Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <stdio.h>
     13 #include <limits.h>
     14 
     15 #include "vpx/vpx_encoder.h"
     16 #include "vpx_mem/vpx_mem.h"
     17 
     18 #include "vp9/common/vp9_entropymode.h"
     19 #include "vp9/common/vp9_entropymv.h"
     20 #include "vp9/common/vp9_findnearmv.h"
     21 #include "vp9/common/vp9_tile_common.h"
     22 #include "vp9/common/vp9_seg_common.h"
     23 #include "vp9/common/vp9_pred_common.h"
     24 #include "vp9/common/vp9_entropy.h"
     25 #include "vp9/common/vp9_mvref_common.h"
     26 #include "vp9/common/vp9_treecoder.h"
     27 #include "vp9/common/vp9_systemdependent.h"
     28 #include "vp9/common/vp9_pragmas.h"
     29 
     30 #include "vp9/encoder/vp9_mcomp.h"
     31 #include "vp9/encoder/vp9_encodemv.h"
     32 #include "vp9/encoder/vp9_bitstream.h"
     33 #include "vp9/encoder/vp9_segmentation.h"
     34 #include "vp9/encoder/vp9_subexp.h"
     35 #include "vp9/encoder/vp9_write_bit_buffer.h"
     36 
     37 
     38 #if defined(SECTIONBITS_OUTPUT)
     39 unsigned __int64 Sectionbits[500];
     40 #endif
     41 
     42 #ifdef ENTROPY_STATS
     43 int intra_mode_stats[INTRA_MODES]
     44                     [INTRA_MODES]
     45                     [INTRA_MODES];
     46 vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
     47 
     48 extern unsigned int active_section;
     49 #endif
     50 
     51 
     52 #ifdef MODE_STATS
     53 int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
     54 int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
     55 int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
     56 int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
     57 
     58 void init_tx_count_stats() {
     59   vp9_zero(tx_count_32x32p_stats);
     60   vp9_zero(tx_count_16x16p_stats);
     61   vp9_zero(tx_count_8x8p_stats);
     62 }
     63 
     64 void init_switchable_interp_stats() {
     65   vp9_zero(switchable_interp_stats);
     66 }
     67 
     68 static void update_tx_count_stats(VP9_COMMON *cm) {
     69   int i, j;
     70   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     71     for (j = 0; j < TX_SIZES; j++) {
     72       tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
     73     }
     74   }
     75   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     76     for (j = 0; j < TX_SIZES - 1; j++) {
     77       tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
     78     }
     79   }
     80   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     81     for (j = 0; j < TX_SIZES - 2; j++) {
     82       tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
     83     }
     84   }
     85 }
     86 
     87 static void update_switchable_interp_stats(VP9_COMMON *cm) {
     88   int i, j;
     89   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
     90     for (j = 0; j < SWITCHABLE_FILTERS; ++j)
     91       switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
     92 }
     93 
     94 void write_tx_count_stats() {
     95   int i, j;
     96   FILE *fp = fopen("tx_count.bin", "wb");
     97   fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
     98   fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
     99   fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
    100   fclose(fp);
    101 
    102   printf(
    103       "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
    104   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    105     printf("  { ");
    106     for (j = 0; j < TX_SIZES; j++) {
    107       printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
    108     }
    109     printf("},\n");
    110   }
    111   printf("};\n");
    112   printf(
    113       "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
    114   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    115     printf("  { ");
    116     for (j = 0; j < TX_SIZES - 1; j++) {
    117       printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
    118     }
    119     printf("},\n");
    120   }
    121   printf("};\n");
    122   printf(
    123       "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
    124   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    125     printf("  { ");
    126     for (j = 0; j < TX_SIZES - 2; j++) {
    127       printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
    128     }
    129     printf("},\n");
    130   }
    131   printf("};\n");
    132 }
    133 
    134 void write_switchable_interp_stats() {
    135   int i, j;
    136   FILE *fp = fopen("switchable_interp.bin", "wb");
    137   fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
    138   fclose(fp);
    139 
    140   printf(
    141       "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]"
    142       "[SWITCHABLE_FILTERS] = {\n");
    143   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
    144     printf("  { ");
    145     for (j = 0; j < SWITCHABLE_FILTERS; j++) {
    146       printf("%"PRId64", ", switchable_interp_stats[i][j]);
    147     }
    148     printf("},\n");
    149   }
    150   printf("};\n");
    151 }
    152 #endif
    153 
    154 static INLINE void write_be32(uint8_t *p, int value) {
    155   p[0] = value >> 24;
    156   p[1] = value >> 16;
    157   p[2] = value >> 8;
    158   p[3] = value;
    159 }
    160 
    161 void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
    162                              int data, int max) {
    163   vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
    164 }
    165 
    166 static void update_mode(vp9_writer *w, int n, vp9_tree tree,
    167                         vp9_prob Pcur[/* n-1 */],
    168                         unsigned int bct[/* n-1 */][2],
    169                         const unsigned int num_events[/* n */]) {
    170   int i = 0;
    171 
    172   vp9_tree_probs_from_distribution(tree, bct, num_events);
    173   for (i = 0; i < n - 1; ++i)
    174     vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]);
    175 }
    176 
    177 static void update_mbintra_mode_probs(VP9_COMP* const cpi,
    178                                       vp9_writer* const bc) {
    179   VP9_COMMON *const cm = &cpi->common;
    180   int j;
    181   unsigned int bct[INTRA_MODES - 1][2];
    182 
    183   for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
    184     update_mode(bc, INTRA_MODES, vp9_intra_mode_tree,
    185                 cm->fc.y_mode_prob[j], bct,
    186                 (unsigned int *)cpi->y_mode_count[j]);
    187 }
    188 
    189 static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
    190                                    TX_SIZE tx_size, BLOCK_SIZE bsize,
    191                                    vp9_writer *w) {
    192   const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
    193   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    194   const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
    195                                                  &cpi->common.fc.tx_probs);
    196   vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
    197   if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
    198     vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
    199     if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
    200       vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
    201   }
    202 }
    203 
    204 static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
    205                             vp9_writer *w) {
    206   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    207   if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
    208     return 1;
    209   } else {
    210     const int skip_coeff = m->mbmi.skip_coeff;
    211     vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
    212     return skip_coeff;
    213   }
    214 }
    215 
    216 void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
    217   VP9_COMMON *cm = &cpi->common;
    218   int k;
    219 
    220   for (k = 0; k < MBSKIP_CONTEXTS; ++k)
    221     vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]);
    222 }
    223 
    224 static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
    225   write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
    226 }
    227 
    228 static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) {
    229   VP9_COMMON *const cm = &cpi->common;
    230   unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2];
