Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Type interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_TYPE_H
     15 #define LLVM_CLANG_AST_TYPE_H
     16 
     17 #include "clang/AST/NestedNameSpecifier.h"
     18 #include "clang/AST/TemplateName.h"
     19 #include "clang/Basic/Diagnostic.h"
     20 #include "clang/Basic/ExceptionSpecificationType.h"
     21 #include "clang/Basic/IdentifierTable.h"
     22 #include "clang/Basic/LLVM.h"
     23 #include "clang/Basic/Linkage.h"
     24 #include "clang/Basic/PartialDiagnostic.h"
     25 #include "clang/Basic/Specifiers.h"
     26 #include "clang/Basic/Visibility.h"
     27 #include "llvm/ADT/APSInt.h"
     28 #include "llvm/ADT/FoldingSet.h"
     29 #include "llvm/ADT/Optional.h"
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/ADT/PointerUnion.h"
     32 #include "llvm/ADT/Twine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/type_traits.h"
     35 
     36 namespace clang {
     37   enum {
     38     TypeAlignmentInBits = 4,
     39     TypeAlignment = 1 << TypeAlignmentInBits
     40   };
     41   class Type;
     42   class ExtQuals;
     43   class QualType;
     44 }
     45 
     46 namespace llvm {
     47   template <typename T>
     48   class PointerLikeTypeTraits;
     49   template<>
     50   class PointerLikeTypeTraits< ::clang::Type*> {
     51   public:
     52     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     53     static inline ::clang::Type *getFromVoidPointer(void *P) {
     54       return static_cast< ::clang::Type*>(P);
     55     }
     56     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     57   };
     58   template<>
     59   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     60   public:
     61     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     62     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     63       return static_cast< ::clang::ExtQuals*>(P);
     64     }
     65     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     66   };
     67 
     68   template <>
     69   struct isPodLike<clang::QualType> { static const bool value = true; };
     70 }
     71 
     72 namespace clang {
     73   class ASTContext;
     74   class TypedefNameDecl;
     75   class TemplateDecl;
     76   class TemplateTypeParmDecl;
     77   class NonTypeTemplateParmDecl;
     78   class TemplateTemplateParmDecl;
     79   class TagDecl;
     80   class RecordDecl;
     81   class CXXRecordDecl;
     82   class EnumDecl;
     83   class FieldDecl;
     84   class FunctionDecl;
     85   class ObjCInterfaceDecl;
     86   class ObjCProtocolDecl;
     87   class ObjCMethodDecl;
     88   class UnresolvedUsingTypenameDecl;
     89   class Expr;
     90   class Stmt;
     91   class SourceLocation;
     92   class StmtIteratorBase;
     93   class TemplateArgument;
     94   class TemplateArgumentLoc;
     95   class TemplateArgumentListInfo;
     96   class ElaboratedType;
     97   class ExtQuals;
     98   class ExtQualsTypeCommonBase;
     99   struct PrintingPolicy;
    100 
    101   template <typename> class CanQual;
    102   typedef CanQual<Type> CanQualType;
    103 
    104   // Provide forward declarations for all of the *Type classes
    105 #define TYPE(Class, Base) class Class##Type;
    106 #include "clang/AST/TypeNodes.def"
    107 
    108 /// Qualifiers - The collection of all-type qualifiers we support.
    109 /// Clang supports five independent qualifiers:
    110 /// * C99: const, volatile, and restrict
    111 /// * Embedded C (TR18037): address spaces
    112 /// * Objective C: the GC attributes (none, weak, or strong)
    113 class Qualifiers {
    114 public:
    115   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    116     Const    = 0x1,
    117     Restrict = 0x2,
    118     Volatile = 0x4,
    119     CVRMask = Const | Volatile | Restrict
    120   };
    121 
    122   enum GC {
    123     GCNone = 0,
    124     Weak,
    125     Strong
    126   };
    127 
    128   enum ObjCLifetime {
    129     /// There is no lifetime qualification on this type.
    130     OCL_None,
    131 
    132     /// This object can be modified without requiring retains or
    133     /// releases.
    134     OCL_ExplicitNone,
    135 
    136     /// Assigning into this object requires the old value to be
    137     /// released and the new value to be retained.  The timing of the
    138     /// release of the old value is inexact: it may be moved to
    139     /// immediately after the last known point where the value is
    140     /// live.
    141     OCL_Strong,
    142 
    143     /// Reading or writing from this object requires a barrier call.
    144     OCL_Weak,
    145 
    146     /// Assigning into this object requires a lifetime extension.
    147     OCL_Autoreleasing
    148   };
    149 
    150   enum {
    151     /// The maximum supported address space number.
    152     /// 24 bits should be enough for anyone.
    153     MaxAddressSpace = 0xffffffu,
    154 
    155     /// The width of the "fast" qualifier mask.
    156     FastWidth = 3,
    157 
    158     /// The fast qualifier mask.
    159     FastMask = (1 << FastWidth) - 1
    160   };
    161 
    162   Qualifiers() : Mask(0) {}
    163 
    164   /// \brief Returns the common set of qualifiers while removing them from
    165   /// the given sets.
    166   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    167     // If both are only CVR-qualified, bit operations are sufficient.
