Home | History | Annotate | Download | only in Scalar
      1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation implements the well known scalar replacement of
     11 // aggregates transformation.  This xform breaks up alloca instructions of
     12 // aggregate type (structure or array) into individual alloca instructions for
     13 // each member (if possible).  Then, if possible, it transforms the individual
     14 // alloca instructions into nice clean scalar SSA form.
     15 //
     16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
     17 // often interact, especially for C++ programs.  As such, iterating between
     18 // SRoA, then Mem2Reg until we run out of things to promote works well.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #define DEBUG_TYPE "scalarrepl"
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/Dominators.h"
     28 #include "llvm/Analysis/Loads.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/DIBuilder.h"
     31 #include "llvm/DebugInfo.h"
     32 #include "llvm/IR/Constants.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/IRBuilder.h"
     38 #include "llvm/IR/Instructions.h"
     39 #include "llvm/IR/IntrinsicInst.h"
     40 #include "llvm/IR/LLVMContext.h"
     41 #include "llvm/IR/Module.h"
     42 #include "llvm/IR/Operator.h"
     43 #include "llvm/Pass.h"
     44 #include "llvm/Support/CallSite.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include "llvm/Support/GetElementPtrTypeIterator.h"
     48 #include "llvm/Support/MathExtras.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include "llvm/Transforms/Utils/Local.h"
     51 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     52 #include "llvm/Transforms/Utils/SSAUpdater.h"
     53 using namespace llvm;
     54 
     55 STATISTIC(NumReplaced,  "Number of allocas broken up");
     56 STATISTIC(NumPromoted,  "Number of allocas promoted");
     57 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
     58 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
     59 
     60 namespace {
     61   struct SROA : public FunctionPass {
     62     SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
     63       : FunctionPass(ID), HasDomTree(hasDT) {
     64       if (T == -1)
     65         SRThreshold = 128;
     66       else
     67         SRThreshold = T;
     68       if (ST == -1)
     69         StructMemberThreshold = 32;
     70       else
     71         StructMemberThreshold = ST;
     72       if (AT == -1)
     73         ArrayElementThreshold = 8;
     74       else
     75         ArrayElementThreshold = AT;
     76       if (SLT == -1)
     77         // Do not limit the scalar integer load size if no threshold is given.
     78         ScalarLoadThreshold = -1;
     79       else
     80         ScalarLoadThreshold = SLT;
     81     }
     82 
     83     bool runOnFunction(Function &F);
     84 
     85     bool performScalarRepl(Function &F);
     86     bool performPromotion(Function &F);
     87 
     88   private:
     89     bool HasDomTree;
     90     DataLayout *TD;
     91 
     92     /// DeadInsts - Keep track of instructions we have made dead, so that
     93     /// we can remove them after we are done working.
     94     SmallVector<Value*, 32> DeadInsts;
     95 
     96     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
     97     /// information about the uses.  All these fields are initialized to false
     98     /// and set to true when something is learned.
     99     struct AllocaInfo {
    100       /// The alloca to promote.
    101       AllocaInst *AI;
    102 
    103       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
    104       /// looping and avoid redundant work.
    105       SmallPtrSet<PHINode*, 8> CheckedPHIs;
    106 
    107       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
    108       bool isUnsafe : 1;
    109 
    110       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
    111       bool isMemCpySrc : 1;
    112 
    113       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
    114       bool isMemCpyDst : 1;
    115 
    116       /// hasSubelementAccess - This is true if a subelement of the alloca is
    117       /// ever accessed, or false if the alloca is only accessed with mem
    118       /// intrinsics or load/store that only access the entire alloca at once.
    119       bool hasSubelementAccess : 1;
    120 
    121       /// hasALoadOrStore - This is true if there are any loads or stores to it.
    122       /// The alloca may just be accessed with memcpy, for example, which would
    123       /// not set this.
    124       bool hasALoadOrStore : 1;
    125 
    126       explicit AllocaInfo(AllocaInst *ai)
    127         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
    128           hasSubelementAccess(false), hasALoadOrStore(false) {}
    129     };
    130 
    131     /// SRThreshold - The maximum alloca size to considered for SROA.
    132     unsigned SRThreshold;
    133 
    134     /// StructMemberThreshold - The maximum number of members a struct can
    135     /// contain to be considered for SROA.
    136     unsigned StructMemberThreshold;
    137 
    138     /// ArrayElementThreshold - The maximum number of elements an array can
    139     /// have to be considered for SROA.
    140     unsigned ArrayElementThreshold;
    141 
    142     /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
    143     /// converting to scalar
    144     unsigned ScalarLoadThreshold;
    145 
    146     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
    147       I.isUnsafe = true;
    148       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
    149     }
    150 
    151     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
    152 
    153     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
    154     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
    155                                          AllocaInfo &Info);
    156     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
    157     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
    158                          Type *MemOpType, bool isStore, AllocaInfo &Info,
    159                          Instruction *TheAccess, bool AllowWholeAccess);
    160     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
    161     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
    162                                   Type *&IdxTy);
    163 
    164     void DoScalarReplacement(AllocaInst *AI,
    165                              std::vector<AllocaInst*> &WorkList);
    166     void DeleteDeadInstructions();
    167 
    168     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
    169                               SmallVectorImpl<AllocaInst *> &NewElts);
    170     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
    171                         SmallVectorImpl<AllocaInst *> &NewElts);
    172     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
    173                     SmallVectorImpl<AllocaInst *> &NewElts);
    174     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
    175                                   uint64_t Offset,
    176                                   SmallVectorImpl<AllocaInst *> &NewElts);
    177     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
    178                                       AllocaInst *AI,
    179                                       SmallVectorImpl<AllocaInst *> &NewElts);
    180     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
    181                                        SmallVectorImpl<AllocaInst *> &NewElts);
    182     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
    183                                       SmallVectorImpl<AllocaInst *> &NewElts);
    184     bool ShouldAttemptScalarRepl(AllocaInst *AI);
    185   };
    186 
    187   // SROA_DT - SROA that uses DominatorTree.
    188   struct SROA_DT : public SROA {
    189     static char ID;
    190   public:
    191     SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
    192         SROA(T, true, ID, ST, AT, SLT) {
    193       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
    194     }
    195 
    196     // getAnalysisUsage - This pass does not require any passes, but we know it
    197     // will not alter the CFG, so say so.
    198     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    199       AU.addRequired<DominatorTree>();
    200       AU.setPreservesCFG();
    201     }
    202   };
    203 
    204   // SROA_SSAUp - SROA that uses SSAUpdater.
    205   struct SROA_SSAUp : public SROA {
    206     static char ID;
    207   public:
    208     SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
    209         SROA(T, false, ID, ST, AT, SLT) {
    210       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
    211     }
    212 
    213     // getAnalysisUsage - This pass does not require any passes, but we know it
    214     // will not alter the CFG, so say so.
    215     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    216       AU.setPreservesCFG();
    217     }
    218   };
    219 
    220 }
    221 
    222 char SROA_DT::ID = 0;
    223 char SROA_SSAUp::ID = 0;
    224 
    225 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
    226                 "Scalar Replacement of Aggregates (DT)", false, false)
    227 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    228 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
    229                 "Scalar Replacement of Aggregates (DT)", false, false)
    230 
    231 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
    232                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
    233 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
    234                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
    235 
    236 // Public interface to the ScalarReplAggregates pass
    237 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
    238                                                    bool UseDomTree,
    239                                                    int StructMemberThreshold,
    240                                                    int ArrayElementThreshold,
    241                                                    int ScalarLoadThreshold) {
    242   if (UseDomTree)
    243     return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
    244                        ScalarLoadThreshold);
    245   return new SROA_SSAUp(Threshold, StructMemberThreshold,
    246                         ArrayElementThreshold, ScalarLoadThreshold);
    247 }
    248 
    249 
    250 //===----------------------------------------------------------------------===//
    251 // Convert To Scalar Optimization.
    252 //===----------------------------------------------------------------------===//
    253 
    254 namespace {
    255 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
    256 /// optimization, which scans the uses of an alloca and determines if it can
    257 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
    258 class ConvertToScalarInfo {
    259   /// AllocaSize - The size of the alloca being considered in bytes.
    260   unsigned AllocaSize;
    261   const DataLayout &TD;
    262   unsigned ScalarLoadThreshold;
    263 
    264   /// IsNotTrivial - This is set to true if there is some access to the object
    265   /// which means that mem2reg can't promote it.
    266   bool IsNotTrivial;
    267 
    268   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
    269   /// computed based on the uses of the alloca rather than the LLVM type system.
    270   enum {
    271     Unknown,
    272 
    273     // Accesses via GEPs that are consistent with element access of a vector
    274     // type. This will not be converted into a vector unless there is a later
    275     // access using an actual vector type.
    276     ImplicitVector,
    277 
    278     // Accesses via vector operations and GEPs that are consistent with the
    279     // layout of a vector type.
    280     Vector,
    281 
    282     // An integer bag-of-bits with bitwise operations for insertion and
    283     // extraction. Any combination of types can be converted into this kind
    284     // of scalar.
    285     Integer
    286   } ScalarKind;
    287 
    288   /// VectorTy - This tracks the type that we should promote the vector to if
    289   /// it is possible to turn it into a vector.  This starts out null, and if it
    290   /// isn't possible to turn into a vector type, it gets set to VoidTy.
    291   VectorType *VectorTy;
    292 
    293   /// HadNonMemTransferAccess - True if there is at least one access to the
    294   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
    295   /// large integers unless there is some potential for optimization.
    296   bool HadNonMemTransferAccess;
    297 
    298   /// HadDynamicAccess - True if some element of this alloca was dynamic.
    299   /// We don't yet have support for turning a dynamic access into a large
    300   /// integer.
    301   bool HadDynamicAccess;
    302 
    303 public:
    304   explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
    305                                unsigned SLT)
    306     : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
    307     ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
    308     HadDynamicAccess(false) { }
    309 
    310   AllocaInst *TryConvert(AllocaInst *AI);
    311 
    312 private:
    313   bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
    314   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
    315   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
    316   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
    317                            Value *NonConstantIdx);
    318 
    319   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
    320                                     uint64_t Offset, Value* NonConstantIdx,
    321                                     IRBuilder<> &Builder);
    322   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
    323                                    uint64_t Offset, Value* NonConstantIdx,
    324                                    IRBuilder<> &Builder);
    325 };
    326 } // end anonymous namespace.
    327 
    328 
    329 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
    330 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
    331 /// alloca if possible or null if not.
    332 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
    333   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
    334   // out.
    335   if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
    336     return 0;
    337 
    338   // If an alloca has only memset / memcpy uses, it may still have an Unknown
    339   // ScalarKind. Treat it as an Integer below.
    340   if (ScalarKind == Unknown)
    341     ScalarKind = Integer;
    342 
    343   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
    344     ScalarKind = Integer;
    345 
    346   // If we were able to find a vector type that can handle this with
    347   // insert/extract elements, and if there was at least one use that had
    348   // a vector type, promote this to a vector.  We don't want to promote
    349   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
    350   // we just get a lot of insert/extracts.  If at least one vector is
    351   // involved, then we probably really do have a union of vector/array.