    231   int i, j;
    232   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
    233     vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct,
    234                                      cm->counts.switchable_interp[j]);
    235 
    236     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
    237       vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i],
    238                                 branch_ct[i]);
    239   }
    240 
    241 #ifdef MODE_STATS
    242   if (!cpi->dummy_packing)
    243     update_switchable_interp_stats(cm);
    244 #endif
    245 }
    246 
    247 static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) {
    248   int i, j;
    249 
    250   for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
    251     unsigned int branch_ct[INTER_MODES - 1][2];
    252     vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct,
    253                                      cm->counts.inter_mode[i]);
    254 
    255     for (j = 0; j < INTER_MODES - 1; ++j)
    256       vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j],
    257                                 branch_ct[j]);
    258   }
    259 }
    260 
    261 static void pack_mb_tokens(vp9_writer* const w,
    262                            TOKENEXTRA **tp,
    263                            const TOKENEXTRA *const stop) {
    264   TOKENEXTRA *p = *tp;
    265 
    266   while (p < stop && p->token != EOSB_TOKEN) {
    267     const int t = p->token;
    268     const struct vp9_token *const a = &vp9_coef_encodings[t];
    269     const vp9_extra_bit *const b = &vp9_extra_bits[t];
    270     int i = 0;
    271     const vp9_prob *pp;
    272     int v = a->value;
    273     int n = a->len;
    274     vp9_prob probs[ENTROPY_NODES];
    275 
    276     if (t >= TWO_TOKEN) {
    277       vp9_model_to_full_probs(p->context_tree, probs);
    278       pp = probs;
    279     } else {
    280       pp = p->context_tree;
    281     }
    282     assert(pp != 0);
    283 
    284     /* skip one or two nodes */
    285     if (p->skip_eob_node) {
    286       n -= p->skip_eob_node;
    287       i = 2 * p->skip_eob_node;
    288     }
    289 
    290     do {
    291       const int bb = (v >> --n) & 1;
    292       vp9_write(w, bb, pp[i >> 1]);
    293       i = vp9_coef_tree[i + bb];
    294     } while (n);
    295 
    296     if (b->base_val) {
    297       const int e = p->extra, l = b->len;
    298 
    299       if (l) {
    300         const unsigned char *pb = b->prob;
    301         int v = e >> 1;
    302         int n = l;              /* number of bits in v, assumed nonzero */
    303         int i = 0;
    304 
    305         do {
    306           const int bb = (v >> --n) & 1;
    307           vp9_write(w, bb, pb[i >> 1]);
    308           i = b->tree[i + bb];
    309         } while (n);
    310       }
    311 
    312       vp9_write_bit(w, e & 1);
    313     }
    314     ++p;
    315   }
    316 
    317   *tp = p + (p->token == EOSB_TOKEN);
    318 }
    319 
    320 static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
    321                             const vp9_prob *p) {
    322   assert(is_inter_mode(mode));
    323   write_token(w, vp9_inter_mode_tree, p,
    324               &vp9_inter_mode_encodings[INTER_OFFSET(mode)]);
    325 }
    326 
    327 
    328 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
    329                              int segment_id) {
    330   if (seg->enabled && seg->update_map)
    331     treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
    332 }
    333 
    334 // This function encodes the reference frame
    335 static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
    336   VP9_COMMON *const cm = &cpi->common;
    337   MACROBLOCK *const x = &cpi->mb;
    338   MACROBLOCKD *const xd = &x->e_mbd;
    339   MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi;
    340   const int segment_id = mi->segment_id;
    341   int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
    342                                              SEG_LVL_REF_FRAME);
    343   // If segment level coding of this signal is disabled...
    344   // or the segment allows multiple reference frame options
    345   if (!seg_ref_active) {
    346     // does the feature use compound prediction or not
    347     // (if not specified at the frame/segment level)
    348     if (cm->comp_pred_mode == HYBRID_PREDICTION) {
    349       vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
    350                 vp9_get_pred_prob_comp_inter_inter(cm, xd));
    351     } else {
    352       assert((mi->ref_frame[1] <= INTRA_FRAME) ==
    353                  (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
    354     }
    355 
    356     if (mi->ref_frame[1] > INTRA_FRAME) {
    357       vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
    358                 vp9_get_pred_prob_comp_ref_p(cm, xd));
    359     } else {
    360       vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
    361                 vp9_get_pred_prob_single_ref_p1(cm, xd));
    362       if (mi->ref_frame[0] != LAST_FRAME)
    363         vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
    364                   vp9_get_pred_prob_single_ref_p2(cm, xd));
    365     }
    366   } else {
    367     assert(mi->ref_frame[1] <= INTRA_FRAME);
    368     assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
    369            mi->ref_frame[0]);
    370   }
    371 
    372   // If using the prediction model we have nothing further to do because
    373   // the reference frame is fully coded by the segment.
    374 }
    375 
    376 static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
    377   VP9_COMMON *const cm = &cpi->common;
    378   const nmv_context *nmvc = &cm->fc.nmvc;
    379   MACROBLOCK *const x = &cpi->mb;
    380   MACROBLOCKD *const xd = &x->e_mbd;
    381   struct segmentation *seg = &cm->seg;
    382   MB_MODE_INFO *const mi = &m->mbmi;
    383   const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
    384   const MB_PREDICTION_MODE mode = mi->mode;
    385   const int segment_id = mi->segment_id;
    386   int skip_coeff;
    387   const BLOCK_SIZE bsize = mi->sb_type;
    388   const int allow_hp = cm->allow_high_precision_mv;
    389 
    390 #ifdef ENTROPY_STATS
    391   active_section = 9;
    392 #endif
    393 
    394   if (seg->update_map) {
    395     if (seg->temporal_update) {
    396       const int pred_flag = mi->seg_id_predicted;
    397       vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
    398       vp9_write(bc, pred_flag, pred_prob);
    399       if (!pred_flag)
    400         write_segment_id(bc, seg, segment_id);
    401     } else {
    402       write_segment_id(bc, seg, segment_id);
    403     }
    404   }
    405 
    406   skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
    407 
    408   if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
    409     vp9_write(bc, rf != INTRA_FRAME,
    410               vp9_get_pred_prob_intra_inter(cm, xd));
    411 
    412   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
    413       !(rf != INTRA_FRAME &&
    414         (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
    415     write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
    416   }
    417 
    418   if (rf == INTRA_FRAME) {
    419 #ifdef ENTROPY_STATS
    420     active_section = 6;
    421 #endif
    422 
    423     if (bsize >= BLOCK_8X8) {
    424       write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
    425     } else {
    426       int idx, idy;
    427       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
    428       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
    429       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    430         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    431           const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
    432           write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
    433         }
    434       }
    435     }
    436     write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
    437   } else {
    438     vp9_prob *mv_ref_p;
    439     encode_ref_frame(cpi, bc);
    440     mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
    441 
    442 #ifdef ENTROPY_STATS
    443     active_section = 3;
    444 #endif
    445 
    446     // If segment skip is not enabled code the mode.