    168     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
    169       Qualifiers Q;
    170       Q.Mask = L.Mask & R.Mask;
    171       L.Mask &= ~Q.Mask;
    172       R.Mask &= ~Q.Mask;
    173       return Q;
    174     }
    175 
    176     Qualifiers Q;
    177     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    178     Q.addCVRQualifiers(CommonCRV);
    179     L.removeCVRQualifiers(CommonCRV);
    180     R.removeCVRQualifiers(CommonCRV);
    181 
    182     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
    183       Q.setObjCGCAttr(L.getObjCGCAttr());
    184       L.removeObjCGCAttr();
    185       R.removeObjCGCAttr();
    186     }
    187 
    188     if (L.getObjCLifetime() == R.getObjCLifetime()) {
    189       Q.setObjCLifetime(L.getObjCLifetime());
    190       L.removeObjCLifetime();
    191       R.removeObjCLifetime();
    192     }
    193 
    194     if (L.getAddressSpace() == R.getAddressSpace()) {
    195       Q.setAddressSpace(L.getAddressSpace());
    196       L.removeAddressSpace();
    197       R.removeAddressSpace();
    198     }
    199     return Q;
    200   }
    201 
    202   static Qualifiers fromFastMask(unsigned Mask) {
    203     Qualifiers Qs;
    204     Qs.addFastQualifiers(Mask);
    205     return Qs;
    206   }
    207 
    208   static Qualifiers fromCVRMask(unsigned CVR) {
    209     Qualifiers Qs;
    210     Qs.addCVRQualifiers(CVR);
    211     return Qs;
    212   }
    213 
    214   // Deserialize qualifiers from an opaque representation.
    215   static Qualifiers fromOpaqueValue(unsigned opaque) {
    216     Qualifiers Qs;
    217     Qs.Mask = opaque;
    218     return Qs;
    219   }
    220 
    221   // Serialize these qualifiers into an opaque representation.
    222   unsigned getAsOpaqueValue() const {
    223     return Mask;
    224   }
    225 
    226   bool hasConst() const { return Mask & Const; }
    227   void setConst(bool flag) {
    228     Mask = (Mask & ~Const) | (flag ? Const : 0);
    229   }
    230   void removeConst() { Mask &= ~Const; }
    231   void addConst() { Mask |= Const; }
    232 
    233   bool hasVolatile() const { return Mask & Volatile; }
    234   void setVolatile(bool flag) {
    235     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    236   }
    237   void removeVolatile() { Mask &= ~Volatile; }
    238   void addVolatile() { Mask |= Volatile; }
    239 
    240   bool hasRestrict() const { return Mask & Restrict; }
    241   void setRestrict(bool flag) {
    242     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    243   }
    244   void removeRestrict() { Mask &= ~Restrict; }
    245   void addRestrict() { Mask |= Restrict; }
    246 
    247   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    248   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    249   void setCVRQualifiers(unsigned mask) {
    250     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    251     Mask = (Mask & ~CVRMask) | mask;
    252   }
    253   void removeCVRQualifiers(unsigned mask) {
    254     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    255     Mask &= ~mask;
    256   }
    257   void removeCVRQualifiers() {
    258     removeCVRQualifiers(CVRMask);
    259   }
    260   void addCVRQualifiers(unsigned mask) {
    261     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    262     Mask |= mask;
    263   }
    264 
    265   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    266   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    267   void setObjCGCAttr(GC type) {
    268     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    269   }
    270   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    271   void addObjCGCAttr(GC type) {
    272     assert(type);
    273     setObjCGCAttr(type);
    274   }
    275   Qualifiers withoutObjCGCAttr() const {
    276     Qualifiers qs = *this;
    277     qs.removeObjCGCAttr();
    278     return qs;
    279   }
    280   Qualifiers withoutObjCLifetime() const {
    281     Qualifiers qs = *this;
    282     qs.removeObjCLifetime();
    283     return qs;
    284   }
    285 
    286   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    287   ObjCLifetime getObjCLifetime() const {
    288     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    289   }
    290   void setObjCLifetime(ObjCLifetime type) {
    291     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    292   }
    293   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    294   void addObjCLifetime(ObjCLifetime type) {
    295     assert(type);
    296     assert(!hasObjCLifetime());
    297     Mask |= (type << LifetimeShift);
    298   }
    299 
    300   /// True if the lifetime is neither None or ExplicitNone.
    301   bool hasNonTrivialObjCLifetime() const {
    302     ObjCLifetime lifetime = getObjCLifetime();
    303     return (lifetime > OCL_ExplicitNone);
    304   }
    305 
    306   /// True if the lifetime is either strong or weak.
    307   bool hasStrongOrWeakObjCLifetime() const {
    308     ObjCLifetime lifetime = getObjCLifetime();
    309     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    310   }
    311 
    312   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    313   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    314   void setAddressSpace(unsigned space) {
    315     assert(space <= MaxAddressSpace);
    316     Mask = (Mask & ~AddressSpaceMask)
    317          | (((uint32_t) space) << AddressSpaceShift);
    318   }
    319   void removeAddressSpace() { setAddressSpace(0); }
    320   void addAddressSpace(unsigned space) {
    321     assert(space);
    322     setAddressSpace(space);
    323   }
    324 
    325   // Fast qualifiers are those that can be allocated directly
    326   // on a QualType object.
