Home | History | Annotate | Download | only in Core
      1 //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines BasicValueFactory, a class that manages the lifetime
     11 //  of APSInt objects and symbolic constraints used by ExprEngine
     12 //  and related classes.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     19 
     20 using namespace clang;
     21 using namespace ento;
     22 
     23 void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
     24                               llvm::ImmutableList<SVal> L) {
     25   T.Profile(ID);
     26   ID.AddPointer(L.getInternalPointer());
     27 }
     28 
     29 void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
     30                                   const StoreRef &store,
     31                                   const TypedValueRegion *region) {
     32   ID.AddPointer(store.getStore());
     33   ID.AddPointer(region);
     34 }
     35 
     36 typedef std::pair<SVal, uintptr_t> SValData;
     37 typedef std::pair<SVal, SVal> SValPair;
     38 
     39 namespace llvm {
     40 template<> struct FoldingSetTrait<SValData> {
     41   static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
     42     X.first.Profile(ID);
     43     ID.AddPointer( (void*) X.second);
     44   }
     45 };
     46 
     47 template<> struct FoldingSetTrait<SValPair> {
     48   static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
     49     X.first.Profile(ID);
     50     X.second.Profile(ID);
     51   }
     52 };
     53 }
     54 
     55 typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> >
     56   PersistentSValsTy;
     57 
     58 typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> >
     59   PersistentSValPairsTy;
     60 
     61 BasicValueFactory::~BasicValueFactory() {
     62   // Note that the dstor for the contents of APSIntSet will never be called,
     63   // so we iterate over the set and invoke the dstor for each APSInt.  This
     64   // frees an aux. memory allocated to represent very large constants.
     65   for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
     66     I->getValue().~APSInt();
     67 
     68   delete (PersistentSValsTy*) PersistentSVals;
     69   delete (PersistentSValPairsTy*) PersistentSValPairs;
     70 }
     71 
     72 const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
     73   llvm::FoldingSetNodeID ID;
     74   void *InsertPos;
     75   typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
     76 
     77   X.Profile(ID);
     78   FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
     79 
     80   if (!P) {
     81     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
     82     new (P) FoldNodeTy(X);
     83     APSIntSet.InsertNode(P, InsertPos);
     84   }
     85 
     86   return *P;
     87 }
     88 
     89 const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
     90                                                 bool isUnsigned) {
     91   llvm::APSInt V(X, isUnsigned);
     92   return getValue(V);
     93 }
     94 
     95 const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
     96                                            bool isUnsigned) {
     97   llvm::APSInt V(BitWidth, isUnsigned);
     98   V = X;
     99   return getValue(V);
    100 }
    101 
    102 const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
    103 
    104   return getValue(getAPSIntType(T).getValue(X));
    105 }
    106 
    107 const CompoundValData*
    108 BasicValueFactory::getCompoundValData(QualType T,
    109                                       llvm::ImmutableList<SVal> Vals) {
    110 
    111   llvm::FoldingSetNodeID ID;
    112   CompoundValData::Profile(ID, T, Vals);
    113   void *InsertPos;
    114 
    115   CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
    116 
    117   if (!D) {
    118     D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
    119     new (D) CompoundValData(T, Vals);
    120     CompoundValDataSet.InsertNode(D, InsertPos);
    121   }
    122 
    123   return D;
    124 }
    125 
    126 const LazyCompoundValData*
    127 BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
    128                                           const TypedValueRegion *region) {
    129   llvm::FoldingSetNodeID ID;
    130   LazyCompoundValData::Profile(ID, store, region);
    131   void *InsertPos;
    132 
    133   LazyCompoundValData *D =
    134     LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
    135 
    136   if (!D) {
    137     D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
    138     new (D) LazyCompoundValData(store, region);
    139     LazyCompoundValDataSet.InsertNode(D, InsertPos);
    140   }
    141 
    142   return D;
    143 }
    144 
    145 const llvm::APSInt*
    146 BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
    147                              const llvm::APSInt& V1, const llvm::APSInt& V2) {
    148 
    149   switch (Op) {
    150     default:
    151       assert (false && "Invalid Opcode.");
    152 
    153     case BO_Mul:
    154       return &getValue( V1 * V2 );
    155 
    156     case BO_Div:
    157       return &getValue( V1 / V2 );
    158 
    159     case BO_Rem:
    160       return &getValue( V1 % V2 );
    161 
    162     case BO_Add:
    163       return &getValue( V1 + V2 );
    164 
    165     case BO_Sub:
    166       return &getValue( V1 - V2 );
    167 
    168     case BO_Shl: {
    169 
    170       // FIXME: This logic should probably go higher up, where we can
    171       // test these conditions symbolically.