    447     if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
    448       if (bsize >= BLOCK_8X8) {
    449         write_sb_mv_ref(bc, mode, mv_ref_p);
    450         ++cm->counts.inter_mode[mi->mode_context[rf]]
    451                                [INTER_OFFSET(mode)];
    452       }
    453     }
    454 
    455     if (cm->mcomp_filter_type == SWITCHABLE) {
    456       const int ctx = vp9_get_pred_context_switchable_interp(xd);
    457       write_token(bc, vp9_switchable_interp_tree,
    458                   cm->fc.switchable_interp_prob[ctx],
    459                   &vp9_switchable_interp_encodings[mi->interp_filter]);
    460     } else {
    461       assert(mi->interp_filter == cm->mcomp_filter_type);
    462     }
    463 
    464     if (bsize < BLOCK_8X8) {
    465       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
    466       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
    467       int idx, idy;
    468       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    469         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    470           const int j = idy * 2 + idx;
    471           const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode;
    472           write_sb_mv_ref(bc, blockmode, mv_ref_p);
    473           ++cm->counts.inter_mode[mi->mode_context[rf]]
    474                                  [INTER_OFFSET(blockmode)];
    475 
    476           if (blockmode == NEWMV) {
    477 #ifdef ENTROPY_STATS
    478             active_section = 11;
    479 #endif
    480             vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv,
    481                           &mi->best_mv[0].as_mv, nmvc, allow_hp);
    482 
    483             if (has_second_ref(mi))
    484               vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv,
    485                             &mi->best_mv[1].as_mv, nmvc, allow_hp);
    486           }
    487         }
    488       }
    489     } else if (mode == NEWMV) {
    490 #ifdef ENTROPY_STATS
    491       active_section = 5;
    492 #endif
    493       vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv,
    494                     &mi->best_mv[0].as_mv, nmvc, allow_hp);
    495 
    496       if (has_second_ref(mi))
    497         vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv,
    498                       &mi->best_mv[1].as_mv, nmvc, allow_hp);
    499     }
    500   }
    501 }
    502 
    503 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
    504                               vp9_writer *bc) {
    505   const VP9_COMMON *const cm = &cpi->common;
    506   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    507   const struct segmentation *const seg = &cm->seg;
    508   MODE_INFO *m = mi_8x8[0];
    509   const int ym = m->mbmi.mode;
    510   const int segment_id = m->mbmi.segment_id;
    511   MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
    512   MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL;
    513 
    514   if (seg->update_map)
    515     write_segment_id(bc, seg, m->mbmi.segment_id);
    516 
    517   write_skip_coeff(cpi, segment_id, m, bc);
    518 
    519   if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
    520     write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);
    521 
    522   if (m->mbmi.sb_type >= BLOCK_8X8) {
    523     const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
    524     const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
    525     write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
    526   } else {
    527     int idx, idy;
    528     const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
    529     const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
    530     for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    531       for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    532         int i = idy * 2 + idx;
    533         const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
    534         const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i);
    535         const int bm = m->bmi[i].as_mode;
    536 #ifdef ENTROPY_STATS
    537         ++intra_mode_stats[A][L][bm];
    538 #endif
    539         write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
    540       }
    541     }
    542   }
    543 
    544   write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
    545 }
    546 
    547 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
    548                           vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    549                           int mi_row, int mi_col) {
    550   VP9_COMMON *const cm = &cpi->common;
    551   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    552   MODE_INFO *m;
    553 
    554   xd->mi_8x8 = cm->mi_grid_visible + (mi_row * cm->mode_info_stride + mi_col);
    555   m = xd->mi_8x8[0];
    556 
    557   set_mi_row_col(xd, tile,
    558                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
    559                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
    560                  cm->mi_rows, cm->mi_cols);
    561   if (frame_is_intra_only(cm)) {
    562     write_mb_modes_kf(cpi, xd->mi_8x8, w);
    563 #ifdef ENTROPY_STATS
    564     active_section = 8;
    565 #endif
    566   } else {
    567     pack_inter_mode_mvs(cpi, m, w);
    568 #ifdef ENTROPY_STATS
    569     active_section = 1;
    570 #endif
    571   }
    572 
    573   assert(*tok < tok_end);
    574   pack_mb_tokens(w, tok, tok_end);
    575 }
    576 
    577 static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col,
    578                             PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
    579   VP9_COMMON *const cm = &cpi->common;
    580   const int ctx = partition_plane_context(cpi->above_seg_context,
    581                                           cpi->left_seg_context,
    582                                           mi_row, mi_col, bsize);
    583   const vp9_prob *const probs = get_partition_probs(cm, ctx);
    584   const int has_rows = (mi_row + hbs) < cm->mi_rows;
    585   const int has_cols = (mi_col + hbs) < cm->mi_cols;
    586 
    587   if (has_rows && has_cols) {
    588     write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]);
    589   } else if (!has_rows && has_cols) {
    590     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
    591     vp9_write(w, p == PARTITION_SPLIT, probs[1]);
    592   } else if (has_rows && !has_cols) {
    593     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
    594     vp9_write(w, p == PARTITION_SPLIT, probs[2]);
    595   } else {
    596     assert(p == PARTITION_SPLIT);
    597   }
    598 }
    599 
    600 static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
    601                            vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    602                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
    603   VP9_COMMON *const cm = &cpi->common;
    604   const int bsl = b_width_log2(bsize);
    605   const int bs = (1 << bsl) / 4;
    606   PARTITION_TYPE partition;
    607   BLOCK_SIZE subsize;
    608   MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mode_info_stride + mi_col];
    609 
    610   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    611     return;
    612 
    613   partition = partition_lookup[bsl][m->mbmi.sb_type];
    614   write_partition(cpi, bs, mi_row, mi_col, partition, bsize, w);
    615   subsize = get_subsize(bsize, partition);
    616   if (subsize < BLOCK_8X8) {
    617     write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    618   } else {
    619     switch (partition) {
    620       case PARTITION_NONE:
    621         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    622         break;
    623       case PARTITION_HORZ:
    624         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    625         if (mi_row + bs < cm->mi_rows)
    626           write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
    627         break;
    628       case PARTITION_VERT:
    629         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    630         if (mi_col + bs < cm->mi_cols)
    631           write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
    632         break;
    633       case PARTITION_SPLIT:
    634         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
    635         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
    636                        subsize);
    637         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
    638                        subsize);
    639         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
    640                        subsize);
    641         break;
    642       default:
    643         assert(0);
    644     }
    645   }
    646 
    647   // update partition context
    648   if (bsize >= BLOCK_8X8 &&
    649       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
    650     update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
    651                              mi_row, mi_col, subsize, bsize);
    652 }
    653 
    654 static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
    655                         vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
    656   int mi_row, mi_col;
    657 
    658   for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
    659        mi_row += MI_BLOCK_SIZE) {
    660       vp9_zero(cpi->left_seg_context);
    661     for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
    662          mi_col += MI_BLOCK_SIZE)
    663       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
    664   }
    665 }
    666 
    667 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
    668   vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
    669   vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
    670   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
    671       cpi->common.counts.eob_branch[tx_size];
    672   vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
    673   int i, j, k, l, m;
    674 
    675   for (i = 0; i < BLOCK_TYPES; ++i) {
    676     for (j = 0; j < REF_TYPES; ++j) {
    677       for (k = 0; k < COEF_BANDS; ++k) {
    678         for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    679           if (l >= 3 && k == 0)
    680             continue;
    681           vp9_tree_probs_from_distribution(vp9_coef_tree,
    682                                            coef_branch_ct[i][j][k][l],
    683                                            coef_counts[i][j][k][l]);
    684           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
    685                                              coef_branch_ct[i][j][k][l][0][0];
    686           for (m = 0; m < UNCONSTRAINED_NODES; ++m)
    687             coef_probs[i][j][k][l][m] = get_binary_prob(
    688                                             coef_branch_ct[i][j][k][l][m][0],
    689                                             coef_branch_ct[i][j][k][l][m][1]);
    690 #ifdef ENTROPY_STATS
    691           if (!cpi->dummy_packing) {
    692             int t;
    693             for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
    694               context_counters[tx_size][i][j][k][l][t] +=
    695                   coef_counts[i][j][k][l][t];
    696             context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
    697                 eob_branch_ct[i][j][k][l];
    698           }
    699 #endif
    700         }
    701       }
    702     }
    703   }
    704 }
    705 
    706 static void build_coeff_contexts(VP9_COMP *cpi) {
    707   TX_SIZE t;
    708   for (t = TX_4X4; t <= TX_32X32; t++)
    709     build_tree_distribution(cpi, t);
    710 }
    711 
    712 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
    713                                      TX_SIZE tx_size) {
    714   vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
    715   vp9_coeff_probs_model *old_frame_coef_probs =
    716       cpi->common.fc.coef_probs[tx_size];
    717   vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
    718   const vp9_prob upd = DIFF_UPDATE_PROB;
    719   const int entropy_nodes_update = UNCONSTRAINED_NODES;
    720   int i, j, k, l, t;
    721   switch (cpi->sf.use_fast_coef_updates) {
    722     case 0: {
    723       /* dry run to see if there is any udpate at all needed */
    724       int savings = 0;
    725       int update[2] = {0, 0};
    726       for (i = 0; i < BLOCK_TYPES; ++i) {
    727         for (j = 0; j < REF_TYPES; ++j) {
    728           for (k = 0; k < COEF_BANDS; ++k) {
    729             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    730               for (t = 0; t < entropy_nodes_update; ++t) {
    731                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    732                 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
    733                 int s;
    734                 int u = 0;
    735 
    736                 if (l >= 3 && k == 0)
    737                   continue;
    738                 if (t == PIVOT_NODE)
    739                   s = vp9_prob_diff_update_savings_search_model(
    740                       frame_branch_ct[i][j][k][l][0],
    741                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    742                 else
    743                   s = vp9_prob_diff_update_savings_search(
    744                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
    745                 if (s > 0 && newp != oldp)
    746                   u = 1;
    747                 if (u)
    748                   savings += s - (int)(vp9_cost_zero(upd));
    749                 else
    750                   savings -= (int)(vp9_cost_zero(upd));
    751                 update[u]++;
    752               }
    753             }
    754           }
    755         }
    756       }
    757 
    758       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
    759       /* Is coef updated at all */
    760       if (update[1] == 0 || savings < 0) {
    761         vp9_write_bit(bc, 0);
    762         return;
    763       }
    764       vp9_write_bit(bc, 1);
    765       for (i = 0; i < BLOCK_TYPES; ++i) {
    766         for (j = 0; j < REF_TYPES; ++j) {
    767           for (k = 0; k < COEF_BANDS; ++k) {
    768             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    769               // calc probs and branch cts for this frame only
    770               for (t = 0; t < entropy_nodes_update; ++t) {
    771                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    772                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    773                 const vp9_prob upd = DIFF_UPDATE_PROB;
    774                 int s;
    775                 int u = 0;
    776                 if (l >= 3 && k == 0)
    777                   continue;
    778                 if (t == PIVOT_NODE)
    779                   s = vp9_prob_diff_update_savings_search_model(
    780                       frame_branch_ct[i][j][k][l][0],
    781                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    782                 else
    783                   s = vp9_prob_diff_update_savings_search(
    784                       frame_branch_ct[i][j][k][l][t],
    785                       *oldp, &newp, upd);
    786                 if (s > 0 && newp != *oldp)
    787                   u = 1;
    788                 vp9_write(bc, u, upd);
    789 #ifdef ENTROPY_STATS
    790                 if (!cpi->dummy_packing)
    791                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
    792 #endif
    793                 if (u) {
    794                   /* send/use new probability */
    795                   vp9_write_prob_diff_update(bc, newp, *oldp);
    796                   *oldp = newp;
    797                 }
    798               }
    799             }
    800           }
    801         }
    802       }
    803       return;
    804     }
    805 
    806     case 1:
    807     case 2: {
    808       const int prev_coef_contexts_to_update =
    809           (cpi->sf.use_fast_coef_updates == 2 ?