    327   bool hasFastQualifiers() const { return getFastQualifiers(); }
    328   unsigned getFastQualifiers() const { return Mask & FastMask; }
    329   void setFastQualifiers(unsigned mask) {
    330     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    331     Mask = (Mask & ~FastMask) | mask;
    332   }
    333   void removeFastQualifiers(unsigned mask) {
    334     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    335     Mask &= ~mask;
    336   }
    337   void removeFastQualifiers() {
    338     removeFastQualifiers(FastMask);
    339   }
    340   void addFastQualifiers(unsigned mask) {
    341     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    342     Mask |= mask;
    343   }
    344 
    345   /// hasNonFastQualifiers - Return true if the set contains any
    346   /// qualifiers which require an ExtQuals node to be allocated.
    347   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    348   Qualifiers getNonFastQualifiers() const {
    349     Qualifiers Quals = *this;
    350     Quals.setFastQualifiers(0);
    351     return Quals;
    352   }
    353 
    354   /// hasQualifiers - Return true if the set contains any qualifiers.
    355   bool hasQualifiers() const { return Mask; }
    356   bool empty() const { return !Mask; }
    357 
    358   /// \brief Add the qualifiers from the given set to this set.
    359   void addQualifiers(Qualifiers Q) {
    360     // If the other set doesn't have any non-boolean qualifiers, just
    361     // bit-or it in.
    362     if (!(Q.Mask & ~CVRMask))
    363       Mask |= Q.Mask;
    364     else {
    365       Mask |= (Q.Mask & CVRMask);
    366       if (Q.hasAddressSpace())
    367         addAddressSpace(Q.getAddressSpace());
    368       if (Q.hasObjCGCAttr())
    369         addObjCGCAttr(Q.getObjCGCAttr());
    370       if (Q.hasObjCLifetime())
    371         addObjCLifetime(Q.getObjCLifetime());
    372     }
    373   }
    374 
    375   /// \brief Remove the qualifiers from the given set from this set.
    376   void removeQualifiers(Qualifiers Q) {
    377     // If the other set doesn't have any non-boolean qualifiers, just
    378     // bit-and the inverse in.
    379     if (!(Q.Mask & ~CVRMask))
    380       Mask &= ~Q.Mask;
    381     else {
    382       Mask &= ~(Q.Mask & CVRMask);
    383       if (getObjCGCAttr() == Q.getObjCGCAttr())
    384         removeObjCGCAttr();
    385       if (getObjCLifetime() == Q.getObjCLifetime())
    386         removeObjCLifetime();
    387       if (getAddressSpace() == Q.getAddressSpace())
    388         removeAddressSpace();
    389     }
    390   }
    391 
    392   /// \brief Add the qualifiers from the given set to this set, given that
    393   /// they don't conflict.
    394   void addConsistentQualifiers(Qualifiers qs) {
    395     assert(getAddressSpace() == qs.getAddressSpace() ||
    396            !hasAddressSpace() || !qs.hasAddressSpace());
    397     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    398            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    399     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    400            !hasObjCLifetime() || !qs.hasObjCLifetime());
    401     Mask |= qs.Mask;
    402   }
    403 
    404   /// \brief Determines if these qualifiers compatibly include another set.
    405   /// Generally this answers the question of whether an object with the other
    406   /// qualifiers can be safely used as an object with these qualifiers.
    407   bool compatiblyIncludes(Qualifiers other) const {
    408     return
    409       // Address spaces must match exactly.
    410       getAddressSpace() == other.getAddressSpace() &&
    411       // ObjC GC qualifiers can match, be added, or be removed, but can't be
    412       // changed.
    413       (getObjCGCAttr() == other.getObjCGCAttr() ||
    414        !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
    415       // ObjC lifetime qualifiers must match exactly.
    416       getObjCLifetime() == other.getObjCLifetime() &&
    417       // CVR qualifiers may subset.
    418       (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
    419   }
    420 
    421   /// \brief Determines if these qualifiers compatibly include another set of
    422   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    423   ///
    424   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    425   /// if the lifetime qualifiers match, or if both are non-__weak and the
    426   /// including set also contains the 'const' qualifier.
    427   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    428     if (getObjCLifetime() == other.getObjCLifetime())
    429       return true;
    430 
    431     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    432       return false;
    433 
    434     return hasConst();
    435   }
    436 
    437   /// \brief Determine whether this set of qualifiers is a strict superset of
    438   /// another set of qualifiers, not considering qualifier compatibility.
    439   bool isStrictSupersetOf(Qualifiers Other) const;
    440 
    441   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    442   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    443 
    444   LLVM_EXPLICIT operator bool() const { return hasQualifiers(); }
    445 
    446   Qualifiers &operator+=(Qualifiers R) {
    447     addQualifiers(R);
    448     return *this;
    449   }
    450 
    451   // Union two qualifier sets.  If an enumerated qualifier appears
    452   // in both sets, use the one from the right.
    453   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    454     L += R;
    455     return L;
    456   }
    457 
    458   Qualifiers &operator-=(Qualifiers R) {
    459     removeQualifiers(R);
    460     return *this;
    461   }
    462 
    463   /// \brief Compute the difference between two qualifier sets.