    352   Type *NewTy;
    353   if (ScalarKind == Vector) {
    354     assert(VectorTy && "Missing type for vector scalar.");
    355     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
    356           << *VectorTy << '\n');
    357     NewTy = VectorTy;  // Use the vector type.
    358   } else {
    359     unsigned BitWidth = AllocaSize * 8;
    360 
    361     // Do not convert to scalar integer if the alloca size exceeds the
    362     // scalar load threshold.
    363     if (BitWidth > ScalarLoadThreshold)
    364       return 0;
    365 
    366     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
    367         !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
    368       return 0;
    369     // Dynamic accesses on integers aren't yet supported.  They need us to shift
    370     // by a dynamic amount which could be difficult to work out as we might not
    371     // know whether to use a left or right shift.
    372     if (ScalarKind == Integer && HadDynamicAccess)
    373       return 0;
    374 
    375     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
    376     // Create and insert the integer alloca.
    377     NewTy = IntegerType::get(AI->getContext(), BitWidth);
    378   }
    379   AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
    380   ConvertUsesToScalar(AI, NewAI, 0, 0);
    381   return NewAI;
    382 }
    383 
    384 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
    385 /// (VectorTy) so far at the offset specified by Offset (which is specified in
    386 /// bytes).
    387 ///
    388 /// There are two cases we handle here:
    389 ///   1) A union of vector types of the same size and potentially its elements.
    390 ///      Here we turn element accesses into insert/extract element operations.
    391 ///      This promotes a <4 x float> with a store of float to the third element
    392 ///      into a <4 x float> that uses insert element.
    393 ///   2) A fully general blob of memory, which we turn into some (potentially
    394 ///      large) integer type with extract and insert operations where the loads
    395 ///      and stores would mutate the memory.  We mark this by setting VectorTy
    396 ///      to VoidTy.
    397 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
    398                                                     uint64_t Offset) {
    399   // If we already decided to turn this into a blob of integer memory, there is
    400   // nothing to be done.
    401   if (ScalarKind == Integer)
    402     return;
    403 
    404   // If this could be contributing to a vector, analyze it.
    405 
    406   // If the In type is a vector that is the same size as the alloca, see if it
    407   // matches the existing VecTy.
    408   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
    409     if (MergeInVectorType(VInTy, Offset))
    410       return;
    411   } else if (In->isFloatTy() || In->isDoubleTy() ||
    412              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
    413               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
    414     // Full width accesses can be ignored, because they can always be turned
    415     // into bitcasts.
    416     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
    417     if (EltSize == AllocaSize)
    418       return;
    419 
    420     // If we're accessing something that could be an element of a vector, see
    421     // if the implied vector agrees with what we already have and if Offset is
    422     // compatible with it.
    423     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
    424         (!VectorTy || EltSize == VectorTy->getElementType()
    425                                          ->getPrimitiveSizeInBits()/8)) {
    426       if (!VectorTy) {
    427         ScalarKind = ImplicitVector;
    428         VectorTy = VectorType::get(In, AllocaSize/EltSize);
    429       }
    430       return;
    431     }
    432   }
    433 
    434   // Otherwise, we have a case that we can't handle with an optimized vector
    435   // form.  We can still turn this into a large integer.
    436   ScalarKind = Integer;
    437 }
    438 
    439 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
    440 /// returning true if the type was successfully merged and false otherwise.
    441 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
    442                                             uint64_t Offset) {
    443   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
    444     // If we're storing/loading a vector of the right size, allow it as a
    445     // vector.  If this the first vector we see, remember the type so that
    446     // we know the element size. If this is a subsequent access, ignore it
    447     // even if it is a differing type but the same size. Worst case we can
    448     // bitcast the resultant vectors.
    449     if (!VectorTy)
    450       VectorTy = VInTy;
    451     ScalarKind = Vector;
    452     return true;
    453   }
    454 
    455   return false;
    456 }
    457 
    458 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
    459 /// its accesses to a single vector type, return true and set VecTy to
    460 /// the new type.  If we could convert the alloca into a single promotable
    461 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
    462 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
    463 /// is the current offset from the base of the alloca being analyzed.
    464 ///
    465 /// If we see at least one access to the value that is as a vector type, set the
    466 /// SawVec flag.
    467 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
    468                                              Value* NonConstantIdx) {
    469   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    470     Instruction *User = cast<Instruction>(*UI);
    471 
    472     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    473       // Don't break volatile loads.
    474       if (!LI->isSimple())
    475         return false;
    476       // Don't touch MMX operations.
    477       if (LI->getType()->isX86_MMXTy())
    478         return false;
    479       HadNonMemTransferAccess = true;
    480       MergeInTypeForLoadOrStore(LI->getType(), Offset);
    481       continue;
    482     }
    483 
    484     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    485       // Storing the pointer, not into the value?
    486       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
    487       // Don't touch MMX operations.
    488       if (SI->getOperand(0)->getType()->isX86_MMXTy())
    489         return false;
    490       HadNonMemTransferAccess = true;
    491       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
    492       continue;
    493     }
    494 
    495     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    496       if (!onlyUsedByLifetimeMarkers(BCI))
    497         IsNotTrivial = true;  // Can't be mem2reg'd.
    498       if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
    499         return false;
    500       continue;
    501     }
    502 
    503     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    504       // If this is a GEP with a variable indices, we can't handle it.
    505       PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
    506       if (!PtrTy)
    507         return false;
    508 
    509       // Compute the offset that this GEP adds to the pointer.
    510       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    511       Value *GEPNonConstantIdx = 0;
    512       if (!GEP->hasAllConstantIndices()) {
    513         if (!isa<VectorType>(PtrTy->getElementType()))
    514           return false;
    515         if (NonConstantIdx)
    516           return false;
    517         GEPNonConstantIdx = Indices.pop_back_val();
    518         if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
    519           return false;
    520         HadDynamicAccess = true;
    521       } else
    522         GEPNonConstantIdx = NonConstantIdx;
    523       uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
    524                                                Indices);
    525       // See if all uses can be converted.
    526       if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
    527         return false;
    528       IsNotTrivial = true;  // Can't be mem2reg'd.
    529       HadNonMemTransferAccess = true;
    530       continue;
    531     }
    532 
    533     // If this is a constant sized memset of a constant value (e.g. 0) we can
    534     // handle it.
    535     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    536       // Store to dynamic index.
    537       if (NonConstantIdx)
    538         return false;
    539       // Store of constant value.
    540       if (!isa<ConstantInt>(MSI->getValue()))
    541         return false;
    542 
    543       // Store of constant size.
    544       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
    545       if (!Len)
    546         return false;
    547 
    548       // If the size differs from the alloca, we can only convert the alloca to
    549       // an integer bag-of-bits.
    550       // FIXME: This should handle all of the cases that are currently accepted
    551       // as vector element insertions.
    552       if (Len->getZExtValue() != AllocaSize || Offset != 0)
    553         ScalarKind = Integer;
    554 
    555       IsNotTrivial = true;  // Can't be mem2reg'd.
    556       HadNonMemTransferAccess = true;
    557       continue;
    558     }
    559 
    560     // If this is a memcpy or memmove into or out of the whole allocation, we
    561     // can handle it like a load or store of the scalar type.
    562     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    563       // Store to dynamic index.
    564       if (NonConstantIdx)
    565         return false;
    566       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
    567       if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
    568         return false;
    569 
    570       IsNotTrivial = true;  // Can't be mem2reg'd.
    571       continue;
    572     }
    573 
    574     // If this is a lifetime intrinsic, we can handle it.
    575     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
    576       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    577           II->getIntrinsicID() == Intrinsic::lifetime_end) {
    578         continue;
    579       }
    580     }
    581 
    582     // Otherwise, we cannot handle this!
    583     return false;
    584   }
    585 
    586   return true;
    587 }
    588 
    589 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
    590 /// directly.  This happens when we are converting an "integer union" to a
    591 /// single integer scalar, or when we are converting a "vector union" to a
    592 /// vector with insert/extractelement instructions.
    593 ///
    594 /// Offset is an offset from the original alloca, in bits that need to be
    595 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
    596 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
    597                                               uint64_t Offset,
    598                                               Value* NonConstantIdx) {
    599   while (!Ptr->use_empty()) {
    600     Instruction *User = cast<Instruction>(Ptr->use_back());
    601 
    602     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
    603       ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
    604       CI->eraseFromParent();
    605       continue;
    606     }
    607 
    608     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    609       // Compute the offset that this GEP adds to the pointer.
    610       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    611       Value* GEPNonConstantIdx = 0;
    612       if (!GEP->hasAllConstantIndices()) {
    613         assert(!NonConstantIdx &&
    614                "Dynamic GEP reading from dynamic GEP unsupported");
    615         GEPNonConstantIdx = Indices.pop_back_val();
    616       } else
    617         GEPNonConstantIdx = NonConstantIdx;
    618       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
    619                                                Indices);
    620       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
    621       GEP->eraseFromParent();
    622       continue;
    623     }
    624 
    625     IRBuilder<> Builder(User);
    626 
    627     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    628       // The load is a bit extract from NewAI shifted right by Offset bits.
    629       Value *LoadedVal = Builder.CreateLoad(NewAI);
    630       Value *NewLoadVal
    631         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
    632                                      NonConstantIdx, Builder);
    633       LI->replaceAllUsesWith(NewLoadVal);
    634       LI->eraseFromParent();
    635       continue;
    636     }
    637 
    638     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    639       assert(SI->getOperand(0) != Ptr && "Consistency error!");
    640       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    641       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
    642                                              NonConstantIdx, Builder);
    643       Builder.CreateStore(New, NewAI);
    644       SI->eraseFromParent();
    645 
    646       // If the load we just inserted is now dead, then the inserted store
    647       // overwrote the entire thing.
    648       if (Old->use_empty())
    649         Old->eraseFromParent();
    650       continue;
    651     }
    652 
    653     // If this is a constant sized memset of a constant value (e.g. 0) we can
    654     // transform it into a store of the expanded constant value.
    655     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    656       assert(MSI->getRawDest() == Ptr && "Consistency error!");
    657       assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
    658       int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
    659       if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
    660         unsigned NumBytes = static_cast<unsigned>(SNumBytes);
    661         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
    662 
    663         // Compute the value replicated the right number of times.
    664         APInt APVal(NumBytes*8, Val);
    665 
    666         // Splat the value if non-zero.
    667         if (Val)
    668           for (unsigned i = 1; i != NumBytes; ++i)
    669             APVal |= APVal << 8;
    670 
    671         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    672         Value *New = ConvertScalar_InsertValue(
    673                                     ConstantInt::get(User->getContext(), APVal),
    674                                                Old, Offset, 0, Builder);
    675         Builder.CreateStore(New, NewAI);
    676 
    677         // If the load we just inserted is now dead, then the memset overwrote
    678         // the entire thing.
    679         if (Old->use_empty())
    680           Old->eraseFromParent();
    681       }
    682       MSI->eraseFromParent();
    683       continue;
    684     }
    685 
    686     // If this is a memcpy or memmove into or out of the whole allocation, we
    687     // can handle it like a load or store of the scalar type.
    688     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    689       assert(Offset == 0 && "must be store to start of alloca");
    690       assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
    691 
    692       // If the source and destination are both to the same alloca, then this is
    693       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
    694       // as appropriate.
    695       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
    696 
    697       if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
    698         // Dest must be OrigAI, change this to be a load from the original
    699         // pointer (bitcasted), then a store to our new alloca.
