8SltuX16:
    199     // TBD: figure out a way to get this or remove the instruction
    200     // altogether.
    201     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
    202   case Mips::BtnezT8CmpX16:
    203     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
    204   case Mips::BtnezT8SltX16:
    205     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
    206   case Mips::BtnezT8SltuX16:
    207     // TBD: figure out a way to get this or remove the instruction
    208     // altogether.
    209     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
    210   case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
    211     Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
    212   case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
    213     Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
    214   case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
    215     Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
    216   case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
    217     Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
    218   case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
    219     Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
    220   case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
    221     Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
    222     break;
    223   case Mips::SltCCRxRy16:
    224     return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
    225     break;
    226   case Mips::SltiCCRxImmX16:
    227     return emitFEXT_CCRXI16_ins
    228       (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
    229   case Mips::SltiuCCRxImmX16:
    230     return emitFEXT_CCRXI16_ins
    231       (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
    232   case Mips::SltuCCRxRy16:
    233     return emitFEXT_CCRX16_ins
    234       (Mips::SltuRxRy16, MI, BB);
    235   }
    236 }
    237 
    238 bool Mips16TargetLowering::
    239 isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
    240                                   unsigned NextStackOffset,
    241                                   const MipsFunctionInfo& FI) const {
    242   // No tail call optimization for mips16.
    243   return false;
    244 }
    245 
    246 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
    247   for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
    248     assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
    249            "Array not sorted!");
    250     if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
    251       setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
    252   }
    253 
    254   setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
    255   setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
    256 }
    257 
    258 //
    259 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
    260 // cleaner way to do all of this but it will have to wait until the traditional
    261 // gcc mechanism is completed.
    262 //
    263 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
    264 // have either arguments or returned values placed in floating point registers,
    265 // we use a set of helper functions. (This includes functions which return type
    266 //  complex which on Mips are returned in a pair of floating point registers).
    267 //
    268 // This is an encoding that we inherited from gcc.
    269 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
    270 // floating point argument registers 1,2 only when the first and optionally
    271 // the second arguments are float (sf) or double (df).
    272 // For Mips16 we are only concerned with the situations where floating point
    273 // arguments are being passed in floating point registers by the ABI, because
    274 // Mips16 mode code cannot execute floating point instructions to load those
    275 // values and hence helper functions are needed.
    276 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
    277 // the helper function suffixs for these are:
    278 //                        0,  1,    5,        9,         2,   6,        10
    279 // this suffix can then be calculated as follows:
    280 // for a given argument Arg:
    281 //     Arg1x, Arg2x = 1 :  Arg is sf
    282 //                    2 :  Arg is df
    283 //                    0:   Arg is neither sf or df
    284 // So this stub is the string for number Arg1x + Arg2x*4.
    285 // However not all numbers between 0 and 10 are possible, we check anyway and
    286 // assert if the impossible exists.
    287 //
    288 
    289 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
    290   (ArgListTy &Args) const {
    291   unsigned int resultNum = 0;
    292   if (Args.size() >= 1) {
    293     Type *t = Args[0].Ty;
    294     if (t->isFloatTy()) {
    295       resultNum = 1;
    296     }
    297     else if (t->isDoubleTy()) {
    298       resultNum = 2;
    299     }
    300   }
    301   if (resultNum) {
    302     if (Args.size() >=2) {
    303       Type *t = Args[1].Ty;
    304       if (t->isFloatTy()) {
    305         resultNum += 4;
    306       }
    307       else if (t->isDoubleTy()) {
    308         resultNum += 8;
    309       }
    310     }
    311   }
    312   return resultNum;
    313 }
    314 
    315 //
    316 // prefixs are attached to stub numbers depending on the return type .