    464   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    465     L -= R;
    466     return L;
    467   }
    468 
    469   std::string getAsString() const;
    470   std::string getAsString(const PrintingPolicy &Policy) const;
    471 
    472   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
    473   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    474              bool appendSpaceIfNonEmpty = false) const;
    475 
    476   void Profile(llvm::FoldingSetNodeID &ID) const {
    477     ID.AddInteger(Mask);
    478   }
    479 
    480 private:
    481 
    482   // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
    483   //           |C R V|GCAttr|Lifetime|AddressSpace|
    484   uint32_t Mask;
    485 
    486   static const uint32_t GCAttrMask = 0x18;
    487   static const uint32_t GCAttrShift = 3;
    488   static const uint32_t LifetimeMask = 0xE0;
    489   static const uint32_t LifetimeShift = 5;
    490   static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
    491   static const uint32_t AddressSpaceShift = 8;
    492 };
    493 
    494 /// A std::pair-like structure for storing a qualified type split
    495 /// into its local qualifiers and its locally-unqualified type.
    496 struct SplitQualType {
    497   /// The locally-unqualified type.
    498   const Type *Ty;
    499 
    500   /// The local qualifiers.
    501   Qualifiers Quals;
    502 
    503   SplitQualType() : Ty(0), Quals() {}
    504   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    505 
    506   SplitQualType getSingleStepDesugaredType() const; // end of this file
    507 
    508   // Make llvm::tie work.
    509   operator std::pair<const Type *,Qualifiers>() const {
    510     return std::pair<const Type *,Qualifiers>(Ty, Quals);
    511   }
    512 
    513   friend bool operator==(SplitQualType a, SplitQualType b) {
    514     return a.Ty == b.Ty && a.Quals == b.Quals;
    515   }
    516   friend bool operator!=(SplitQualType a, SplitQualType b) {
    517     return a.Ty != b.Ty || a.Quals != b.Quals;
    518   }
    519 };
    520 
    521 /// QualType - For efficiency, we don't store CV-qualified types as nodes on
    522 /// their own: instead each reference to a type stores the qualifiers.  This
    523 /// greatly reduces the number of nodes we need to allocate for types (for
    524 /// example we only need one for 'int', 'const int', 'volatile int',
    525 /// 'const volatile int', etc).
    526 ///
    527 /// As an added efficiency bonus, instead of making this a pair, we
    528 /// just store the two bits we care about in the low bits of the
    529 /// pointer.  To handle the packing/unpacking, we make QualType be a
    530 /// simple wrapper class that acts like a smart pointer.  A third bit
    531 /// indicates whether there are extended qualifiers present, in which
    532 /// case the pointer points to a special structure.
    533 class QualType {
    534   // Thankfully, these are efficiently composable.
    535   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    536                        Qualifiers::FastWidth> Value;
    537 
    538   const ExtQuals *getExtQualsUnsafe() const {
    539     return Value.getPointer().get<const ExtQuals*>();
    540   }
    541 
    542   const Type *getTypePtrUnsafe() const {
    543     return Value.getPointer().get<const Type*>();
    544   }
    545 
    546   const ExtQualsTypeCommonBase *getCommonPtr() const {
    547     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    548     uintptr_t CommonPtrVal
    549       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    550     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    551     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    552   }
    553 
    554   friend class QualifierCollector;
    555 public:
    556   QualType() {}
    557 
    558   QualType(const Type *Ptr, unsigned Quals)
    559     : Value(Ptr, Quals) {}
    560   QualType(const ExtQuals *Ptr, unsigned Quals)
    561     : Value(Ptr, Quals) {}
    562 
    563   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    564   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    565 
    566   /// Retrieves a pointer to the underlying (unqualified) type.
    567   ///
    568   /// This function requires that the type not be NULL. If the type might be
    569   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    570   const Type *getTypePtr() const;
    571 
    572   const Type *getTypePtrOrNull() const;
    573 
    574   /// Retrieves a pointer to the name of the base type.
    575   const IdentifierInfo *getBaseTypeIdentifier() const;
    576 
    577   /// Divides a QualType into its unqualified type and a set of local
    578   /// qualifiers.
    579   SplitQualType split() const;
    580 
    581   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    582   static QualType getFromOpaquePtr(const void *Ptr) {
    583     QualType T;
    584     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    585     return T;
    586   }
    587 
    588   const Type &operator*() const {
    589     return *getTypePtr();
    590   }
    591 
    592   const Type *operator->() const {
    593     return getTypePtr();
    594   }
    595 
    596   bool isCanonical() const;
    597   bool isCanonicalAsParam() const;
    598 
    599   /// isNull - Return true if this QualType doesn't point to a type yet.
    600   bool isNull() const {
    601     return Value.getPointer().isNull();
    602   }
    603 
    604   /// \brief Determine whether this particular QualType instance has the
    605   /// "const" qualifier set, without looking through typedefs that may have
    606   /// added "const" at a different level.
    607   bool isLocalConstQualified() const {
    608     return (getLocalFastQualifiers() & Qualifiers::Const);
    609   }
    610 
    611   /// \brief Determine whether this type is const-qualified.
    612   bool isConstQualified() const;
    613 
    614   /// \brief Determine whether this particular QualType instance has the
    615   /// "restrict" qualifier set, without looking through typedefs that may have
    616   /// added "restrict" at a different level.
    617   bool isLocalRestrictQualified() const {
    618     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    619   }
    620 
    621   /// \brief Determine whether this type is restrict-qualified.