    810            PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
    811       const int coef_band_to_update =
    812           (cpi->sf.use_fast_coef_updates == 2 ?
    813            COEF_BANDS >> 1 : COEF_BANDS);
    814       int updates = 0;
    815       int noupdates_before_first = 0;
    816       for (i = 0; i < BLOCK_TYPES; ++i) {
    817         for (j = 0; j < REF_TYPES; ++j) {
    818           for (k = 0; k < COEF_BANDS; ++k) {
    819             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    820               // calc probs and branch cts for this frame only
    821               for (t = 0; t < entropy_nodes_update; ++t) {
    822                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    823                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    824                 int s;
    825                 int u = 0;
    826                 if (l >= 3 && k == 0)
    827                   continue;
    828                 if (l >= prev_coef_contexts_to_update ||
    829                     k >= coef_band_to_update) {
    830                   u = 0;
    831                 } else {
    832                   if (t == PIVOT_NODE)
    833                     s = vp9_prob_diff_update_savings_search_model(
    834                         frame_branch_ct[i][j][k][l][0],
    835                         old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    836                   else
    837                     s = vp9_prob_diff_update_savings_search(
    838                         frame_branch_ct[i][j][k][l][t],
    839                         *oldp, &newp, upd);
    840                   if (s > 0 && newp != *oldp)
    841                     u = 1;
    842                 }
    843                 updates += u;
    844                 if (u == 0 && updates == 0) {
    845                   noupdates_before_first++;
    846 #ifdef ENTROPY_STATS
    847                   if (!cpi->dummy_packing)
    848                     ++tree_update_hist[tx_size][i][j][k][l][t][u];
    849 #endif
    850                   continue;
    851                 }
    852                 if (u == 1 && updates == 1) {
    853                   int v;
    854                   // first update
    855                   vp9_write_bit(bc, 1);
    856                   for (v = 0; v < noupdates_before_first; ++v)
    857                     vp9_write(bc, 0, upd);
    858                 }
    859                 vp9_write(bc, u, upd);
    860 #ifdef ENTROPY_STATS
    861                 if (!cpi->dummy_packing)
    862                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
    863 #endif
    864                 if (u) {
    865                   /* send/use new probability */
    866                   vp9_write_prob_diff_update(bc, newp, *oldp);
    867                   *oldp = newp;
    868                 }
    869               }
    870             }
    871           }
    872         }
    873       }
    874       if (updates == 0) {
    875         vp9_write_bit(bc, 0);  // no updates
    876       }
    877       return;
    878     }
    879 
    880     default:
    881       assert(0);
    882   }
    883 }
    884 
    885 static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
    886   const TX_MODE tx_mode = cpi->common.tx_mode;
    887 
    888   vp9_clear_system_state();
    889 
    890   // Build the cofficient contexts based on counts collected in encode loop
    891   build_coeff_contexts(cpi);
    892 
    893   update_coef_probs_common(bc, cpi, TX_4X4);
    894 
    895   // do not do this if not even allowed
    896   if (tx_mode > ONLY_4X4)
    897     update_coef_probs_common(bc, cpi, TX_8X8);
    898 
    899   if (tx_mode > ALLOW_8X8)
    900     update_coef_probs_common(bc, cpi, TX_16X16);
    901 
    902   if (tx_mode > ALLOW_16X16)
    903     update_coef_probs_common(bc, cpi, TX_32X32);
    904 }
    905 
    906 static void encode_loopfilter(struct loopfilter *lf,
    907                               struct vp9_write_bit_buffer *wb) {
    908   int i;
    909 
    910   // Encode the loop filter level and type
    911   vp9_wb_write_literal(wb, lf->filter_level, 6);
    912   vp9_wb_write_literal(wb, lf->sharpness_level, 3);
    913 
    914   // Write out loop filter deltas applied at the MB level based on mode or
    915   // ref frame (if they are enabled).
    916   vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
    917 
    918   if (lf->mode_ref_delta_enabled) {
    919     // Do the deltas need to be updated
    920     vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
    921     if (lf->mode_ref_delta_update) {
    922       // Send update
    923       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
    924         const int delta = lf->ref_deltas[i];
    925 
    926         // Frame level data
    927         if (delta != lf->last_ref_deltas[i]) {
    928           lf->last_ref_deltas[i] = delta;
    929           vp9_wb_write_bit(wb, 1);
    930 
    931           assert(delta != 0);
    932           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
    933           vp9_wb_write_bit(wb, delta < 0);
    934         } else {
    935           vp9_wb_write_bit(wb, 0);
    936         }
    937       }
    938 
    939       // Send update
    940       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
    941         const int delta = lf->mode_deltas[i];
    942         if (delta != lf->last_mode_deltas[i]) {
    943           lf->last_mode_deltas[i] = delta;
    944           vp9_wb_write_bit(wb, 1);
    945 
    946           assert(delta != 0);
    947           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
    948           vp9_wb_write_bit(wb, delta < 0);
    949         } else {
    950           vp9_wb_write_bit(wb, 0);
    951         }
    952       }
    953     }
    954   }
    955 }
    956 
    957 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
    958   if (delta_q != 0) {
    959     vp9_wb_write_bit(wb, 1);
    960     vp9_wb_write_literal(wb, abs(delta_q), 4);
    961     vp9_wb_write_bit(wb, delta_q < 0);
    962   } else {
    963     vp9_wb_write_bit(wb, 0);
    964   }
    965 }
    966 
    967 static void encode_quantization(VP9_COMMON *cm,
    968                                 struct vp9_write_bit_buffer *wb) {
    969   vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
    970   write_delta_q(wb, cm->y_dc_delta_q);
    971   write_delta_q(wb, cm->uv_dc_delta_q);
    972   write_delta_q(wb, cm->uv_ac_delta_q);
    973 }
    974 
    975 
    976 static void encode_segmentation(VP9_COMP *cpi,
    977                                 struct vp9_write_bit_buffer *wb) {
    978   int i, j;
    979 
    980   struct segmentation *seg = &cpi->common.seg;
    981 
    982   vp9_wb_write_bit(wb, seg->enabled);
    983   if (!seg->enabled)
    984     return;
    985 
    986   // Segmentation map
    987   vp9_wb_write_bit(wb, seg->update_map);
    988   if (seg->update_map) {
    989     // Select the coding strategy (temporal or spatial)
    990     vp9_choose_segmap_coding_method(cpi);
    991     // Write out probabilities used to decode unpredicted  macro-block segments
    992     for (i = 0; i < SEG_TREE_PROBS; i++) {
    993       const int prob = seg->tree_probs[i];
    994       const int update = prob != MAX_PROB;
    995       vp9_wb_write_bit(wb, update);
    996       if (update)
    997         vp9_wb_write_literal(wb, prob, 8);
    998     }
    999 
   1000     // Write out the chosen coding method.