    317 // return type: float  sf_
    318 //              double df_
    319 //              single complex sc_
    320 //              double complext dc_
    321 //              others  NO PREFIX
    322 //
    323 //
    324 // The full name of a helper function is__mips16_call_stub +
    325 //    return type dependent prefix + stub number
    326 //
    327 //
    328 // This is something that probably should be in a different source file and
    329 // perhaps done differently but my main purpose is to not waste runtime
    330 // on something that we can enumerate in the source. Another possibility is
    331 // to have a python script to generate these mapping tables. This will do
    332 // for now. There are a whole series of helper function mapping arrays, one
    333 // for each return type class as outlined above. There there are 11 possible
    334 //  entries. Ones with 0 are ones which should never be selected
    335 //
    336 // All the arrays are similar except for ones which return neither
    337 // sf, df, sc, dc, in which only care about ones which have sf or df as a
    338 // first parameter.
    339 //
    340 #define P_ "__mips16_call_stub_"
    341 #define MAX_STUB_NUMBER 10
    342 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
    343 #define T P "0" , T1
    344 #define P P_
    345 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
    346   {0, T1 };
    347 #undef P
    348 #define P P_ "sf_"
    349 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
    350   { T };
    351 #undef P
    352 #define P P_ "df_"
    353 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
    354   { T };
    355 #undef P
    356 #define P P_ "sc_"
    357 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
    358   { T };
    359 #undef P
    360 #define P P_ "dc_"
    361 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
    362   { T };
    363 #undef P
    364 #undef P_
    365 
    366 
    367 const char* Mips16TargetLowering::
    368   getMips16HelperFunction
    369     (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
    370   const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
    371 #ifndef NDEBUG
    372   const unsigned int maxStubNum = 10;
    373   assert(stubNum <= maxStubNum);
    374   const bool validStubNum[maxStubNum+1] =
    375     {true, true, true, false, false, true, true, false, false, true, true};
    376   assert(validStubNum[stubNum]);
    377 #endif
    378   const char *result;
    379   if (RetTy->isFloatTy()) {
    380     result = sfMips16Helper[stubNum];
    381   }
    382   else if (RetTy ->isDoubleTy()) {
    383     result = dfMips16Helper[stubNum];
    384   }
    385   else if (RetTy->isStructTy()) {
    386     // check if it's complex
    387     if (RetTy->getNumContainedTypes() == 2) {
    388       if ((RetTy->getContainedType(0)->isFloatTy()) &&
    389           (RetTy->getContainedType(1)->isFloatTy())) {
    390         result = scMips16Helper[stubNum];
    391       }
    392       else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
    393                (RetTy->getContainedType(1)->isDoubleTy())) {
    394         result = dcMips16Helper[stubNum];
    395       }
    396       else {
    397         llvm_unreachable("Uncovered condition");
    398       }
    399     }
    400     else {
    401       llvm_unreachable("Uncovered condition");
    402     }
    403   }
    404   else {
    405     if (stubNum == 0) {
    406       needHelper = false;
    407       return "";
    408     }
    409     result = vMips16Helper[stubNum];
    410   }
    411   needHelper = true;
    412   return result;
    413 }
    414 
    415 void Mips16TargetLowering::
    416 getOpndList(SmallVectorImpl<SDValue> &Ops,
    417             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
    418             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
    419             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
    420   SelectionDAG &DAG = CLI.DAG;
    421   const char* Mips16HelperFunction = 0;
    422   bool NeedMips16Helper = false;
    423 
    424   if (getTargetMachine().Options.UseSoftFloat &&
    425       Subtarget->inMips16HardFloat()) {
    426     //
    427     // currently we don't have symbols tagged with the mips16 or mips32
    428     // qualifier so we will assume that we don't know what kind it is.