    622   bool isRestrictQualified() const;
    623 
    624   /// \brief Determine whether this particular QualType instance has the
    625   /// "volatile" qualifier set, without looking through typedefs that may have
    626   /// added "volatile" at a different level.
    627   bool isLocalVolatileQualified() const {
    628     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    629   }
    630 
    631   /// \brief Determine whether this type is volatile-qualified.
    632   bool isVolatileQualified() const;
    633 
    634   /// \brief Determine whether this particular QualType instance has any
    635   /// qualifiers, without looking through any typedefs that might add
    636   /// qualifiers at a different level.
    637   bool hasLocalQualifiers() const {
    638     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    639   }
    640 
    641   /// \brief Determine whether this type has any qualifiers.
    642   bool hasQualifiers() const;
    643 
    644   /// \brief Determine whether this particular QualType instance has any
    645   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    646   /// instance.
    647   bool hasLocalNonFastQualifiers() const {
    648     return Value.getPointer().is<const ExtQuals*>();
    649   }
    650 
    651   /// \brief Retrieve the set of qualifiers local to this particular QualType
    652   /// instance, not including any qualifiers acquired through typedefs or
    653   /// other sugar.
    654   Qualifiers getLocalQualifiers() const;
    655 
    656   /// \brief Retrieve the set of qualifiers applied to this type.
    657   Qualifiers getQualifiers() const;
    658 
    659   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    660   /// local to this particular QualType instance, not including any qualifiers
    661   /// acquired through typedefs or other sugar.
    662   unsigned getLocalCVRQualifiers() const {
    663     return getLocalFastQualifiers();
    664   }
    665 
    666   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    667   /// applied to this type.
    668   unsigned getCVRQualifiers() const;
    669 
    670   bool isConstant(ASTContext& Ctx) const {
    671     return QualType::isConstant(*this, Ctx);
    672   }
    673 
    674   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    675   bool isPODType(ASTContext &Context) const;
    676 
    677   /// isCXX98PODType() - Return true if this is a POD type according to the
    678   /// rules of the C++98 standard, regardless of the current compilation's
    679   /// language.
    680   bool isCXX98PODType(ASTContext &Context) const;
    681 
    682   /// isCXX11PODType() - Return true if this is a POD type according to the
    683   /// more relaxed rules of the C++11 standard, regardless of the current
    684   /// compilation's language.
    685   /// (C++0x [basic.types]p9)
    686   bool isCXX11PODType(ASTContext &Context) const;
    687 
    688   /// isTrivialType - Return true if this is a trivial type
    689   /// (C++0x [basic.types]p9)
    690   bool isTrivialType(ASTContext &Context) const;
    691 
    692   /// isTriviallyCopyableType - Return true if this is a trivially
    693   /// copyable type (C++0x [basic.types]p9)
    694   bool isTriviallyCopyableType(ASTContext &Context) const;
    695 
    696   // Don't promise in the API that anything besides 'const' can be
    697   // easily added.
    698 
    699   /// addConst - add the specified type qualifier to this QualType.
    700   void addConst() {
    701     addFastQualifiers(Qualifiers::Const);
    702   }
    703   QualType withConst() const {
    704     return withFastQualifiers(Qualifiers::Const);
    705   }
    706 
    707   /// addVolatile - add the specified type qualifier to this QualType.
    708   void addVolatile() {
    709     addFastQualifiers(Qualifiers::Volatile);
    710   }
    711   QualType withVolatile() const {
    712     return withFastQualifiers(Qualifiers::Volatile);
    713   }
    714 
    715   /// Add the restrict qualifier to this QualType.
    716   void addRestrict() {
    717     addFastQualifiers(Qualifiers::Restrict);
    718   }
    719   QualType withRestrict() const {
    720     return withFastQualifiers(Qualifiers::Restrict);
    721   }
    722 
    723   QualType withCVRQualifiers(unsigned CVR) const {
    724     return withFastQualifiers(CVR);
    725   }
    726 
    727   void addFastQualifiers(unsigned TQs) {
    728     assert(!(TQs & ~Qualifiers::FastMask)
    729            && "non-fast qualifier bits set in mask!");
    730     Value.setInt(Value.getInt() | TQs);
    731   }
    732 
    733   void removeLocalConst();
    734   void removeLocalVolatile();
    735   void removeLocalRestrict();
    736   void removeLocalCVRQualifiers(unsigned Mask);
    737 
    738   void removeLocalFastQualifiers() { Value.setInt(0); }
    739   void removeLocalFastQualifiers(unsigned Mask) {
    740     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    741     Value.setInt(Value.getInt() & ~Mask);
    742   }
    743 
    744   // Creates a type with the given qualifiers in addition to any
    745   // qualifiers already on this type.
    746   QualType withFastQualifiers(unsigned TQs) const {
    747     QualType T = *this;
    748     T.addFastQualifiers(TQs);
    749     return T;
    750   }
    751 
    752   // Creates a type with exactly the given fast qualifiers, removing
    753   // any existing fast qualifiers.
    754   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    755     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    756   }
    757 
    758   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    759   QualType withoutLocalFastQualifiers() const {
    760     QualType T = *this;
    761     T.removeLocalFastQualifiers();
    762     return T;
    763   }
    764 
    765   QualType getCanonicalType() const;
    766 
    767   /// \brief Return this type with all of the instance-specific qualifiers
    768   /// removed, but without removing any qualifiers that may have been applied
    769   /// through typedefs.