    700         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
    701         Value *SrcPtr = MTI->getSource();
    702         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
    703         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    704         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    705           AIPTy = PointerType::get(AIPTy->getElementType(),
    706                                    SPTy->getAddressSpace());
    707         }
    708         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
    709 
    710         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
    711         SrcVal->setAlignment(MTI->getAlignment());
    712         Builder.CreateStore(SrcVal, NewAI);
    713       } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
    714         // Src must be OrigAI, change this to be a load from NewAI then a store
    715         // through the original dest pointer (bitcasted).
    716         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
    717         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
    718 
    719         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
    720         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    721         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    722           AIPTy = PointerType::get(AIPTy->getElementType(),
    723                                    DPTy->getAddressSpace());
    724         }
    725         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
    726 
    727         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
    728         NewStore->setAlignment(MTI->getAlignment());
    729       } else {
    730         // Noop transfer. Src == Dst
    731       }
    732 
    733       MTI->eraseFromParent();
    734       continue;
    735     }
    736 
    737     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
    738       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    739           II->getIntrinsicID() == Intrinsic::lifetime_end) {
    740         // There's no need to preserve these, as the resulting alloca will be
    741         // converted to a register anyways.
    742         II->eraseFromParent();
    743         continue;
    744       }
    745     }
    746 
    747     llvm_unreachable("Unsupported operation!");
    748   }
    749 }
    750 
    751 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
    752 /// or vector value FromVal, extracting the bits from the offset specified by
    753 /// Offset.  This returns the value, which is of type ToType.
    754 ///
    755 /// This happens when we are converting an "integer union" to a single
    756 /// integer scalar, or when we are converting a "vector union" to a vector with
    757 /// insert/extractelement instructions.
    758 ///
    759 /// Offset is an offset from the original alloca, in bits that need to be
    760 /// shifted to the right.
    761 Value *ConvertToScalarInfo::
    762 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
    763                            uint64_t Offset, Value* NonConstantIdx,
    764                            IRBuilder<> &Builder) {
    765   // If the load is of the whole new alloca, no conversion is needed.
    766   Type *FromType = FromVal->getType();
    767   if (FromType == ToType && Offset == 0)
    768     return FromVal;
    769 
    770   // If the result alloca is a vector type, this is either an element
    771   // access or a bitcast to another vector type of the same size.
    772   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
    773     unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
    774     unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
    775     if (FromTypeSize == ToTypeSize)
    776         return Builder.CreateBitCast(FromVal, ToType);
    777 
    778     // Otherwise it must be an element access.
    779     unsigned Elt = 0;
    780     if (Offset) {
    781       unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
    782       Elt = Offset/EltSize;
    783       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    784     }
    785     // Return the element extracted out of it.
    786     Value *Idx;
    787     if (NonConstantIdx) {
    788       if (Elt)
    789         Idx = Builder.CreateAdd(NonConstantIdx,
    790                                 Builder.getInt32(Elt),
    791                                 "dyn.offset");
    792       else
    793         Idx = NonConstantIdx;
    794     } else
    795       Idx = Builder.getInt32(Elt);
    796     Value *V = Builder.CreateExtractElement(FromVal, Idx);
    797     if (V->getType() != ToType)
    798       V = Builder.CreateBitCast(V, ToType);
    799     return V;
    800   }
    801 
    802   // If ToType is a first class aggregate, extract out each of the pieces and
    803   // use insertvalue's to form the FCA.
    804   if (StructType *ST = dyn_cast<StructType>(ToType)) {
    805     assert(!NonConstantIdx &&
    806            "Dynamic indexing into struct types not supported");
    807     const StructLayout &Layout = *TD.getStructLayout(ST);
    808     Value *Res = UndefValue::get(ST);
    809     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    810       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
    811                                         Offset+Layout.getElementOffsetInBits(i),
    812                                               0, Builder);
    813       Res = Builder.CreateInsertValue(Res, Elt, i);
    814     }
    815     return Res;
    816   }
    817 
    818   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
    819     assert(!NonConstantIdx &&
    820            "Dynamic indexing into array types not supported");
    821     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    822     Value *Res = UndefValue::get(AT);
    823     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    824       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
    825                                               Offset+i*EltSize, 0, Builder);
    826       Res = Builder.CreateInsertValue(Res, Elt, i);
    827     }
    828     return Res;
    829   }
    830 
    831   // Otherwise, this must be a union that was converted to an integer value.
    832   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
    833 
    834   // If this is a big-endian system and the load is narrower than the
    835   // full alloca type, we need to do a shift to get the right bits.
    836   int ShAmt = 0;
    837   if (TD.isBigEndian()) {
    838     // On big-endian machines, the lowest bit is stored at the bit offset
    839     // from the pointer given by getTypeStoreSizeInBits.  This matters for
    840     // integers with a bitwidth that is not a multiple of 8.
    841     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
    842             TD.getTypeStoreSizeInBits(ToType) - Offset;
    843   } else {
    844     ShAmt = Offset;
    845   }
    846 
    847   // Note: we support negative bitwidths (with shl) which are not defined.
    848   // We do this to support (f.e.) loads off the end of a structure where
    849   // only some bits are used.
    850   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
    851     FromVal = Builder.CreateLShr(FromVal,
    852                                  ConstantInt::get(FromVal->getType(), ShAmt));
    853   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
    854     FromVal = Builder.CreateShl(FromVal,
    855                                 ConstantInt::get(FromVal->getType(), -ShAmt));
    856 
    857   // Finally, unconditionally truncate the integer to the right width.
    858   unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
    859   if (LIBitWidth < NTy->getBitWidth())
    860     FromVal =
    861       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
    862                                                     LIBitWidth));
    863   else if (LIBitWidth > NTy->getBitWidth())
    864     FromVal =
    865        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
    866                                                     LIBitWidth));
    867 
    868   // If the result is an integer, this is a trunc or bitcast.
    869   if (ToType->isIntegerTy()) {
    870     // Should be done.
    871   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
    872     // Just do a bitcast, we know the sizes match up.
    873     FromVal = Builder.CreateBitCast(FromVal, ToType);
    874   } else {
    875     // Otherwise must be a pointer.
    876     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
    877   }
    878   assert(FromVal->getType() == ToType && "Didn't convert right?");
    879   return FromVal;
    880 }
    881 
    882 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
    883 /// or vector value "Old" at the offset specified by Offset.
    884 ///
    885 /// This happens when we are converting an "integer union" to a
    886 /// single integer scalar, or when we are converting a "vector union" to a
    887 /// vector with insert/extractelement instructions.
    888 ///
    889 /// Offset is an offset from the original alloca, in bits that need to be
    890 /// shifted to the right.
    891 ///
    892 /// NonConstantIdx is an index value if there was a GEP with a non-constant
    893 /// index value.  If this is 0 then all GEPs used to find this insert address
    894 /// are constant.
    895 Value *ConvertToScalarInfo::
    896 ConvertScalar_InsertValue(Value *SV, Value *Old,
    897                           uint64_t Offset, Value* NonConstantIdx,
    898                           IRBuilder<> &Builder) {
    899   // Convert the stored type to the actual type, shift it left to insert
    900   // then 'or' into place.
    901   Type *AllocaType = Old->getType();
    902   LLVMContext &Context = Old->getContext();
    903 
    904   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
    905     uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
    906     uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
    907 
    908     // Changing the whole vector with memset or with an access of a different
    909     // vector type?
    910     if (ValSize == VecSize)
    911         return Builder.CreateBitCast(SV, AllocaType);
    912 
    913     // Must be an element insertion.
    914     Type *EltTy = VTy->getElementType();
    915     if (SV->getType() != EltTy)
    916       SV = Builder.CreateBitCast(SV, EltTy);
    917     uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
    918     unsigned Elt = Offset/EltSize;
    919     Value *Idx;
    920     if (NonConstantIdx) {
    921       if (Elt)
    922         Idx = Builder.CreateAdd(NonConstantIdx,
    923                                 Builder.getInt32(Elt),
    924                                 "dyn.offset");
    925       else
    926         Idx = NonConstantIdx;
    927     } else
    928       Idx = Builder.getInt32(Elt);
    929     return Builder.CreateInsertElement(Old, SV, Idx);
    930   }
    931 
    932   // If SV is a first-class aggregate value, insert each value recursively.
    933   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
    934     assert(!NonConstantIdx &&
    935            "Dynamic indexing into struct types not supported");
    936     const StructLayout &Layout = *TD.getStructLayout(ST);
    937     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    938       Value *Elt = Builder.CreateExtractValue(SV, i);
    939       Old = ConvertScalar_InsertValue(Elt, Old,
    940                                       Offset+Layout.getElementOffsetInBits(i),
    941                                       0, Builder);
    942     }
    943     return Old;
    944   }
    945 
    946   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
    947     assert(!NonConstantIdx &&
    948            "Dynamic indexing into array types not supported");
    949     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    950     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    951       Value *Elt = Builder.CreateExtractValue(SV, i);
    952       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
    953     }
    954     return Old;
    955   }
    956 
    957   // If SV is a float, convert it to the appropriate integer type.
    958   // If it is a pointer, do the same.
    959   unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
    960   unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
    961   unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
    962   unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
    963   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
    964     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
    965   else if (SV->getType()->isPointerTy())
    966     SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
    967 
    968   // Zero extend or truncate the value if needed.
    969   if (SV->getType() != AllocaType) {
    970     if (SV->getType()->getPrimitiveSizeInBits() <
    971              AllocaType->getPrimitiveSizeInBits())
    972       SV = Builder.CreateZExt(SV, AllocaType);
    973     else {
    974       // Truncation may be needed if storing more than the alloca can hold
    975       // (undefined behavior).
    976       SV = Builder.CreateTrunc(SV, AllocaType);
    977       SrcWidth = DestWidth;
    978       SrcStoreWidth = DestStoreWidth;
    979     }
    980   }
    981 
    982   // If this is a big-endian system and the store is narrower than the
    983   // full alloca type, we need to do a shift to get the right bits.
    984   int ShAmt = 0;
    985   if (TD.isBigEndian()) {
    986     // On big-endian machines, the lowest bit is stored at the bit offset
    987     // from the pointer given by getTypeStoreSizeInBits.  This matters for
    988     // integers with a bitwidth that is not a multiple of 8.
    989     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
    990   } else {
    991     ShAmt = Offset;
    992   }
    993 
    994   // Note: we support negative bitwidths (with shr) which are not defined.
    995   // We do this to support (f.e.) stores off the end of a structure where
    996   // only some bits in the structure are set.
    997   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
    998   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
    999     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
   1000     Mask <<= ShAmt;
   1001   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
   1002     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
   1003     Mask = Mask.lshr(-ShAmt);
   1004   }
   1005 
   1006   // Mask out the bits we are about to insert from the old value, and or
   1007   // in the new bits.
   1008   if (SrcWidth != DestWidth) {
   1009     assert(DestWidth > SrcWidth);
   1010     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
   1011     SV = Builder.CreateOr(Old, SV, "ins");
   1012   }
   1013   return SV;
   1014 }
   1015 
   1016 
   1017 //===----------------------------------------------------------------------===//
   1018 // SRoA Driver
   1019 //===----------------------------------------------------------------------===//
   1020 
   1021 
   1022 bool SROA::runOnFunction(Function &F) {
   1023   TD = getAnalysisIfAvailable<DataLayout>();
   1024 
   1025   bool Changed = performPromotion(F);
   1026 
   1027   // FIXME: ScalarRepl currently depends on DataLayout more than it
   1028   // theoretically needs to. It should be refactored in order to support
   1029   // target-independent IR. Until this is done, just skip the actual
   1030   // scalar-replacement portion of this pass.