   1001     vp9_wb_write_bit(wb, seg->temporal_update);
   1002     if (seg->temporal_update) {
   1003       for (i = 0; i < PREDICTION_PROBS; i++) {
   1004         const int prob = seg->pred_probs[i];
   1005         const int update = prob != MAX_PROB;
   1006         vp9_wb_write_bit(wb, update);
   1007         if (update)
   1008           vp9_wb_write_literal(wb, prob, 8);
   1009       }
   1010     }
   1011   }
   1012 
   1013   // Segmentation data
   1014   vp9_wb_write_bit(wb, seg->update_data);
   1015   if (seg->update_data) {
   1016     vp9_wb_write_bit(wb, seg->abs_delta);
   1017 
   1018     for (i = 0; i < MAX_SEGMENTS; i++) {
   1019       for (j = 0; j < SEG_LVL_MAX; j++) {
   1020         const int active = vp9_segfeature_active(seg, i, j);
   1021         vp9_wb_write_bit(wb, active);
   1022         if (active) {
   1023           const int data = vp9_get_segdata(seg, i, j);
   1024           const int data_max = vp9_seg_feature_data_max(j);
   1025 
   1026           if (vp9_is_segfeature_signed(j)) {
   1027             vp9_encode_unsigned_max(wb, abs(data), data_max);
   1028             vp9_wb_write_bit(wb, data < 0);
   1029           } else {
   1030             vp9_encode_unsigned_max(wb, data, data_max);
   1031           }
   1032         }
   1033       }
   1034     }
   1035   }
   1036 }
   1037 
   1038 
   1039 static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
   1040   VP9_COMMON *const cm = &cpi->common;
   1041 
   1042   // Mode
   1043   vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
   1044   if (cm->tx_mode >= ALLOW_32X32)
   1045     vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
   1046 
   1047   // Probabilities
   1048   if (cm->tx_mode == TX_MODE_SELECT) {
   1049     int i, j;
   1050     unsigned int ct_8x8p[TX_SIZES - 3][2];
   1051     unsigned int ct_16x16p[TX_SIZES - 2][2];
   1052     unsigned int ct_32x32p[TX_SIZES - 1][2];
   1053 
   1054 
   1055     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1056       tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
   1057       for (j = 0; j < TX_SIZES - 3; j++)
   1058         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
   1059     }
   1060 
   1061     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1062       tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
   1063       for (j = 0; j < TX_SIZES - 2; j++)
   1064         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
   1065                                   ct_16x16p[j]);
   1066     }
   1067 
   1068     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1069       tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
   1070       for (j = 0; j < TX_SIZES - 1; j++)
   1071         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
   1072                                   ct_32x32p[j]);
   1073     }
   1074 #ifdef MODE_STATS
   1075     if (!cpi->dummy_packing)
   1076       update_tx_count_stats(cm);
   1077 #endif
   1078   }
   1079 }
   1080 
   1081 static void write_interp_filter_type(INTERPOLATION_TYPE type,
   1082                                      struct vp9_write_bit_buffer *wb) {
   1083   const int type_to_literal[] = { 1, 0, 2, 3 };
   1084 
   1085   vp9_wb_write_bit(wb, type == SWITCHABLE);
   1086   if (type != SWITCHABLE)
   1087     vp9_wb_write_literal(wb, type_to_literal[type], 2);
   1088 }
   1089 
   1090 static void fix_mcomp_filter_type(VP9_COMP *cpi) {
   1091   VP9_COMMON *const cm = &cpi->common;
   1092 
   1093   if (cm->mcomp_filter_type == SWITCHABLE) {
   1094     // Check to see if only one of the filters is actually used
   1095     int count[SWITCHABLE_FILTERS];
   1096     int i, j, c = 0;
   1097     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
   1098       count[i] = 0;
   1099       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
   1100         count[i] += cm->counts.switchable_interp[j][i];
   1101       c += (count[i] > 0);
   1102     }
   1103     if (c == 1) {
   1104       // Only one filter is used. So set the filter at frame level
   1105       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
   1106         if (count[i]) {
   1107           cm->mcomp_filter_type = i;
   1108           break;
   1109         }
   1110       }
   1111     }
   1112   }
   1113 }
   1114 
   1115 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
   1116   int min_log2_tile_cols, max_log2_tile_cols, ones;
   1117   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
   1118 
   1119   // columns
   1120   ones = cm->log2_tile_cols - min_log2_tile_cols;
   1121   while (ones--)
   1122     vp9_wb_write_bit(wb, 1);
   1123 
   1124   if (cm->log2_tile_cols < max_log2_tile_cols)
   1125     vp9_wb_write_bit(wb, 0);
   1126 
   1127   // rows
   1128   vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
   1129   if (cm->log2_tile_rows != 0)
   1130     vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
   1131 }
   1132 
   1133 static int get_refresh_mask(VP9_COMP *cpi) {
   1134     // Should the GF or ARF be updated using the transmitted frame or buffer
   1135 #if CONFIG_MULTIPLE_ARF
   1136     if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
   1137         !cpi->refresh_alt_ref_frame) {
   1138 #else
   1139     if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
   1140         !cpi->use_svc) {
   1141 #endif
   1142       // Preserve the previously existing golden frame and update the frame in
   1143       // the alt ref slot instead. This is highly specific to the use of
   1144       // alt-ref as a forward reference, and this needs to be generalized as
   1145       // other uses are implemented (like RTC/temporal scaling)
   1146       //
   1147       // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
   1148       // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
   1149       // be done outside of the recode loop.
   1150       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
   1151              (cpi->refresh_golden_frame << cpi->alt_fb_idx);
   1152     } else {
   1153       int arf_idx = cpi->alt_fb_idx;
   1154 #if CONFIG_MULTIPLE_ARF
   1155       // Determine which ARF buffer to use to encode this ARF frame.
   1156       if (cpi->multi_arf_enabled) {
   1157         int sn = cpi->sequence_number;
   1158         arf_idx = (cpi->frame_coding_order[sn] < 0) ?