    770   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    771 
    772   /// \brief Retrieve the unqualified variant of the given type,
    773   /// removing as little sugar as possible.
    774   ///
    775   /// This routine looks through various kinds of sugar to find the
    776   /// least-desugared type that is unqualified. For example, given:
    777   ///
    778   /// \code
    779   /// typedef int Integer;
    780   /// typedef const Integer CInteger;
    781   /// typedef CInteger DifferenceType;
    782   /// \endcode
    783   ///
    784   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    785   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    786   ///
    787   /// The resulting type might still be qualified if it's sugar for an array
    788   /// type.  To strip qualifiers even from within a sugared array type, use
    789   /// ASTContext::getUnqualifiedArrayType.
    790   inline QualType getUnqualifiedType() const;
    791 
    792   /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
    793   /// given type, removing as little sugar as possible.
    794   ///
    795   /// Like getUnqualifiedType(), but also returns the set of
    796   /// qualifiers that were built up.
    797   ///
    798   /// The resulting type might still be qualified if it's sugar for an array
    799   /// type.  To strip qualifiers even from within a sugared array type, use
    800   /// ASTContext::getUnqualifiedArrayType.
    801   inline SplitQualType getSplitUnqualifiedType() const;
    802 
    803   /// \brief Determine whether this type is more qualified than the other
    804   /// given type, requiring exact equality for non-CVR qualifiers.
    805   bool isMoreQualifiedThan(QualType Other) const;
    806 
    807   /// \brief Determine whether this type is at least as qualified as the other
    808   /// given type, requiring exact equality for non-CVR qualifiers.
    809   bool isAtLeastAsQualifiedAs(QualType Other) const;
    810 
    811   QualType getNonReferenceType() const;
    812 
    813   /// \brief Determine the type of a (typically non-lvalue) expression with the
    814   /// specified result type.
    815   ///
    816   /// This routine should be used for expressions for which the return type is
    817   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    818   /// an lvalue. It removes a top-level reference (since there are no
    819   /// expressions of reference type) and deletes top-level cvr-qualifiers
    820   /// from non-class types (in C++) or all types (in C).
    821   QualType getNonLValueExprType(ASTContext &Context) const;
    822 
    823   /// getDesugaredType - Return the specified type with any "sugar" removed from
    824   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    825   /// the type is already concrete, it returns it unmodified.  This is similar
    826   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    827   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    828   /// concrete.
    829   ///
    830   /// Qualifiers are left in place.
    831   QualType getDesugaredType(const ASTContext &Context) const {
    832     return getDesugaredType(*this, Context);
    833   }
    834 
    835   SplitQualType getSplitDesugaredType() const {
    836     return getSplitDesugaredType(*this);
    837   }
    838 
    839   /// \brief Return the specified type with one level of "sugar" removed from
    840   /// the type.
    841   ///
    842   /// This routine takes off the first typedef, typeof, etc. If the outer level
    843   /// of the type is already concrete, it returns it unmodified.
    844   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    845     return getSingleStepDesugaredTypeImpl(*this, Context);
    846   }
    847 
    848   /// IgnoreParens - Returns the specified type after dropping any
    849   /// outer-level parentheses.
    850   QualType IgnoreParens() const {
    851     if (isa<ParenType>(*this))
    852       return QualType::IgnoreParens(*this);
    853     return *this;
    854   }
    855 
    856   /// operator==/!= - Indicate whether the specified types and qualifiers are
    857   /// identical.
    858   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    859     return LHS.Value == RHS.Value;
    860   }
    861   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    862     return LHS.Value != RHS.Value;
    863   }
    864   std::string getAsString() const {
    865     return getAsString(split());
    866   }
    867   static std::string getAsString(SplitQualType split) {
    868     return getAsString(split.Ty, split.Quals);
    869   }
    870   static std::string getAsString(const Type *ty, Qualifiers qs);
    871 
    872   std::string getAsString(const PrintingPolicy &Policy) const;
    873 
    874   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    875              const Twine &PlaceHolder = Twine()) const {
    876     print(split(), OS, Policy, PlaceHolder);
    877   }
    878   static void print(SplitQualType split, raw_ostream &OS,
    879                     const PrintingPolicy &policy, const Twine &PlaceHolder) {
    880     return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
    881   }
    882   static void print(const Type *ty, Qualifiers qs,
    883                     raw_ostream &OS, const PrintingPolicy &policy,
    884                     const Twine &PlaceHolder);
    885 
    886   void getAsStringInternal(std::string &Str,
    887                            const PrintingPolicy &Policy) const {
    888     return getAsStringInternal(split(), Str, Policy);
    889   }
    890   static void getAsStringInternal(SplitQualType split, std::string &out,
    891                                   const PrintingPolicy &policy) {
    892     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    893   }
    894   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    895                                   std::string &out,
    896                                   const PrintingPolicy &policy);
    897 
    898   class StreamedQualTypeHelper {
    899     const QualType &T;
    900     const PrintingPolicy &Policy;
    901     const Twine &PlaceHolder;
    902   public:
    903     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
    904                            const Twine &PlaceHolder)
    905       : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
    906 
    907     friend raw_ostream &operator<<(raw_ostream &OS,
    908                                    const StreamedQualTypeHelper &SQT) {
    909       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
    910       return OS;
    911     }
    912   };
    913 
    914   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
    915                                 const Twine &PlaceHolder = Twine()) const {
    916     return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
    917   }
    918 
    919   void dump(const char *s) const;
    920   void dump() const;
    921 
    922   void Profile(llvm::FoldingSetNodeID &ID) const {
    923     ID.AddPointer(getAsOpaquePtr());
    924   }
    925 
    926   /// getAddressSpace - Return the address space of this type.