   1031   if (!TD) return Changed;
   1032 
   1033   while (1) {
   1034     bool LocalChange = performScalarRepl(F);
   1035     if (!LocalChange) break;   // No need to repromote if no scalarrepl
   1036     Changed = true;
   1037     LocalChange = performPromotion(F);
   1038     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
   1039   }
   1040 
   1041   return Changed;
   1042 }
   1043 
   1044 namespace {
   1045 class AllocaPromoter : public LoadAndStorePromoter {
   1046   AllocaInst *AI;
   1047   DIBuilder *DIB;
   1048   SmallVector<DbgDeclareInst *, 4> DDIs;
   1049   SmallVector<DbgValueInst *, 4> DVIs;
   1050 public:
   1051   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
   1052                  DIBuilder *DB)
   1053     : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
   1054 
   1055   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
   1056     // Remember which alloca we're promoting (for isInstInList).
   1057     this->AI = AI;
   1058     if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
   1059       for (Value::use_iterator UI = DebugNode->use_begin(),
   1060              E = DebugNode->use_end(); UI != E; ++UI)
   1061         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
   1062           DDIs.push_back(DDI);
   1063         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
   1064           DVIs.push_back(DVI);
   1065     }
   1066 
   1067     LoadAndStorePromoter::run(Insts);
   1068     AI->eraseFromParent();
   1069     for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
   1070            E = DDIs.end(); I != E; ++I) {
   1071       DbgDeclareInst *DDI = *I;
   1072       DDI->eraseFromParent();
   1073     }
   1074     for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
   1075            E = DVIs.end(); I != E; ++I) {
   1076       DbgValueInst *DVI = *I;
   1077       DVI->eraseFromParent();
   1078     }
   1079   }
   1080 
   1081   virtual bool isInstInList(Instruction *I,
   1082                             const SmallVectorImpl<Instruction*> &Insts) const {
   1083     if (LoadInst *LI = dyn_cast<LoadInst>(I))
   1084       return LI->getOperand(0) == AI;
   1085     return cast<StoreInst>(I)->getPointerOperand() == AI;
   1086   }
   1087 
   1088   virtual void updateDebugInfo(Instruction *Inst) const {
   1089     for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
   1090            E = DDIs.end(); I != E; ++I) {
   1091       DbgDeclareInst *DDI = *I;
   1092       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
   1093         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1094       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
   1095         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
   1096     }
   1097     for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
   1098            E = DVIs.end(); I != E; ++I) {
   1099       DbgValueInst *DVI = *I;
   1100       Value *Arg = NULL;
   1101       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   1102         // If an argument is zero extended then use argument directly. The ZExt
   1103         // may be zapped by an optimization pass in future.
   1104         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
   1105           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
   1106         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
   1107           Arg = dyn_cast<Argument>(SExt->getOperand(0));
   1108         if (!Arg)
   1109           Arg = SI->getOperand(0);
   1110       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
   1111         Arg = LI->getOperand(0);
   1112       } else {
   1113         continue;
   1114       }
   1115       Instruction *DbgVal =
   1116         DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
   1117                                      Inst);
   1118       DbgVal->setDebugLoc(DVI->getDebugLoc());
   1119     }
   1120   }
   1121 };
   1122 } // end anon namespace
   1123 
   1124 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
   1125 /// subsequently loaded can be rewritten to load both input pointers and then
   1126 /// select between the result, allowing the load of the alloca to be promoted.
   1127 /// From this:
   1128 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
   1129 ///   %V = load i32* %P2
   1130 /// to:
   1131 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1132 ///   %V2 = load i32* %Other
   1133 ///   %V = select i1 %cond, i32 %V1, i32 %V2
   1134 ///
   1135 /// We can do this to a select if its only uses are loads and if the operand to
   1136 /// the select can be loaded unconditionally.
   1137 static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
   1138   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
   1139   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
   1140 
   1141   for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
   1142        UI != UE; ++UI) {
   1143     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1144     if (LI == 0 || !LI->isSimple()) return false;
   1145 
   1146     // Both operands to the select need to be dereferencable, either absolutely
   1147     // (e.g. allocas) or at this point because we can see other accesses to it.
   1148     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
   1149                                                     LI->getAlignment(), TD))
   1150       return false;
   1151     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
   1152                                                     LI->getAlignment(), TD))
   1153       return false;
   1154   }
   1155 
   1156   return true;
   1157 }
   1158 
   1159 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
   1160 /// subsequently loaded can be rewritten to load both input pointers in the pred
   1161 /// blocks and then PHI the results, allowing the load of the alloca to be
   1162 /// promoted.
   1163 /// From this:
   1164 ///   %P2 = phi [i32* %Alloca, i32* %Other]
   1165 ///   %V = load i32* %P2
   1166 /// to:
   1167 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1168 ///   ...
   1169 ///   %V2 = load i32* %Other
   1170 ///   ...
   1171 ///   %V = phi [i32 %V1, i32 %V2]
   1172 ///
   1173 /// We can do this to a select if its only uses are loads and if the operand to
   1174 /// the select can be loaded unconditionally.
   1175 static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
   1176   // For now, we can only do this promotion if the load is in the same block as
   1177   // the PHI, and if there are no stores between the phi and load.
   1178   // TODO: Allow recursive phi users.
   1179   // TODO: Allow stores.
   1180   BasicBlock *BB = PN->getParent();
   1181   unsigned MaxAlign = 0;
   1182   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
   1183        UI != UE; ++UI) {
   1184     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1185     if (LI == 0 || !LI->isSimple()) return false;
   1186 
   1187     // For now we only allow loads in the same block as the PHI.  This is a
   1188     // common case that happens when instcombine merges two loads through a PHI.
   1189     if (LI->getParent() != BB) return false;
   1190 
   1191     // Ensure that there are no instructions between the PHI and the load that
   1192     // could store.
   1193     for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
   1194       if (BBI->mayWriteToMemory())
   1195         return false;
   1196 
   1197     MaxAlign = std::max(MaxAlign, LI->getAlignment());
   1198   }
   1199 
   1200   // Okay, we know that we have one or more loads in the same block as the PHI.
   1201   // We can transform this if it is safe to push the loads into the predecessor
   1202   // blocks.  The only thing to watch out for is that we can't put a possibly
   1203   // trapping load in the predecessor if it is a critical edge.
   1204   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1205     BasicBlock *Pred = PN->getIncomingBlock(i);
   1206     Value *InVal = PN->getIncomingValue(i);
   1207 
   1208     // If the terminator of the predecessor has side-effects (an invoke),
   1209     // there is no safe place to put a load in the predecessor.
   1210     if (Pred->getTerminator()->mayHaveSideEffects())
   1211       return false;
   1212 
   1213     // If the value is produced by the terminator of the predecessor
   1214     // (an invoke), there is no valid place to put a load in the predecessor.
   1215     if (Pred->getTerminator() == InVal)
   1216       return false;
   1217 
   1218     // If the predecessor has a single successor, then the edge isn't critical.
   1219     if (Pred->getTerminator()->getNumSuccessors() == 1)
   1220       continue;
   1221 
   1222     // If this pointer is always safe to load, or if we can prove that there is
   1223     // already a load in the block, then we can move the load to the pred block.
   1224     if (InVal->isDereferenceablePointer() ||
   1225         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
   1226       continue;
   1227 
   1228     return false;
   1229   }
   1230 
   1231   return true;
   1232 }
   1233 
   1234 
   1235 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
   1236 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
   1237 /// not quite there, this will transform the code to allow promotion.  As such,
   1238 /// it is a non-pure predicate.
   1239 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
   1240   SetVector<Instruction*, SmallVector<Instruction*, 4>,
   1241             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
   1242 
   1243   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
   1244        UI != UE; ++UI) {
   1245     User *U = *UI;
   1246     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1247       if (!LI->isSimple())
   1248         return false;
   1249       continue;
   1250     }
   1251 
   1252     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1253       if (SI->getOperand(0) == AI || !SI->isSimple())
   1254         return false;   // Don't allow a store OF the AI, only INTO the AI.
   1255       continue;
   1256     }
   1257 
   1258     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
   1259       // If the condition being selected on is a constant, fold the select, yes
   1260       // this does (rarely) happen early on.
   1261       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
   1262         Value *Result = SI->getOperand(1+CI->isZero());
   1263         SI->replaceAllUsesWith(Result);
   1264         SI->eraseFromParent();
   1265 
   1266         // This is very rare and we just scrambled the use list of AI, start
   1267         // over completely.
   1268         return tryToMakeAllocaBePromotable(AI, TD);
   1269       }
   1270 
   1271       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
   1272       // loads, then we can transform this by rewriting the select.
   1273       if (!isSafeSelectToSpeculate(SI, TD))
   1274         return false;
   1275 
   1276       InstsToRewrite.insert(SI);
   1277       continue;
   1278     }
   1279 
   1280     if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1281       if (PN->use_empty()) {  // Dead PHIs can be stripped.
   1282         InstsToRewrite.insert(PN);
   1283         continue;
   1284       }
   1285 
   1286       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
   1287       // in the pred blocks, then we can transform this by rewriting the PHI.
   1288       if (!isSafePHIToSpeculate(PN, TD))
   1289         return false;
   1290 
   1291       InstsToRewrite.insert(PN);
   1292       continue;
   1293     }
   1294 
   1295     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
   1296       if (onlyUsedByLifetimeMarkers(BCI)) {
   1297         InstsToRewrite.insert(BCI);
   1298         continue;
   1299       }
   1300     }
   1301 
   1302     return false;
   1303   }
   1304 
   1305   // If there are no instructions to rewrite, then all uses are load/stores and
   1306   // we're done!
   1307   if (InstsToRewrite.empty())
   1308     return true;
   1309 
   1310   // If we have instructions that need to be rewritten for this to be promotable
   1311   // take care of it now.
   1312   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
   1313     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
   1314       // This could only be a bitcast used by nothing but lifetime intrinsics.
   1315       for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
   1316            I != E;) {
   1317         Use &U = I.getUse();
   1318         ++I;
   1319         cast<Instruction>(U.getUser())->eraseFromParent();
   1320       }
   1321       BCI->eraseFromParent();
   1322       continue;
   1323     }
   1324 
   1325     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
   1326       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
   1327       // loads with a new select.
   1328       while (!SI->use_empty()) {
   1329         LoadInst *LI = cast<LoadInst>(SI->use_back());
   1330 
   1331         IRBuilder<> Builder(LI);
   1332         LoadInst *TrueLoad =
   1333           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
   1334         LoadInst *FalseLoad =
   1335           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
   1336 
   1337         // Transfer alignment and TBAA info if present.
   1338         TrueLoad->setAlignment(LI->getAlignment());
   1339         FalseLoad->setAlignment(LI->getAlignment());
   1340         if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
   1341           TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1342           FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1343         }
   1344 
   1345         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
   1346         V->takeName(LI);
   1347         LI->replaceAllUsesWith(V);
   1348         LI->eraseFromParent();
   1349       }
   1350 
   1351       // Now that all the loads are gone, the select is gone too.