   1159             cpi->arf_buffer_idx[sn + 1] :
   1160             cpi->arf_buffer_idx[sn];
   1161       }
   1162 #endif
   1163       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
   1164              (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
   1165              (cpi->refresh_alt_ref_frame << arf_idx);
   1166     }
   1167 }
   1168 
   1169 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
   1170   VP9_COMMON *const cm = &cpi->common;
   1171   vp9_writer residual_bc;
   1172 
   1173   int tile_row, tile_col;
   1174   TOKENEXTRA *tok[4][1 << 6], *tok_end;
   1175   size_t total_size = 0;
   1176   const int tile_cols = 1 << cm->log2_tile_cols;
   1177   const int tile_rows = 1 << cm->log2_tile_rows;
   1178 
   1179   vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
   1180              mi_cols_aligned_to_sb(cm->mi_cols));
   1181 
   1182   tok[0][0] = cpi->tok;
   1183   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
   1184     if (tile_row)
   1185       tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
   1186                          cpi->tok_count[tile_row - 1][tile_cols - 1];
   1187 
   1188     for (tile_col = 1; tile_col < tile_cols; tile_col++)
   1189       tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
   1190                                 cpi->tok_count[tile_row][tile_col - 1];
   1191   }
   1192 
   1193   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
   1194     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
   1195       TileInfo tile;
   1196 
   1197       vp9_tile_init(&tile, cm, tile_row, tile_col);
   1198       tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
   1199 
   1200       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
   1201         vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
   1202       else
   1203         vp9_start_encode(&residual_bc, data_ptr + total_size);
   1204 
   1205       write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
   1206       assert(tok[tile_row][tile_col] == tok_end);
   1207       vp9_stop_encode(&residual_bc);
   1208       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
   1209         // size of this tile
   1210         write_be32(data_ptr + total_size, residual_bc.pos);
   1211         total_size += 4;
   1212       }
   1213 
   1214       total_size += residual_bc.pos;
   1215     }
   1216   }
   1217 
   1218   return total_size;
   1219 }
   1220 
   1221 static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
   1222   VP9_COMMON *const cm = &cpi->common;
   1223 
   1224   const int scaling_active = cm->width != cm->display_width ||
   1225                              cm->height != cm->display_height;
   1226   vp9_wb_write_bit(wb, scaling_active);
   1227   if (scaling_active) {
   1228     vp9_wb_write_literal(wb, cm->display_width - 1, 16);
   1229     vp9_wb_write_literal(wb, cm->display_height - 1, 16);
   1230   }
   1231 }
   1232 
   1233 static void write_frame_size(VP9_COMP *cpi,
   1234                              struct vp9_write_bit_buffer *wb) {
   1235   VP9_COMMON *const cm = &cpi->common;
   1236   vp9_wb_write_literal(wb, cm->width - 1, 16);
   1237   vp9_wb_write_literal(wb, cm->height - 1, 16);
   1238 
   1239   write_display_size(cpi, wb);
   1240 }
   1241 
   1242 static void write_frame_size_with_refs(VP9_COMP *cpi,
   1243                                        struct vp9_write_bit_buffer *wb) {
   1244   VP9_COMMON *const cm = &cpi->common;
   1245   int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
   1246                                       cpi->alt_fb_idx};
   1247   int i, found = 0;
   1248 
   1249   for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
   1250     YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
   1251     found = cm->width == cfg->y_crop_width &&
   1252             cm->height == cfg->y_crop_height;
   1253 
   1254     // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
   1255     // in a better way.
   1256     if (cpi->use_svc) {
   1257       found = 0;
   1258     }
   1259     vp9_wb_write_bit(wb, found);
   1260     if (found) {
   1261       break;
   1262     }
   1263   }
   1264 
   1265   if (!found) {
   1266     vp9_wb_write_literal(wb, cm->width - 1, 16);
   1267     vp9_wb_write_literal(wb, cm->height - 1, 16);
   1268   }
   1269 
   1270   write_display_size(cpi, wb);
   1271 }
   1272 
   1273 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
   1274   vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
   1275   vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
   1276   vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
   1277 }
   1278 
   1279 static void write_uncompressed_header(VP9_COMP *cpi,
   1280                                       struct vp9_write_bit_buffer *wb) {
   1281   VP9_COMMON *const cm = &cpi->common;
   1282 
   1283   vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
   1284 
   1285   // bitstream version.
   1286   // 00 - profile 0. 4:2:0 only
   1287   // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
   1288   vp9_wb_write_bit(wb, cm->version);
   1289   vp9_wb_write_bit(wb, 0);
   1290 
   1291   vp9_wb_write_bit(wb, 0);
   1292   vp9_wb_write_bit(wb, cm->frame_type);
   1293   vp9_wb_write_bit(wb, cm->show_frame);
   1294   vp9_wb_write_bit(wb, cm->error_resilient_mode);
   1295 
   1296   if (cm->frame_type == KEY_FRAME) {
   1297     const COLOR_SPACE cs = UNKNOWN;
   1298     write_sync_code(wb);
   1299     vp9_wb_write_literal(wb, cs, 3);
   1300     if (cs != SRGB) {
   1301       vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
   1302       if (cm->version == 1) {
   1303         vp9_wb_write_bit(wb, cm->subsampling_x);
   1304         vp9_wb_write_bit(wb, cm->subsampling_y);
   1305         vp9_wb_write_bit(wb, 0);  // has extra plane
   1306       }
   1307     } else {
   1308       assert(cm->version == 1);
   1309       vp9_wb_write_bit(wb, 0);  // has extra plane
   1310     }
   1311 
   1312     write_frame_size(cpi, wb);
   1313   } else {
   1314     const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
   1315                                               cpi->alt_fb_idx};
   1316     if (!cm->show_frame)
   1317       vp9_wb_write_bit(wb, cm->intra_only);
   1318 
   1319     if (!cm->error_resilient_mode)
   1320       vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
   1321 
   1322     if (cm->intra_only) {
   1323       write_sync_code(wb);
   1324 
   1325       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
   1326       write_frame_size(cpi, wb);
   1327     } else {
   1328       int i;
   1329       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
   1330       for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
   1331         vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
   1332         vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
   1333       }
   1334 
   1335       write_frame_size_with_refs(cpi, wb);
   1336 
   1337       vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
   1338 