    429     // and generate the helper
    430     //
    431     bool LookupHelper = true;
    432     if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
    433       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
    434 
    435       if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
    436                              Find))
    437         LookupHelper = false;
    438       else {
    439         Mips16IntrinsicHelperType IntrinsicFind = {S->getSymbol(), ""};
    440         // one more look at list of intrinsics
    441         if (std::binary_search(Mips16IntrinsicHelper,
    442             array_endof(Mips16IntrinsicHelper),
    443                                      IntrinsicFind)) {
    444           const Mips16IntrinsicHelperType *h =(std::find(Mips16IntrinsicHelper,
    445               array_endof(Mips16IntrinsicHelper),
    446                                        IntrinsicFind));
    447           Mips16HelperFunction = h->Helper;
    448           NeedMips16Helper = true;
    449           LookupHelper = false;
    450         }
    451 
    452       }
    453     } else if (GlobalAddressSDNode *G =
    454                    dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
    455       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
    456                              G->getGlobal()->getName().data() };
    457 
    458       if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
    459                              Find))
    460         LookupHelper = false;
    461     }
    462     if (LookupHelper) Mips16HelperFunction =
    463       getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
    464 
    465   }
    466 
    467   SDValue JumpTarget = Callee;
    468 
    469   // T9 should contain the address of the callee function if
    470   // -reloction-model=pic or it is an indirect call.
    471   if (IsPICCall || !GlobalOrExternal) {
    472     unsigned V0Reg = Mips::V0;
    473     if (NeedMips16Helper) {
    474       RegsToPass.push_front(std::make_pair(V0Reg, Callee));
    475       JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
    476       JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
    477     } else
    478       RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
    479   }
    480 
    481   Ops.push_back(JumpTarget);
    482 
    483   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
    484                                   InternalLinkage, CLI, Callee, Chain);
    485 }
    486 
    487 MachineBasicBlock *Mips16TargetLowering::
    488 emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
    489   if (DontExpandCondPseudos16)
    490     return BB;
    491   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    492   DebugLoc DL = MI->getDebugLoc();
    493   // To "insert" a SELECT_CC instruction, we actually have to insert the
    494   // diamond control-flow pattern.  The incoming instruction knows the
    495   // destination vreg to set, the condition code register to branch on, the
    496   // true/false values to select between, and a branch opcode to use.
    497   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    498   MachineFunction::iterator It = BB;
    499   ++It;
    500 
    501   //  thisMBB:
    502   //  ...
    503   //   TrueVal = ...
    504   //   setcc r1, r2, r3
    505   //   bNE   r1, r0, copy1MBB
    506   //   fallthrough --> copy0MBB
    507   MachineBasicBlock *thisMBB  = BB;
    508   MachineFunction *F = BB->getParent();
    509   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    510   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    511   F->insert(It, copy0MBB);
    512   F->insert(It, sinkMBB);
    513 
    514   // Transfer the remainder of BB and its successor edges to sinkMBB.
    515   sinkMBB->splice(sinkMBB->begin(), BB,
    516                   llvm::next(MachineBasicBlock::iterator(MI)),
    517                   BB->end());
    518   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    519 
    520   // Next, add the true and fallthrough blocks as its successors.
    521   BB->addSuccessor(copy0MBB);
    522   BB->addSuccessor(sinkMBB);
    523 
    524   BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
    525     .addMBB(sinkMBB);
    526 
    527   //  copy0MBB:
    528   //   %FalseValue = ...
    529   //   # fallthrough to sinkMBB
    530   BB = copy0MBB;
    531 
    532   // Update machine-CFG edges
    533   BB->addSuccessor(sinkMBB);
    534 
    535   //  sinkMBB:
    536   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    537   //  ...
    538   BB = sinkMBB;
    539 
    540   BuildMI(*BB, BB->begin(), DL,
    541           TII->get(Mips::PHI), MI->getOperand(0).getReg())
    542     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    543     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
    544 
    545   MI->eraseFromParent();   // The pseudo instruction is gone now.
    546   return BB;
    547 }
    548 
    549 MachineBasicBlock *Mips16TargetLowering::emitSelT16
    550   (unsigned Opc1, unsigned Opc2,
    551    MachineInstr *MI, MachineBasicBlock *BB) const {
    552   if (DontExpandCondPseudos16)
    553     return BB;
    554   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    555   DebugLoc DL = MI->getDebugLoc();
    556   // To "insert" a SELECT_CC instruction, we actually have to insert the
    557   // diamond control-flow pattern.  The incoming instruction knows the
    558   // destination vreg to set, the condition code register to branch on, the
    559   // true/false values to select between, and a branch opcode to use.