   1352       SI->eraseFromParent();
   1353       continue;
   1354     }
   1355 
   1356     // Otherwise, we have a PHI node which allows us to push the loads into the
   1357     // predecessors.
   1358     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
   1359     if (PN->use_empty()) {
   1360       PN->eraseFromParent();
   1361       continue;
   1362     }
   1363 
   1364     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
   1365     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
   1366                                      PN->getName()+".ld", PN);
   1367 
   1368     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
   1369     // matter which one we get and if any differ, it doesn't matter.
   1370     LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
   1371     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
   1372     unsigned Align = SomeLoad->getAlignment();
   1373 
   1374     // Rewrite all loads of the PN to use the new PHI.
   1375     while (!PN->use_empty()) {
   1376       LoadInst *LI = cast<LoadInst>(PN->use_back());
   1377       LI->replaceAllUsesWith(NewPN);
   1378       LI->eraseFromParent();
   1379     }
   1380 
   1381     // Inject loads into all of the pred blocks.  Keep track of which blocks we
   1382     // insert them into in case we have multiple edges from the same block.
   1383     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
   1384 
   1385     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1386       BasicBlock *Pred = PN->getIncomingBlock(i);
   1387       LoadInst *&Load = InsertedLoads[Pred];
   1388       if (Load == 0) {
   1389         Load = new LoadInst(PN->getIncomingValue(i),
   1390                             PN->getName() + "." + Pred->getName(),
   1391                             Pred->getTerminator());
   1392         Load->setAlignment(Align);
   1393         if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
   1394       }
   1395 
   1396       NewPN->addIncoming(Load, Pred);
   1397     }
   1398 
   1399     PN->eraseFromParent();
   1400   }
   1401 
   1402   ++NumAdjusted;
   1403   return true;
   1404 }
   1405 
   1406 bool SROA::performPromotion(Function &F) {
   1407   std::vector<AllocaInst*> Allocas;
   1408   DominatorTree *DT = 0;
   1409   if (HasDomTree)
   1410     DT = &getAnalysis<DominatorTree>();
   1411 
   1412   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
   1413   DIBuilder DIB(*F.getParent());
   1414   bool Changed = false;
   1415   SmallVector<Instruction*, 64> Insts;
   1416   while (1) {
   1417     Allocas.clear();
   1418 
   1419     // Find allocas that are safe to promote, by looking at all instructions in
   1420     // the entry node
   1421     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
   1422       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
   1423         if (tryToMakeAllocaBePromotable(AI, TD))
   1424           Allocas.push_back(AI);
   1425 
   1426     if (Allocas.empty()) break;
   1427 
   1428     if (HasDomTree)
   1429       PromoteMemToReg(Allocas, *DT, TD);
   1430     else {
   1431       SSAUpdater SSA;
   1432       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
   1433         AllocaInst *AI = Allocas[i];
   1434 
   1435         // Build list of instructions to promote.
   1436         for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
   1437              UI != E; ++UI)
   1438           Insts.push_back(cast<Instruction>(*UI));
   1439         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
   1440         Insts.clear();
   1441       }
   1442     }
   1443     NumPromoted += Allocas.size();
   1444     Changed = true;
   1445   }
   1446 
   1447   return Changed;
   1448 }
   1449 
   1450 
   1451 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
   1452 /// SROA.  It must be a struct or array type with a small number of elements.
   1453 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
   1454   Type *T = AI->getAllocatedType();
   1455   // Do not promote any struct that has too many members.
   1456   if (StructType *ST = dyn_cast<StructType>(T))
   1457     return ST->getNumElements() <= StructMemberThreshold;
   1458   // Do not promote any array that has too many elements.
   1459   if (ArrayType *AT = dyn_cast<ArrayType>(T))
   1460     return AT->getNumElements() <= ArrayElementThreshold;
   1461   return false;
   1462 }
   1463 
   1464 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
   1465 // which runs on all of the alloca instructions in the entry block, removing
   1466 // them if they are only used by getelementptr instructions.
   1467 //
   1468 bool SROA::performScalarRepl(Function &F) {
   1469   std::vector<AllocaInst*> WorkList;
   1470 
   1471   // Scan the entry basic block, adding allocas to the worklist.
   1472   BasicBlock &BB = F.getEntryBlock();
   1473   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
   1474     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
   1475       WorkList.push_back(A);
   1476 
   1477   // Process the worklist
   1478   bool Changed = false;
   1479   while (!WorkList.empty()) {
   1480     AllocaInst *AI = WorkList.back();
   1481     WorkList.pop_back();
   1482 
   1483     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
   1484     // with unused elements.
   1485     if (AI->use_empty()) {
   1486       AI->eraseFromParent();
   1487       Changed = true;
   1488       continue;
   1489     }
   1490 
   1491     // If this alloca is impossible for us to promote, reject it early.
   1492     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
   1493       continue;
   1494 
   1495     // Check to see if we can perform the core SROA transformation.  We cannot
   1496     // transform the allocation instruction if it is an array allocation
   1497     // (allocations OF arrays are ok though), and an allocation of a scalar
   1498     // value cannot be decomposed at all.
   1499     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
   1500 
   1501     // Do not promote [0 x %struct].
   1502     if (AllocaSize == 0) continue;
   1503 
   1504     // Do not promote any struct whose size is too big.
   1505     if (AllocaSize > SRThreshold) continue;
   1506 
   1507     // If the alloca looks like a good candidate for scalar replacement, and if
   1508     // all its users can be transformed, then split up the aggregate into its
   1509     // separate elements.
   1510     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
   1511       DoScalarReplacement(AI, WorkList);
   1512       Changed = true;
   1513       continue;
   1514     }
   1515 
   1516     // If we can turn this aggregate value (potentially with casts) into a
   1517     // simple scalar value that can be mem2reg'd into a register value.
   1518     // IsNotTrivial tracks whether this is something that mem2reg could have
   1519     // promoted itself.  If so, we don't want to transform it needlessly.  Note
   1520     // that we can't just check based on the type: the alloca may be of an i32
   1521     // but that has pointer arithmetic to set byte 3 of it or something.
   1522     if (AllocaInst *NewAI = ConvertToScalarInfo(
   1523               (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
   1524       NewAI->takeName(AI);
   1525       AI->eraseFromParent();
   1526       ++NumConverted;
   1527       Changed = true;
   1528       continue;
   1529     }
   1530 
   1531     // Otherwise, couldn't process this alloca.
   1532   }
   1533 
   1534   return Changed;
   1535 }
   1536 
   1537 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
   1538 /// predicate, do SROA now.
   1539 void SROA::DoScalarReplacement(AllocaInst *AI,
   1540                                std::vector<AllocaInst*> &WorkList) {
   1541   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
   1542   SmallVector<AllocaInst*, 32> ElementAllocas;
   1543   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   1544     ElementAllocas.reserve(ST->getNumContainedTypes());
   1545     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
   1546       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
   1547                                       AI->getAlignment(),
   1548                                       AI->getName() + "." + Twine(i), AI);
   1549       ElementAllocas.push_back(NA);
   1550       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1551     }
   1552   } else {
   1553     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
   1554     ElementAllocas.reserve(AT->getNumElements());
   1555     Type *ElTy = AT->getElementType();
   1556     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
   1557       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
   1558                                       AI->getName() + "." + Twine(i), AI);
   1559       ElementAllocas.push_back(NA);
   1560       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1561     }
   1562   }
   1563 
   1564   // Now that we have created the new alloca instructions, rewrite all the
   1565   // uses of the old alloca.
   1566   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
   1567 
   1568   // Now erase any instructions that were made dead while rewriting the alloca.
   1569   DeleteDeadInstructions();
   1570   AI->eraseFromParent();
   1571 
   1572   ++NumReplaced;
   1573 }
   1574 
   1575 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
   1576 /// recursively including all their operands that become trivially dead.
   1577 void SROA::DeleteDeadInstructions() {
   1578   while (!DeadInsts.empty()) {
   1579     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
   1580 
   1581     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
   1582       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
   1583         // Zero out the operand and see if it becomes trivially dead.
   1584         // (But, don't add allocas to the dead instruction list -- they are
   1585         // already on the worklist and will be deleted separately.)
   1586         *OI = 0;
   1587         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
   1588           DeadInsts.push_back(U);
   1589       }
   1590 
   1591     I->eraseFromParent();
   1592   }
   1593 }
   1594 
   1595 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
   1596 /// performing scalar replacement of alloca AI.  The results are flagged in
   1597 /// the Info parameter.  Offset indicates the position within AI that is
   1598 /// referenced by this instruction.
   1599 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
   1600                                AllocaInfo &Info) {
   1601   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1602     Instruction *User = cast<Instruction>(*UI);
   1603 
   1604     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1605       isSafeForScalarRepl(BC, Offset, Info);
   1606     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1607       uint64_t GEPOffset = Offset;
   1608       isSafeGEP(GEPI, GEPOffset, Info);
   1609       if (!Info.isUnsafe)
   1610         isSafeForScalarRepl(GEPI, GEPOffset, Info);
   1611     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1612       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1613       if (Length == 0)
   1614         return MarkUnsafe(Info, User);
   1615       if (Length->isNegative())
   1616         return MarkUnsafe(Info, User);
   1617 
   1618       isSafeMemAccess(Offset, Length->getZExtValue(), 0,
   1619                       UI.getOperandNo() == 0, Info, MI,
   1620                       true /*AllowWholeAccess*/);
   1621     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1622       if (!LI->isSimple())
   1623         return MarkUnsafe(Info, User);
   1624       Type *LIType = LI->getType();
   1625       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1626                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
   1627       Info.hasALoadOrStore = true;
   1628 
   1629     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1630       // Store is ok if storing INTO the pointer, not storing the pointer
   1631       if (!SI->isSimple() || SI->getOperand(0) == I)
   1632         return MarkUnsafe(Info, User);
   1633 
   1634       Type *SIType = SI->getOperand(0)->getType();
   1635       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1636                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
   1637       Info.hasALoadOrStore = true;
   1638     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
   1639       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1640           II->getIntrinsicID() != Intrinsic::lifetime_end)
   1641         return MarkUnsafe(Info, User);
   1642     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1643       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1644     } else {
   1645       return MarkUnsafe(Info, User);
   1646     }
   1647     if (Info.isUnsafe) return;
   1648   }
   1649 }
   1650 
   1651 
   1652 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
   1653 /// derived from the alloca, we can often still split the alloca into elements.
   1654 /// This is useful if we have a large alloca where one element is phi'd
   1655 /// together somewhere: we can SRoA and promote all the other elements even if
   1656 /// we end up not being able to promote this one.
   1657 ///
   1658 /// All we require is that the uses of the PHI do not index into other parts of
   1659 /// the alloca.  The most important use case for this is single load and stores
   1660 /// that are PHI'd together, which can happen due to code sinking.
   1661 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
   1662                                            AllocaInfo &Info) {
   1663   // If we've already checked this PHI, don't do it again.
   1664   if (PHINode *PN = dyn_cast<PHINode>(I))
   1665     if (!Info.CheckedPHIs.insert(PN))
   1666       return;
   1667 
   1668   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1669     Instruction *User = cast<Instruction>(*UI);
   1670 
   1671     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1672       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
   1673     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1674       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
   1675       // but would have to prove that we're staying inside of an element being
   1676       // promoted.