   1339       fix_mcomp_filter_type(cpi);
   1340       write_interp_filter_type(cm->mcomp_filter_type, wb);
   1341     }
   1342   }
   1343 
   1344   if (!cm->error_resilient_mode) {
   1345     vp9_wb_write_bit(wb, cm->refresh_frame_context);
   1346     vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
   1347   }
   1348 
   1349   vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
   1350 
   1351   encode_loopfilter(&cm->lf, wb);
   1352   encode_quantization(cm, wb);
   1353   encode_segmentation(cpi, wb);
   1354 
   1355   write_tile_info(cm, wb);
   1356 }
   1357 
   1358 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
   1359   VP9_COMMON *const cm = &cpi->common;
   1360   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   1361   FRAME_CONTEXT *const fc = &cm->fc;
   1362   vp9_writer header_bc;
   1363 
   1364   vp9_start_encode(&header_bc, data);
   1365 
   1366   if (xd->lossless)
   1367     cm->tx_mode = ONLY_4X4;
   1368   else
   1369     encode_txfm_probs(cpi, &header_bc);
   1370 
   1371   update_coef_probs(cpi, &header_bc);
   1372 
   1373 #ifdef ENTROPY_STATS
   1374   active_section = 2;
   1375 #endif
   1376 
   1377   vp9_update_skip_probs(cpi, &header_bc);
   1378 
   1379   if (!frame_is_intra_only(cm)) {
   1380     int i;
   1381 #ifdef ENTROPY_STATS
   1382     active_section = 1;
   1383 #endif
   1384 
   1385     update_inter_mode_probs(cm, &header_bc);
   1386     vp9_zero(cm->counts.inter_mode);
   1387 
   1388     if (cm->mcomp_filter_type == SWITCHABLE)
   1389       update_switchable_interp_probs(cpi, &header_bc);
   1390 
   1391     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
   1392       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
   1393                                 cpi->intra_inter_count[i]);
   1394 
   1395     if (cm->allow_comp_inter_inter) {
   1396       const int comp_pred_mode = cpi->common.comp_pred_mode;
   1397       const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
   1398       const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
   1399 
   1400       vp9_write_bit(&header_bc, use_compound_pred);
   1401       if (use_compound_pred) {
   1402         vp9_write_bit(&header_bc, use_hybrid_pred);
   1403         if (use_hybrid_pred)
   1404           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
   1405             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
   1406                                       cpi->comp_inter_count[i]);
   1407       }
   1408     }
   1409 
   1410     if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
   1411       for (i = 0; i < REF_CONTEXTS; i++) {
   1412         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
   1413                                   cpi->single_ref_count[i][0]);
   1414         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
   1415                                   cpi->single_ref_count[i][1]);
   1416       }
   1417     }
   1418 
   1419     if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
   1420       for (i = 0; i < REF_CONTEXTS; i++)
   1421         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
   1422                                   cpi->comp_ref_count[i]);
   1423 
   1424     update_mbintra_mode_probs(cpi, &header_bc);
   1425 
   1426     for (i = 0; i < PARTITION_CONTEXTS; ++i) {
   1427       unsigned int bct[PARTITION_TYPES - 1][2];
   1428       update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree,
   1429                   fc->partition_prob[i], bct,
   1430                   (unsigned int *)cpi->partition_count[i]);
   1431     }
   1432 
   1433     vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc);
   1434   }
   1435 
   1436   vp9_stop_encode(&header_bc);
   1437   assert(header_bc.pos <= 0xffff);
   1438 
   1439   return header_bc.pos;
   1440 }
   1441 
   1442 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
   1443   uint8_t *data = dest;
   1444   size_t first_part_size;
   1445   struct vp9_write_bit_buffer wb = {data, 0};
   1446   struct vp9_write_bit_buffer saved_wb;
   1447 
   1448   write_uncompressed_header(cpi, &wb);
   1449   saved_wb = wb;
   1450   vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
   1451 
   1452   data += vp9_rb_bytes_written(&wb);
   1453 
   1454   vp9_compute_update_table();
   1455 
   1456 #ifdef ENTROPY_STATS
   1457   if (cm->frame_type == INTER_FRAME)
   1458     active_section = 0;
   1459   else
   1460     active_section = 7;
   1461 #endif
   1462 
   1463   vp9_clear_system_state();  // __asm emms;
   1464 
   1465   first_part_size = write_compressed_header(cpi, data);
   1466   data += first_part_size;
   1467   vp9_wb_write_literal(&saved_wb, first_part_size, 16);
   1468 
   1469   data += encode_tiles(cpi, data);
   1470 
   1471   *size = data - dest;
   1472 }
   1473 
   1474 #ifdef ENTROPY_STATS
   1475 static void print_tree_update_for_type(FILE *f,
   1476                                        vp9_coeff_stats *tree_update_hist,
   1477                                        int block_types, const char *header) {
   1478   int i, j, k, l, m;
   1479 
   1480   fprintf(f, "const vp9_coeff_prob %s = {\n", header);
   1481   for (i = 0; i < block_types; i++) {
   1482     fprintf(f, "  { \n");
   1483     for (j = 0; j < REF_TYPES; j++) {
   1484       fprintf(f, "  { \n");
   1485       for (k = 0; k < COEF_BANDS; k++) {
   1486         fprintf(f, "    {\n");
   1487         for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
   1488           fprintf(f, "      {");
   1489           for (m = 0; m < ENTROPY_NODES; m++) {
   1490             fprintf(f, "%3d, ",
   1491                     get_binary_prob(tree_update_hist[i][j][k][l][m][0],
   1492                                     tree_update_hist[i][j][k][l][m][1]));
   1493           }
   1494           fprintf(f, "},\n");
   1495         }
   1496         fprintf(f, "},\n");
   1497       }
   1498       fprintf(f, "    },\n");
   1499     }
   1500     fprintf(f, "  },\n");
   1501   }
   1502   fprintf(f, "};\n");
   1503 }
   1504 
   1505 void print_tree_update_probs() {
   1506   FILE *f = fopen("coefupdprob.h", "w");
   1507   fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
   1508 
   1509   print_tree_update_for_type(f, tree_update_hist[TX_4X4],   BLOCK_TYPES,
   1510                              "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
   1511   print_tree_update_for_type(f, tree_update_hist[TX_8X8],   BLOCK_TYPES,
   1512                              "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
   1513   print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
   1514                              "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
   1515   print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
   1516                              "vp9_coef_update_probs_32x32[BLOCK_TYPES]");
   1517 
   1518   fclose(f);
   1519   f = fopen("treeupdate.bin", "wb");
   1520   fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
   1521   fclose(f);
   1522 }
   1523 #endif
   1524