    172 
    173       // FIXME: Expand these checks to include all undefined behavior.
    174 
    175       if (V2.isSigned() && V2.isNegative())
    176         return NULL;
    177 
    178       uint64_t Amt = V2.getZExtValue();
    179 
    180       if (Amt > V1.getBitWidth())
    181         return NULL;
    182 
    183       return &getValue( V1.operator<<( (unsigned) Amt ));
    184     }
    185 
    186     case BO_Shr: {
    187 
    188       // FIXME: This logic should probably go higher up, where we can
    189       // test these conditions symbolically.
    190 
    191       // FIXME: Expand these checks to include all undefined behavior.
    192 
    193       if (V2.isSigned() && V2.isNegative())
    194         return NULL;
    195 
    196       uint64_t Amt = V2.getZExtValue();
    197 
    198       if (Amt > V1.getBitWidth())
    199         return NULL;
    200 
    201       return &getValue( V1.operator>>( (unsigned) Amt ));
    202     }
    203 
    204     case BO_LT:
    205       return &getTruthValue( V1 < V2 );
    206 
    207     case BO_GT:
    208       return &getTruthValue( V1 > V2 );
    209 
    210     case BO_LE:
    211       return &getTruthValue( V1 <= V2 );
    212 
    213     case BO_GE:
    214       return &getTruthValue( V1 >= V2 );
    215 
    216     case BO_EQ:
    217       return &getTruthValue( V1 == V2 );
    218 
    219     case BO_NE:
    220       return &getTruthValue( V1 != V2 );
    221 
    222       // Note: LAnd, LOr, Comma are handled specially by higher-level logic.
    223 
    224     case BO_And:
    225       return &getValue( V1 & V2 );
    226 
    227     case BO_Or:
    228       return &getValue( V1 | V2 );
    229 
    230     case BO_Xor:
    231       return &getValue( V1 ^ V2 );
    232   }
    233 }
    234 
    235 
    236 const std::pair<SVal, uintptr_t>&
    237 BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
    238 
    239   // Lazily create the folding set.
    240   if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
    241 
    242   llvm::FoldingSetNodeID ID;
    243   void *InsertPos;
    244   V.Profile(ID);
    245   ID.AddPointer((void*) Data);
    246 
    247   PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
    248 
    249   typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy;
    250   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
    251 
    252   if (!P) {
    253     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
    254     new (P) FoldNodeTy(std::make_pair(V, Data));
    255     Map.InsertNode(P, InsertPos);
    256   }
    257 
    258   return P->getValue();
    259 }
    260 
    261 const std::pair<SVal, SVal>&
    262 BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
    263 
    264   // Lazily create the folding set.
    265   if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
    266 
    267   llvm::FoldingSetNodeID ID;
    268   void *InsertPos;
    269   V1.Profile(ID);
    270   V2.Profile(ID);
    271 
    272   PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
    273 
    274   typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy;
    275   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
    276 
    277   if (!P) {
    278     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
    279     new (P) FoldNodeTy(std::make_pair(V1, V2));
    280     Map.InsertNode(P, InsertPos);
    281   }
    282 
    283   return P->getValue();
    284 }
    285 
    286 const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
    287   return &getPersistentSValWithData(X, 0).first;
    288 }
    289