   1677       if (!GEPI->hasAllZeroIndices())
   1678         return MarkUnsafe(Info, User);
   1679       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
   1680     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1681       if (!LI->isSimple())
   1682         return MarkUnsafe(Info, User);
   1683       Type *LIType = LI->getType();
   1684       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1685                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
   1686       Info.hasALoadOrStore = true;
   1687 
   1688     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1689       // Store is ok if storing INTO the pointer, not storing the pointer
   1690       if (!SI->isSimple() || SI->getOperand(0) == I)
   1691         return MarkUnsafe(Info, User);
   1692 
   1693       Type *SIType = SI->getOperand(0)->getType();
   1694       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1695                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
   1696       Info.hasALoadOrStore = true;
   1697     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1698       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1699     } else {
   1700       return MarkUnsafe(Info, User);
   1701     }
   1702     if (Info.isUnsafe) return;
   1703   }
   1704 }
   1705 
   1706 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
   1707 /// replacement.  It is safe when all the indices are constant, in-bounds
   1708 /// references, and when the resulting offset corresponds to an element within
   1709 /// the alloca type.  The results are flagged in the Info parameter.  Upon
   1710 /// return, Offset is adjusted as specified by the GEP indices.
   1711 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
   1712                      uint64_t &Offset, AllocaInfo &Info) {
   1713   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
   1714   if (GEPIt == E)
   1715     return;
   1716   bool NonConstant = false;
   1717   unsigned NonConstantIdxSize = 0;
   1718 
   1719   // Walk through the GEP type indices, checking the types that this indexes
   1720   // into.
   1721   for (; GEPIt != E; ++GEPIt) {
   1722     // Ignore struct elements, no extra checking needed for these.
   1723     if ((*GEPIt)->isStructTy())
   1724       continue;
   1725 
   1726     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
   1727     if (!IdxVal)
   1728       return MarkUnsafe(Info, GEPI);
   1729   }
   1730 
   1731   // Compute the offset due to this GEP and check if the alloca has a
   1732   // component element at that offset.
   1733   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   1734   // If this GEP is non constant then the last operand must have been a
   1735   // dynamic index into a vector.  Pop this now as it has no impact on the
   1736   // constant part of the offset.
   1737   if (NonConstant)
   1738     Indices.pop_back();
   1739   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   1740   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
   1741                         NonConstantIdxSize))
   1742     MarkUnsafe(Info, GEPI);
   1743 }
   1744 
   1745 /// isHomogeneousAggregate - Check if type T is a struct or array containing
   1746 /// elements of the same type (which is always true for arrays).  If so,
   1747 /// return true with NumElts and EltTy set to the number of elements and the
   1748 /// element type, respectively.
   1749 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
   1750                                    Type *&EltTy) {
   1751   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1752     NumElts = AT->getNumElements();
   1753     EltTy = (NumElts == 0 ? 0 : AT->getElementType());
   1754     return true;
   1755   }
   1756   if (StructType *ST = dyn_cast<StructType>(T)) {
   1757     NumElts = ST->getNumContainedTypes();
   1758     EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
   1759     for (unsigned n = 1; n < NumElts; ++n) {
   1760       if (ST->getContainedType(n) != EltTy)
   1761         return false;
   1762     }
   1763     return true;
   1764   }
   1765   return false;
   1766 }
   1767 
   1768 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
   1769 /// "homogeneous" aggregates with the same element type and number of elements.
   1770 static bool isCompatibleAggregate(Type *T1, Type *T2) {
   1771   if (T1 == T2)
   1772     return true;
   1773 
   1774   unsigned NumElts1, NumElts2;
   1775   Type *EltTy1, *EltTy2;
   1776   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
   1777       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
   1778       NumElts1 == NumElts2 &&
   1779       EltTy1 == EltTy2)
   1780     return true;
   1781 
   1782   return false;
   1783 }
   1784 
   1785 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
   1786 /// alloca or has an offset and size that corresponds to a component element
   1787 /// within it.  The offset checked here may have been formed from a GEP with a
   1788 /// pointer bitcasted to a different type.
   1789 ///
   1790 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
   1791 /// unit.  If false, it only allows accesses known to be in a single element.
   1792 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
   1793                            Type *MemOpType, bool isStore,
   1794                            AllocaInfo &Info, Instruction *TheAccess,
   1795                            bool AllowWholeAccess) {
   1796   // Check if this is a load/store of the entire alloca.
   1797   if (Offset == 0 && AllowWholeAccess &&
   1798       MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
   1799     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
   1800     // loads/stores (which are essentially the same as the MemIntrinsics with
   1801     // regard to copying padding between elements).  But, if an alloca is
   1802     // flagged as both a source and destination of such operations, we'll need
   1803     // to check later for padding between elements.
   1804     if (!MemOpType || MemOpType->isIntegerTy()) {
   1805       if (isStore)
   1806         Info.isMemCpyDst = true;
   1807       else
   1808         Info.isMemCpySrc = true;
   1809       return;
   1810     }
   1811     // This is also safe for references using a type that is compatible with
   1812     // the type of the alloca, so that loads/stores can be rewritten using
   1813     // insertvalue/extractvalue.
   1814     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
   1815       Info.hasSubelementAccess = true;
   1816       return;
   1817     }
   1818   }
   1819   // Check if the offset/size correspond to a component within the alloca type.
   1820   Type *T = Info.AI->getAllocatedType();
   1821   if (TypeHasComponent(T, Offset, MemSize)) {
   1822     Info.hasSubelementAccess = true;
   1823     return;
   1824   }
   1825 
   1826   return MarkUnsafe(Info, TheAccess);
   1827 }
   1828 
   1829 /// TypeHasComponent - Return true if T has a component type with the
   1830 /// specified offset and size.  If Size is zero, do not check the size.
   1831 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
   1832   Type *EltTy;
   1833   uint64_t EltSize;
   1834   if (StructType *ST = dyn_cast<StructType>(T)) {
   1835     const StructLayout *Layout = TD->getStructLayout(ST);
   1836     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
   1837     EltTy = ST->getContainedType(EltIdx);
   1838     EltSize = TD->getTypeAllocSize(EltTy);
   1839     Offset -= Layout->getElementOffset(EltIdx);
   1840   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1841     EltTy = AT->getElementType();
   1842     EltSize = TD->getTypeAllocSize(EltTy);
   1843     if (Offset >= AT->getNumElements() * EltSize)
   1844       return false;
   1845     Offset %= EltSize;
   1846   } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
   1847     EltTy = VT->getElementType();
   1848     EltSize = TD->getTypeAllocSize(EltTy);
   1849     if (Offset >= VT->getNumElements() * EltSize)
   1850       return false;
   1851     Offset %= EltSize;
   1852   } else {
   1853     return false;
   1854   }
   1855   if (Offset == 0 && (Size == 0 || EltSize == Size))
   1856     return true;
   1857   // Check if the component spans multiple elements.
   1858   if (Offset + Size > EltSize)
   1859     return false;
   1860   return TypeHasComponent(EltTy, Offset, Size);
   1861 }
   1862 
   1863 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
   1864 /// the instruction I, which references it, to use the separate elements.
   1865 /// Offset indicates the position within AI that is referenced by this
   1866 /// instruction.
   1867 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
   1868                                 SmallVectorImpl<AllocaInst *> &NewElts) {
   1869   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
   1870     Use &TheUse = UI.getUse();
   1871     Instruction *User = cast<Instruction>(*UI++);
   1872 
   1873     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1874       RewriteBitCast(BC, AI, Offset, NewElts);
   1875       continue;
   1876     }
   1877 
   1878     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1879       RewriteGEP(GEPI, AI, Offset, NewElts);
   1880       continue;
   1881     }
   1882 
   1883     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1884       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1885       uint64_t MemSize = Length->getZExtValue();
   1886       if (Offset == 0 &&
   1887           MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
   1888         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
   1889       // Otherwise the intrinsic can only touch a single element and the
   1890       // address operand will be updated, so nothing else needs to be done.
   1891       continue;
   1892     }
   1893 
   1894     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
   1895       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   1896           II->getIntrinsicID() == Intrinsic::lifetime_end) {
   1897         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
   1898       }
   1899       continue;
   1900     }
   1901 
   1902     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1903       Type *LIType = LI->getType();
   1904 
   1905       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
   1906         // Replace:
   1907         //   %res = load { i32, i32 }* %alloc
   1908         // with:
   1909         //   %load.0 = load i32* %alloc.0
   1910         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
   1911         //   %load.1 = load i32* %alloc.1
   1912         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
   1913         // (Also works for arrays instead of structs)
   1914         Value *Insert = UndefValue::get(LIType);
   1915         IRBuilder<> Builder(LI);
   1916         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1917           Value *Load = Builder.CreateLoad(NewElts[i], "load");
   1918           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
   1919         }
   1920         LI->replaceAllUsesWith(Insert);
   1921         DeadInsts.push_back(LI);
   1922       } else if (LIType->isIntegerTy() &&
   1923                  TD->getTypeAllocSize(LIType) ==
   1924                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1925         // If this is a load of the entire alloca to an integer, rewrite it.
   1926         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
   1927       }
   1928       continue;
   1929     }
   1930 
   1931     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1932       Value *Val = SI->getOperand(0);
   1933       Type *SIType = Val->getType();
   1934       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
   1935         // Replace:
   1936         //   store { i32, i32 } %val, { i32, i32 }* %alloc
   1937         // with:
   1938         //   %val.0 = extractvalue { i32, i32 } %val, 0
   1939         //   store i32 %val.0, i32* %alloc.0
   1940         //   %val.1 = extractvalue { i32, i32 } %val, 1
   1941         //   store i32 %val.1, i32* %alloc.1
   1942         // (Also works for arrays instead of structs)
   1943         IRBuilder<> Builder(SI);
   1944         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1945           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
   1946           Builder.CreateStore(Extract, NewElts[i]);
   1947         }
   1948         DeadInsts.push_back(SI);
   1949       } else if (SIType->isIntegerTy() &&
   1950                  TD->getTypeAllocSize(SIType) ==
   1951                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1952         // If this is a store of the entire alloca from an integer, rewrite it.
   1953         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
   1954       }
   1955       continue;
   1956     }
   1957 
   1958     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
   1959       // If we have a PHI user of the alloca itself (as opposed to a GEP or
   1960       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
   1961       // the new pointer.
   1962       if (!isa<AllocaInst>(I)) continue;
   1963 
   1964       assert(Offset == 0 && NewElts[0] &&
   1965              "Direct alloca use should have a zero offset");
   1966 
   1967       // If we have a use of the alloca, we know the derived uses will be
   1968       // utilizing just the first element of the scalarized result.  Insert a
   1969       // bitcast of the first alloca before the user as required.
   1970       AllocaInst *NewAI = NewElts[0];
   1971       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
   1972       NewAI->moveBefore(BCI);
   1973       TheUse = BCI;
   1974       continue;
   1975     }
   1976   }
   1977 }
   1978 
   1979 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
   1980 /// and recursively continue updating all of its uses.