    560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    561   MachineFunction::iterator It = BB;
    562   ++It;
    563 
    564   //  thisMBB:
    565   //  ...
    566   //   TrueVal = ...
    567   //   setcc r1, r2, r3
    568   //   bNE   r1, r0, copy1MBB
    569   //   fallthrough --> copy0MBB
    570   MachineBasicBlock *thisMBB  = BB;
    571   MachineFunction *F = BB->getParent();
    572   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    573   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    574   F->insert(It, copy0MBB);
    575   F->insert(It, sinkMBB);
    576 
    577   // Transfer the remainder of BB and its successor edges to sinkMBB.
    578   sinkMBB->splice(sinkMBB->begin(), BB,
    579                   llvm::next(MachineBasicBlock::iterator(MI)),
    580                   BB->end());
    581   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    582 
    583   // Next, add the true and fallthrough blocks as its successors.
    584   BB->addSuccessor(copy0MBB);
    585   BB->addSuccessor(sinkMBB);
    586 
    587   BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
    588     .addReg(MI->getOperand(4).getReg());
    589   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
    590 
    591   //  copy0MBB:
    592   //   %FalseValue = ...
    593   //   # fallthrough to sinkMBB
    594   BB = copy0MBB;
    595 
    596   // Update machine-CFG edges
    597   BB->addSuccessor(sinkMBB);
    598 
    599   //  sinkMBB:
    600   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    601   //  ...
    602   BB = sinkMBB;
    603 
    604   BuildMI(*BB, BB->begin(), DL,
    605           TII->get(Mips::PHI), MI->getOperand(0).getReg())
    606     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    607     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
    608 
    609   MI->eraseFromParent();   // The pseudo instruction is gone now.
    610   return BB;
    611 
    612 }
    613 
    614 MachineBasicBlock *Mips16TargetLowering::emitSeliT16
    615   (unsigned Opc1, unsigned Opc2,
    616    MachineInstr *MI, MachineBasicBlock *BB) const {
    617   if (DontExpandCondPseudos16)
    618     return BB;
    619   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    620   DebugLoc DL = MI->getDebugLoc();
    621   // To "insert" a SELECT_CC instruction, we actually have to insert the
    622   // diamond control-flow pattern.  The incoming instruction knows the
    623   // destination vreg to set, the condition code register to branch on, the
    624   // true/false values to select between, and a branch opcode to use.
    625   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    626   MachineFunction::iterator It = BB;
    627   ++It;
    628 
    629   //  thisMBB:
    630   //  ...
    631   //   TrueVal = ...
    632   //   setcc r1, r2, r3
    633   //   bNE   r1, r0, copy1MBB
    634   //   fallthrough --> copy0MBB
    635   MachineBasicBlock *thisMBB  = BB;
    636   MachineFunction *F = BB->getParent();
    637   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    638   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    639   F->insert(It, copy0MBB);
    640   F->insert(It, sinkMBB);
    641 
    642   // Transfer the remainder of BB and its successor edges to sinkMBB.
    643   sinkMBB->splice(sinkMBB->begin(), BB,
    644                   llvm::next(MachineBasicBlock::iterator(MI)),
    645                   BB->end());
    646   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    647 
    648   // Next, add the true and fallthrough blocks as its successors.
    649   BB->addSuccessor(copy0MBB);
    650   BB->addSuccessor(sinkMBB);
    651 
    652   BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
    653     .addImm(MI->getOperand(4).getImm());
    654   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
    655 
    656   //  copy0MBB:
    657   //   %FalseValue = ...