    927   inline unsigned getAddressSpace() const;
    928 
    929   /// getObjCGCAttr - Returns gc attribute of this type.
    930   inline Qualifiers::GC getObjCGCAttr() const;
    931 
    932   /// isObjCGCWeak true when Type is objc's weak.
    933   bool isObjCGCWeak() const {
    934     return getObjCGCAttr() == Qualifiers::Weak;
    935   }
    936 
    937   /// isObjCGCStrong true when Type is objc's strong.
    938   bool isObjCGCStrong() const {
    939     return getObjCGCAttr() == Qualifiers::Strong;
    940   }
    941 
    942   /// getObjCLifetime - Returns lifetime attribute of this type.
    943   Qualifiers::ObjCLifetime getObjCLifetime() const {
    944     return getQualifiers().getObjCLifetime();
    945   }
    946 
    947   bool hasNonTrivialObjCLifetime() const {
    948     return getQualifiers().hasNonTrivialObjCLifetime();
    949   }
    950 
    951   bool hasStrongOrWeakObjCLifetime() const {
    952     return getQualifiers().hasStrongOrWeakObjCLifetime();
    953   }
    954 
    955   enum DestructionKind {
    956     DK_none,
    957     DK_cxx_destructor,
    958     DK_objc_strong_lifetime,
    959     DK_objc_weak_lifetime
    960   };
    961 
    962   /// isDestructedType - nonzero if objects of this type require
    963   /// non-trivial work to clean up after.  Non-zero because it's
    964   /// conceivable that qualifiers (objc_gc(weak)?) could make
    965   /// something require destruction.
    966   DestructionKind isDestructedType() const {
    967     return isDestructedTypeImpl(*this);
    968   }
    969 
    970   /// \brief Determine whether expressions of the given type are forbidden
    971   /// from being lvalues in C.
    972   ///
    973   /// The expression types that are forbidden to be lvalues are:
    974   ///   - 'void', but not qualified void
    975   ///   - function types
    976   ///
    977   /// The exact rule here is C99 6.3.2.1:
    978   ///   An lvalue is an expression with an object type or an incomplete
    979   ///   type other than void.
    980   bool isCForbiddenLValueType() const;
    981 
    982 private:
    983   // These methods are implemented in a separate translation unit;
    984   // "static"-ize them to avoid creating temporary QualTypes in the
    985   // caller.
    986   static bool isConstant(QualType T, ASTContext& Ctx);
    987   static QualType getDesugaredType(QualType T, const ASTContext &Context);
    988   static SplitQualType getSplitDesugaredType(QualType T);
    989   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
    990   static QualType getSingleStepDesugaredTypeImpl(QualType type,
    991                                                  const ASTContext &C);
    992   static QualType IgnoreParens(QualType T);
    993   static DestructionKind isDestructedTypeImpl(QualType type);
    994 };
    995 
    996 } // end clang.
    997 
    998 namespace llvm {
    999 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
   1000 /// to a specific Type class.
   1001 template<> struct simplify_type< ::clang::QualType> {
   1002   typedef const ::clang::Type *SimpleType;
   1003   static SimpleType getSimplifiedValue(::clang::QualType Val) {
   1004     return Val.getTypePtr();
   1005   }
   1006 };
   1007 
   1008 // Teach SmallPtrSet that QualType is "basically a pointer".
   1009 template<>
   1010 class PointerLikeTypeTraits<clang::QualType> {
   1011 public:
   1012   static inline void *getAsVoidPointer(clang::QualType P) {
   1013     return P.getAsOpaquePtr();
   1014   }
   1015   static inline clang::QualType getFromVoidPointer(void *P) {
   1016     return clang::QualType::getFromOpaquePtr(P);
   1017   }
   1018   // Various qualifiers go in low bits.
   1019   enum { NumLowBitsAvailable = 0 };
   1020 };
   1021 
   1022 } // end namespace llvm
   1023 
   1024 namespace clang {
   1025 
   1026 /// \brief Base class that is common to both the \c ExtQuals and \c Type
   1027 /// classes, which allows \c QualType to access the common fields between the
   1028 /// two.
   1029 ///
   1030 class ExtQualsTypeCommonBase {
   1031   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
   1032     : BaseType(baseType), CanonicalType(canon) {}
   1033 
   1034   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
   1035   /// a self-referential pointer (for \c Type).
   1036   ///
   1037   /// This pointer allows an efficient mapping from a QualType to its
   1038   /// underlying type pointer.
   1039   const Type *const BaseType;
   1040 
   1041   /// \brief The canonical type of this type.  A QualType.
   1042   QualType CanonicalType;
   1043 
   1044   friend class QualType;
   1045   friend class Type;
   1046   friend class ExtQuals;
   1047 };
   1048 
   1049 /// ExtQuals - We can encode up to four bits in the low bits of a
   1050 /// type pointer, but there are many more type qualifiers that we want
   1051 /// to be able to apply to an arbitrary type.  Therefore we have this
   1052 /// struct, intended to be heap-allocated and used by QualType to
   1053 /// store qualifiers.