   1981 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
   1982                           SmallVectorImpl<AllocaInst *> &NewElts) {
   1983   RewriteForScalarRepl(BC, AI, Offset, NewElts);
   1984   if (BC->getOperand(0) != AI)
   1985     return;
   1986 
   1987   // The bitcast references the original alloca.  Replace its uses with
   1988   // references to the alloca containing offset zero (which is normally at
   1989   // index zero, but might not be in cases involving structs with elements
   1990   // of size zero).
   1991   Type *T = AI->getAllocatedType();
   1992   uint64_t EltOffset = 0;
   1993   Type *IdxTy;
   1994   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
   1995   Instruction *Val = NewElts[Idx];
   1996   if (Val->getType() != BC->getDestTy()) {
   1997     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
   1998     Val->takeName(BC);
   1999   }
   2000   BC->replaceAllUsesWith(Val);
   2001   DeadInsts.push_back(BC);
   2002 }
   2003 
   2004 /// FindElementAndOffset - Return the index of the element containing Offset
   2005 /// within the specified type, which must be either a struct or an array.
   2006 /// Sets T to the type of the element and Offset to the offset within that
   2007 /// element.  IdxTy is set to the type of the index result to be used in a
   2008 /// GEP instruction.
   2009 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
   2010                                     Type *&IdxTy) {
   2011   uint64_t Idx = 0;
   2012   if (StructType *ST = dyn_cast<StructType>(T)) {
   2013     const StructLayout *Layout = TD->getStructLayout(ST);
   2014     Idx = Layout->getElementContainingOffset(Offset);
   2015     T = ST->getContainedType(Idx);
   2016     Offset -= Layout->getElementOffset(Idx);
   2017     IdxTy = Type::getInt32Ty(T->getContext());
   2018     return Idx;
   2019   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   2020     T = AT->getElementType();
   2021     uint64_t EltSize = TD->getTypeAllocSize(T);
   2022     Idx = Offset / EltSize;
   2023     Offset -= Idx * EltSize;
   2024     IdxTy = Type::getInt64Ty(T->getContext());
   2025     return Idx;
   2026   }
   2027   VectorType *VT = cast<VectorType>(T);
   2028   T = VT->getElementType();
   2029   uint64_t EltSize = TD->getTypeAllocSize(T);
   2030   Idx = Offset / EltSize;
   2031   Offset -= Idx * EltSize;
   2032   IdxTy = Type::getInt64Ty(T->getContext());
   2033   return Idx;
   2034 }
   2035 
   2036 /// RewriteGEP - Check if this GEP instruction moves the pointer across
   2037 /// elements of the alloca that are being split apart, and if so, rewrite
   2038 /// the GEP to be relative to the new element.
   2039 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
   2040                       SmallVectorImpl<AllocaInst *> &NewElts) {
   2041   uint64_t OldOffset = Offset;
   2042   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   2043   // If the GEP was dynamic then it must have been a dynamic vector lookup.
   2044   // In this case, it must be the last GEP operand which is dynamic so keep that
   2045   // aside until we've found the constant GEP offset then add it back in at the
   2046   // end.
   2047   Value* NonConstantIdx = 0;
   2048   if (!GEPI->hasAllConstantIndices())
   2049     NonConstantIdx = Indices.pop_back_val();
   2050   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   2051 
   2052   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
   2053 
   2054   Type *T = AI->getAllocatedType();
   2055   Type *IdxTy;
   2056   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
   2057   if (GEPI->getOperand(0) == AI)
   2058     OldIdx = ~0ULL; // Force the GEP to be rewritten.
   2059 
   2060   T = AI->getAllocatedType();
   2061   uint64_t EltOffset = Offset;
   2062   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
   2063 
   2064   // If this GEP does not move the pointer across elements of the alloca
   2065   // being split, then it does not needs to be rewritten.
   2066   if (Idx == OldIdx)
   2067     return;
   2068 
   2069   Type *i32Ty = Type::getInt32Ty(AI->getContext());
   2070   SmallVector<Value*, 8> NewArgs;
   2071   NewArgs.push_back(Constant::getNullValue(i32Ty));
   2072   while (EltOffset != 0) {
   2073     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
   2074     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
   2075   }
   2076   if (NonConstantIdx) {
   2077     Type* GepTy = T;
   2078     // This GEP has a dynamic index.  We need to add "i32 0" to index through
   2079     // any structs or arrays in the original type until we get to the vector
   2080     // to index.
   2081     while (!isa<VectorType>(GepTy)) {
   2082       NewArgs.push_back(Constant::getNullValue(i32Ty));
   2083       GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
   2084     }
   2085     NewArgs.push_back(NonConstantIdx);
   2086   }
   2087   Instruction *Val = NewElts[Idx];
   2088   if (NewArgs.size() > 1) {
   2089     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
   2090     Val->takeName(GEPI);
   2091   }
   2092   if (Val->getType() != GEPI->getType())
   2093     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
   2094   GEPI->replaceAllUsesWith(Val);
   2095   DeadInsts.push_back(GEPI);
   2096 }
   2097 
   2098 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
   2099 /// to mark the lifetime of the scalarized memory.
   2100 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
   2101                                     uint64_t Offset,
   2102                                     SmallVectorImpl<AllocaInst *> &NewElts) {
   2103   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
   2104   // Put matching lifetime markers on everything from Offset up to
   2105   // Offset+OldSize.
   2106   Type *AIType = AI->getAllocatedType();
   2107   uint64_t NewOffset = Offset;
   2108   Type *IdxTy;
   2109   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
   2110 
   2111   IRBuilder<> Builder(II);
   2112   uint64_t Size = OldSize->getLimitedValue();
   2113 
   2114   if (NewOffset) {
   2115     // Splice the first element and index 'NewOffset' bytes in.  SROA will
   2116     // split the alloca again later.
   2117     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
   2118     V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
   2119 
   2120     IdxTy = NewElts[Idx]->getAllocatedType();
   2121     uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
   2122     if (EltSize > Size) {
   2123       EltSize = Size;
   2124       Size = 0;
   2125     } else {
   2126       Size -= EltSize;
   2127     }
   2128     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   2129       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
   2130     else
   2131       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
   2132     ++Idx;
   2133   }
   2134 
   2135   for (; Idx != NewElts.size() && Size; ++Idx) {
   2136     IdxTy = NewElts[Idx]->getAllocatedType();
   2137     uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
   2138     if (EltSize > Size) {
   2139       EltSize = Size;
   2140       Size = 0;
   2141     } else {
   2142       Size -= EltSize;
   2143     }
   2144     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   2145       Builder.CreateLifetimeStart(NewElts[Idx],
   2146                                   Builder.getInt64(EltSize));
   2147     else
   2148       Builder.CreateLifetimeEnd(NewElts[Idx],
   2149                                 Builder.getInt64(EltSize));
   2150   }
   2151   DeadInsts.push_back(II);
   2152 }
   2153 
   2154 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
   2155 /// Rewrite it to copy or set the elements of the scalarized memory.
   2156 void
   2157 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
   2158                                    AllocaInst *AI,
   2159                                    SmallVectorImpl<AllocaInst *> &NewElts) {
   2160   // If this is a memcpy/memmove, construct the other pointer as the
   2161   // appropriate type.  The "Other" pointer is the pointer that goes to memory
   2162   // that doesn't have anything to do with the alloca that we are promoting. For
   2163   // memset, this Value* stays null.
   2164   Value *OtherPtr = 0;
   2165   unsigned MemAlignment = MI->getAlignment();
   2166   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
   2167     if (Inst == MTI->getRawDest())
   2168       OtherPtr = MTI->getRawSource();
   2169     else {
   2170       assert(Inst == MTI->getRawSource());
   2171       OtherPtr = MTI->getRawDest();
   2172     }
   2173   }
   2174 
   2175   // If there is an other pointer, we want to convert it to the same pointer
   2176   // type as AI has, so we can GEP through it safely.
   2177   if (OtherPtr) {
   2178     unsigned AddrSpace =
   2179       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
   2180 
   2181     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
   2182     // optimization, but it's also required to detect the corner case where
   2183     // both pointer operands are referencing the same memory, and where
   2184     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
   2185     // function is only called for mem intrinsics that access the whole
   2186     // aggregate, so non-zero GEPs are not an issue here.)
   2187     OtherPtr = OtherPtr->stripPointerCasts();
   2188 
   2189     // Copying the alloca to itself is a no-op: just delete it.
   2190     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
   2191       // This code will run twice for a no-op memcpy -- once for each operand.
   2192       // Put only one reference to MI on the DeadInsts list.
   2193       for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
   2194              E = DeadInsts.end(); I != E; ++I)
   2195         if (*I == MI) return;
   2196       DeadInsts.push_back(MI);
   2197       return;
   2198     }
   2199 
   2200     // If the pointer is not the right type, insert a bitcast to the right
   2201     // type.
   2202     Type *NewTy =
   2203       PointerType::get(AI->getType()->getElementType(), AddrSpace);
   2204 
   2205     if (OtherPtr->getType() != NewTy)
   2206       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
   2207   }
   2208 
   2209   // Process each element of the aggregate.
   2210   bool SROADest = MI->getRawDest() == Inst;
   2211 
   2212   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
   2213 
   2214   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2215     // If this is a memcpy/memmove, emit a GEP of the other element address.
   2216     Value *OtherElt = 0;
   2217     unsigned OtherEltAlign = MemAlignment;
   2218 
   2219     if (OtherPtr) {
   2220       Value *Idx[2] = { Zero,
   2221                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
   2222       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
   2223                                               OtherPtr->getName()+"."+Twine(i),
   2224                                                    MI);
   2225       uint64_t EltOffset;
   2226       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
   2227       Type *OtherTy = OtherPtrTy->getElementType();
   2228       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
   2229         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
   2230       } else {
   2231         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
   2232         EltOffset = TD->getTypeAllocSize(EltTy)*i;
   2233       }
   2234 
   2235       // The alignment of the other pointer is the guaranteed alignment of the
   2236       // element, which is affected by both the known alignment of the whole
   2237       // mem intrinsic and the alignment of the element.  If the alignment of
   2238       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
   2239       // known alignment is just 4 bytes.
   2240       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
   2241     }
   2242 
   2243     Value *EltPtr = NewElts[i];
   2244     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
   2245 
   2246     // If we got down to a scalar, insert a load or store as appropriate.
   2247     if (EltTy->isSingleValueType()) {
   2248       if (isa<MemTransferInst>(MI)) {
   2249         if (SROADest) {
   2250           // From Other to Alloca.
   2251           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
   2252           new StoreInst(Elt, EltPtr, MI);
   2253         } else {
   2254           // From Alloca to Other.
   2255           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
   2256           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
   2257         }
   2258         continue;
   2259       }
   2260       assert(isa<MemSetInst>(MI));
   2261 
   2262       // If the stored element is zero (common case), just store a null
   2263       // constant.
   2264       Constant *StoreVal;
   2265       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
   2266         if (CI->isZero()) {
   2267           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
   2268         } else {
   2269           // If EltTy is a vector type, get the element type.
   2270           Type *ValTy = EltTy->getScalarType();
   2271 
   2272           // Construct an integer with the right value.
   2273           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
   2274           APInt OneVal(EltSize, CI->getZExtValue());
   2275           APInt TotalVal(OneVal);
   2276           // Set each byte.
   2277           for (unsigned i = 0; 8*i < EltSize; ++i) {
   2278             TotalVal = TotalVal.shl(8);
   2279             TotalVal |= OneVal;
   2280           }
   2281 
   2282           // Convert the integer value to the appropriate type.