    658   //   # fallthrough to sinkMBB
    659   BB = copy0MBB;
    660 
    661   // Update machine-CFG edges
    662   BB->addSuccessor(sinkMBB);
    663 
    664   //  sinkMBB:
    665   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    666   //  ...
    667   BB = sinkMBB;
    668 
    669   BuildMI(*BB, BB->begin(), DL,
    670           TII->get(Mips::PHI), MI->getOperand(0).getReg())
    671     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    672     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
    673 
    674   MI->eraseFromParent();   // The pseudo instruction is gone now.
    675   return BB;
    676 
    677 }
    678 
    679 MachineBasicBlock
    680   *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
    681                                              MachineInstr *MI,
    682                                              MachineBasicBlock *BB) const {
    683   if (DontExpandCondPseudos16)
    684     return BB;
    685   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    686   unsigned regX = MI->getOperand(0).getReg();
    687   unsigned regY = MI->getOperand(1).getReg();
    688   MachineBasicBlock *target = MI->getOperand(2).getMBB();
    689   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
    690     .addReg(regY);
    691   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
    692   MI->eraseFromParent();   // The pseudo instruction is gone now.
    693   return BB;
    694 }
    695 
    696 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
    697   unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
    698   MachineInstr *MI,  MachineBasicBlock *BB) const {
    699   if (DontExpandCondPseudos16)
    700     return BB;
    701   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    702   unsigned regX = MI->getOperand(0).getReg();
    703   int64_t imm = MI->getOperand(1).getImm();
    704   MachineBasicBlock *target = MI->getOperand(2).getMBB();
    705   unsigned CmpOpc;
    706   if (isUInt<8>(imm))
    707     CmpOpc = CmpiOpc;
    708   else if ((!ImmSigned && isUInt<16>(imm)) ||
    709            (ImmSigned && isInt<16>(imm)))
    710     CmpOpc = CmpiXOpc;
    711   else
    712     llvm_unreachable("immediate field not usable");
    713   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
    714     .addImm(imm);
    715   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
    716   MI->eraseFromParent();   // The pseudo instruction is gone now.
    717   return BB;
    718 }
    719 
    720 static unsigned Mips16WhichOp8uOr16simm
    721   (unsigned shortOp, unsigned longOp, int64_t Imm) {
    722   if (isUInt<8>(Imm))
    723     return shortOp;
    724   else if (isInt<16>(Imm))
    725     return longOp;
    726   else
    727     llvm_unreachable("immediate field not usable");
    728 }
    729 
    730 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
    731   unsigned SltOpc,
    732   MachineInstr *MI,  MachineBasicBlock *BB) const {
    733   if (DontExpandCondPseudos16)
    734     return BB;
    735   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    736   unsigned CC = MI->getOperand(0).getReg();
    737   unsigned regX = MI->getOperand(1).getReg();
    738   unsigned regY = MI->getOperand(2).getReg();
    739   BuildMI(*BB, MI, MI->getDebugLoc(),
    740 		  TII->get(SltOpc)).addReg(regX).addReg(regY);
    741   BuildMI(*BB, MI, MI->getDebugLoc(),
    742           TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
    743   MI->eraseFromParent();   // The pseudo instruction is gone now.
    744   return BB;
    745 }
    746 
    747 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
    748   unsigned SltiOpc, unsigned SltiXOpc,
    749   MachineInstr *MI,  MachineBasicBlock *BB )const {
    750   if (DontExpandCondPseudos16)
    751     return BB;
    752   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    753   unsigned CC = MI->getOperand(0).getReg();
    754   unsigned regX = MI->getOperand(1).getReg();
    755   int64_t Imm = MI->getOperand(2).getImm();
    756   unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
    757   BuildMI(*BB, MI, MI->getDebugLoc(),
    758           TII->get(SltOpc)).addReg(regX).addImm(Imm);
    759   BuildMI(*BB, MI, MI->getDebugLoc(),
    760           TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
    761   MI->eraseFromParent();   // The pseudo instruction is gone now.
    762   return BB;
    763 
    764 }
    765