   2283           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
   2284           if (ValTy->isPointerTy())
   2285             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
   2286           else if (ValTy->isFloatingPointTy())
   2287             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
   2288           assert(StoreVal->getType() == ValTy && "Type mismatch!");
   2289 
   2290           // If the requested value was a vector constant, create it.
   2291           if (EltTy->isVectorTy()) {
   2292             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
   2293             StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
   2294           }
   2295         }
   2296         new StoreInst(StoreVal, EltPtr, MI);
   2297         continue;
   2298       }
   2299       // Otherwise, if we're storing a byte variable, use a memset call for
   2300       // this element.
   2301     }
   2302 
   2303     unsigned EltSize = TD->getTypeAllocSize(EltTy);
   2304     if (!EltSize)
   2305       continue;
   2306 
   2307     IRBuilder<> Builder(MI);
   2308 
   2309     // Finally, insert the meminst for this element.
   2310     if (isa<MemSetInst>(MI)) {
   2311       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
   2312                            MI->isVolatile());
   2313     } else {
   2314       assert(isa<MemTransferInst>(MI));
   2315       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
   2316       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
   2317 
   2318       if (isa<MemCpyInst>(MI))
   2319         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
   2320       else
   2321         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
   2322     }
   2323   }
   2324   DeadInsts.push_back(MI);
   2325 }
   2326 
   2327 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
   2328 /// overwrites the entire allocation.  Extract out the pieces of the stored
   2329 /// integer and store them individually.
   2330 void
   2331 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
   2332                                     SmallVectorImpl<AllocaInst *> &NewElts) {
   2333   // Extract each element out of the integer according to its structure offset
   2334   // and store the element value to the individual alloca.
   2335   Value *SrcVal = SI->getOperand(0);
   2336   Type *AllocaEltTy = AI->getAllocatedType();
   2337   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2338 
   2339   IRBuilder<> Builder(SI);
   2340 
   2341   // Handle tail padding by extending the operand
   2342   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
   2343     SrcVal = Builder.CreateZExt(SrcVal,
   2344                             IntegerType::get(SI->getContext(), AllocaSizeBits));
   2345 
   2346   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
   2347                << '\n');
   2348 
   2349   // There are two forms here: AI could be an array or struct.  Both cases
   2350   // have different ways to compute the element offset.
   2351   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2352     const StructLayout *Layout = TD->getStructLayout(EltSTy);
   2353 
   2354     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2355       // Get the number of bits to shift SrcVal to get the value.
   2356       Type *FieldTy = EltSTy->getElementType(i);
   2357       uint64_t Shift = Layout->getElementOffsetInBits(i);
   2358 
   2359       if (TD->isBigEndian())
   2360         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
   2361 
   2362       Value *EltVal = SrcVal;
   2363       if (Shift) {
   2364         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2365         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2366       }
   2367 
   2368       // Truncate down to an integer of the right size.
   2369       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2370 
   2371       // Ignore zero sized fields like {}, they obviously contain no data.
   2372       if (FieldSizeBits == 0) continue;
   2373 
   2374       if (FieldSizeBits != AllocaSizeBits)
   2375         EltVal = Builder.CreateTrunc(EltVal,
   2376                              IntegerType::get(SI->getContext(), FieldSizeBits));
   2377       Value *DestField = NewElts[i];
   2378       if (EltVal->getType() == FieldTy) {
   2379         // Storing to an integer field of this size, just do it.
   2380       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
   2381         // Bitcast to the right element type (for fp/vector values).
   2382         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
   2383       } else {
   2384         // Otherwise, bitcast the dest pointer (for aggregates).
   2385         DestField = Builder.CreateBitCast(DestField,
   2386                                      PointerType::getUnqual(EltVal->getType()));
   2387       }
   2388       new StoreInst(EltVal, DestField, SI);
   2389     }
   2390 
   2391   } else {
   2392     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
   2393     Type *ArrayEltTy = ATy->getElementType();
   2394     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2395     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
   2396 
   2397     uint64_t Shift;
   2398 
   2399     if (TD->isBigEndian())
   2400       Shift = AllocaSizeBits-ElementOffset;
   2401     else
   2402       Shift = 0;
   2403 
   2404     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2405       // Ignore zero sized fields like {}, they obviously contain no data.
   2406       if (ElementSizeBits == 0) continue;
   2407 
   2408       Value *EltVal = SrcVal;
   2409       if (Shift) {
   2410         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2411         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2412       }
   2413 
   2414       // Truncate down to an integer of the right size.
   2415       if (ElementSizeBits != AllocaSizeBits)
   2416         EltVal = Builder.CreateTrunc(EltVal,
   2417                                      IntegerType::get(SI->getContext(),
   2418                                                       ElementSizeBits));
   2419       Value *DestField = NewElts[i];
   2420       if (EltVal->getType() == ArrayEltTy) {
   2421         // Storing to an integer field of this size, just do it.
   2422       } else if (ArrayEltTy->isFloatingPointTy() ||
   2423                  ArrayEltTy->isVectorTy()) {
   2424         // Bitcast to the right element type (for fp/vector values).
   2425         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
   2426       } else {
   2427         // Otherwise, bitcast the dest pointer (for aggregates).
   2428         DestField = Builder.CreateBitCast(DestField,
   2429                                      PointerType::getUnqual(EltVal->getType()));
   2430       }
   2431       new StoreInst(EltVal, DestField, SI);
   2432 
   2433       if (TD->isBigEndian())
   2434         Shift -= ElementOffset;
   2435       else
   2436         Shift += ElementOffset;
   2437     }
   2438   }
   2439 
   2440   DeadInsts.push_back(SI);
   2441 }
   2442 
   2443 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
   2444 /// an integer.  Load the individual pieces to form the aggregate value.
   2445 void
   2446 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
   2447                                    SmallVectorImpl<AllocaInst *> &NewElts) {
   2448   // Extract each element out of the NewElts according to its structure offset
   2449   // and form the result value.
   2450   Type *AllocaEltTy = AI->getAllocatedType();
   2451   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2452 
   2453   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
   2454                << '\n');
   2455 
   2456   // There are two forms here: AI could be an array or struct.  Both cases
   2457   // have different ways to compute the element offset.
   2458   const StructLayout *Layout = 0;
   2459   uint64_t ArrayEltBitOffset = 0;
   2460   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2461     Layout = TD->getStructLayout(EltSTy);
   2462   } else {
   2463     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
   2464     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2465   }
   2466 
   2467   Value *ResultVal =
   2468     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
   2469 
   2470   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2471     // Load the value from the alloca.  If the NewElt is an aggregate, cast
   2472     // the pointer to an integer of the same size before doing the load.
   2473     Value *SrcField = NewElts[i];
   2474     Type *FieldTy =
   2475       cast<PointerType>(SrcField->getType())->getElementType();
   2476     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2477 
   2478     // Ignore zero sized fields like {}, they obviously contain no data.
   2479     if (FieldSizeBits == 0) continue;
   2480 
   2481     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
   2482                                                      FieldSizeBits);
   2483     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
   2484         !FieldTy->isVectorTy())
   2485       SrcField = new BitCastInst(SrcField,
   2486                                  PointerType::getUnqual(FieldIntTy),
   2487                                  "", LI);
   2488     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
   2489 
   2490     // If SrcField is a fp or vector of the right size but that isn't an
   2491     // integer type, bitcast to an integer so we can shift it.
   2492     if (SrcField->getType() != FieldIntTy)
   2493       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
   2494 
   2495     // Zero extend the field to be the same size as the final alloca so that
   2496     // we can shift and insert it.
   2497     if (SrcField->getType() != ResultVal->getType())
   2498       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
   2499 
   2500     // Determine the number of bits to shift SrcField.
   2501     uint64_t Shift;
   2502     if (Layout) // Struct case.
   2503       Shift = Layout->getElementOffsetInBits(i);
   2504     else  // Array case.
   2505       Shift = i*ArrayEltBitOffset;
   2506 
   2507     if (TD->isBigEndian())
   2508       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
   2509 
   2510     if (Shift) {
   2511       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
   2512       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
   2513     }
   2514 
   2515     // Don't create an 'or x, 0' on the first iteration.
   2516     if (!isa<Constant>(ResultVal) ||
   2517         !cast<Constant>(ResultVal)->isNullValue())
   2518       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
   2519     else
   2520       ResultVal = SrcField;
   2521   }
   2522 
   2523   // Handle tail padding by truncating the result
   2524   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
   2525     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
   2526 
   2527   LI->replaceAllUsesWith(ResultVal);
   2528   DeadInsts.push_back(LI);
   2529 }
   2530 
   2531 /// HasPadding - Return true if the specified type has any structure or
   2532 /// alignment padding in between the elements that would be split apart
   2533 /// by SROA; return false otherwise.
   2534 static bool HasPadding(Type *Ty, const DataLayout &TD) {
   2535   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   2536     Ty = ATy->getElementType();
   2537     return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
   2538   }
   2539 
   2540   // SROA currently handles only Arrays and Structs.
   2541   StructType *STy = cast<StructType>(Ty);
   2542   const StructLayout *SL = TD.getStructLayout(STy);
   2543   unsigned PrevFieldBitOffset = 0;
   2544   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2545     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
   2546 
   2547     // Check to see if there is any padding between this element and the
   2548     // previous one.
   2549     if (i) {
   2550       unsigned PrevFieldEnd =
   2551         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
   2552       if (PrevFieldEnd < FieldBitOffset)
   2553         return true;
   2554     }
   2555     PrevFieldBitOffset = FieldBitOffset;
   2556   }
   2557   // Check for tail padding.
   2558   if (unsigned EltCount = STy->getNumElements()) {
   2559     unsigned PrevFieldEnd = PrevFieldBitOffset +
   2560       TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
   2561     if (PrevFieldEnd < SL->getSizeInBits())
   2562       return true;
   2563   }
   2564   return false;
   2565 }
   2566 
   2567 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
   2568 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
   2569 /// or 1 if safe after canonicalization has been performed.
   2570 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
   2571   // Loop over the use list of the alloca.  We can only transform it if all of
   2572   // the users are safe to transform.
   2573   AllocaInfo Info(AI);
   2574 
   2575   isSafeForScalarRepl(AI, 0, Info);
   2576   if (Info.isUnsafe) {
   2577     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
   2578     return false;
   2579   }
   2580 
   2581   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
   2582   // source and destination, we have to be careful.  In particular, the memcpy
   2583   // could be moving around elements that live in structure padding of the LLVM
   2584   // types, but may actually be used.  In these cases, we refuse to promote the
   2585   // struct.
   2586   if (Info.isMemCpySrc && Info.isMemCpyDst &&
   2587       HasPadding(AI->getAllocatedType(), *TD))
   2588     return false;
   2589 
   2590   // If the alloca never has an access to just *part* of it, but is accessed
   2591   // via loads and stores, then we should use ConvertToScalarInfo to promote
   2592   // the alloca instead of promoting each piece at a time and inserting fission
   2593   // and fusion code.
   2594   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
   2595     // If the struct/array just has one element, use basic SRoA.
   2596     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   2597       if (ST->getNumElements() > 1) return false;
   2598     } else {
   2599       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
   2600         return false;
   2601     }
   2602   }
   2603 
   2604   return true;
   2605 }
   2606