   1054 ///
   1055 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
   1056 /// in three low bits on the QualType pointer; a fourth bit records whether
   1057 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
   1058 /// Objective-C GC attributes) are much more rare.
   1059 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
   1060   // NOTE: changing the fast qualifiers should be straightforward as
   1061   // long as you don't make 'const' non-fast.
   1062   // 1. Qualifiers:
   1063   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
   1064   //       Fast qualifiers must occupy the low-order bits.
   1065   //    b) Update Qualifiers::FastWidth and FastMask.
   1066   // 2. QualType:
   1067   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
   1068   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1069   //       this header.
   1070   // 3. ASTContext:
   1071   //    a) Update get{Volatile,Restrict}Type.
   1072 
   1073   /// Quals - the immutable set of qualifiers applied by this
   1074   /// node;  always contains extended qualifiers.
   1075   Qualifiers Quals;
   1076 
   1077   ExtQuals *this_() { return this; }
   1078 
   1079 public:
   1080   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1081     : ExtQualsTypeCommonBase(baseType,
   1082                              canon.isNull() ? QualType(this_(), 0) : canon),
   1083       Quals(quals)
   1084   {
   1085     assert(Quals.hasNonFastQualifiers()
   1086            && "ExtQuals created with no fast qualifiers");
   1087     assert(!Quals.hasFastQualifiers()
   1088            && "ExtQuals created with fast qualifiers");
   1089   }
   1090 
   1091   Qualifiers getQualifiers() const { return Quals; }
   1092 
   1093   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1094   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1095 
   1096   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1097   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1098     return Quals.getObjCLifetime();
   1099   }
   1100 
   1101   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1102   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
   1103 
   1104   const Type *getBaseType() const { return BaseType; }
   1105 
   1106 public:
   1107   void Profile(llvm::FoldingSetNodeID &ID) const {
   1108     Profile(ID, getBaseType(), Quals);
   1109   }
   1110   static void Profile(llvm::FoldingSetNodeID &ID,
   1111                       const Type *BaseType,
   1112                       Qualifiers Quals) {
   1113     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1114     ID.AddPointer(BaseType);
   1115     Quals.Profile(ID);
   1116   }
   1117 };
   1118 
   1119 /// \brief The kind of C++0x ref-qualifier associated with a function type,
   1120 /// which determines whether a member function's "this" object can be an
   1121 /// lvalue, rvalue, or neither.
   1122 enum RefQualifierKind {
   1123   /// \brief No ref-qualifier was provided.
   1124   RQ_None = 0,
   1125   /// \brief An lvalue ref-qualifier was provided (\c &).
   1126   RQ_LValue,
   1127   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1128   RQ_RValue
   1129 };
   1130 
   1131 /// Type - This is the base class of the type hierarchy.  A central concept
   1132 /// with types is that each type always has a canonical type.  A canonical type
   1133 /// is the type with any typedef names stripped out of it or the types it
   1134 /// references.  For example, consider:
   1135 ///
   1136 ///  typedef int  foo;
   1137 ///  typedef foo* bar;
   1138 ///    'int *'    'foo *'    'bar'
   1139 ///
   1140 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1141 /// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
   1142 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1143 /// there is a PointerType that represents 'int*', which, like 'int', is
   1144 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1145 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1146 /// is also 'int*'.
   1147 ///
   1148 /// Non-canonical types are useful for emitting diagnostics, without losing
   1149 /// information about typedefs being used.  Canonical types are useful for type
   1150 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1151 /// about whether something has a particular form (e.g. is a function type),
   1152 /// because they implicitly, recursively, strip all typedefs out of a type.
   1153 ///
   1154 /// Types, once created, are immutable.
   1155 ///
   1156 class Type : public ExtQualsTypeCommonBase {
   1157 public:
   1158   enum TypeClass {
   1159 #define TYPE(Class, Base) Class,
   1160 #define LAST_TYPE(Class) TypeLast = Class,
   1161 #define ABSTRACT_TYPE(Class, Base)
   1162 #include "clang/AST/TypeNodes.def"
   1163     TagFirst = Record, TagLast = Enum
   1164   };
   1165 
   1166 private:
   1167   Type(const Type &) LLVM_DELETED_FUNCTION;
   1168   void operator=(const Type &) LLVM_DELETED_FUNCTION;
   1169 
   1170   /// Bitfields required by the Type class.
   1171   class TypeBitfields {
   1172     friend class Type;
   1173     template <class T> friend class TypePropertyCache;
   1174 
   1175     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1176     unsigned TC : 8;
   1177 
   1178     /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
   1179     unsigned Dependent : 1;
   1180 
   1181     /// \brief Whether this type somehow involves a template parameter, even
   1182     /// if the resolution of the type does not depend on a template parameter.
   1183     unsigned InstantiationDependent : 1;
   1184 
   1185     /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1186     unsigned VariablyModified : 1;
   1187 
   1188     /// \brief Whether this type contains an unexpanded parameter pack
   1189     /// (for C++0x variadic templates).
   1190     unsigned ContainsUnexpandedParameterPack : 1;
   1191 
   1192     /// \brief True if the cache (i.e. the bitfields here starting with
   1193     /// 'Cache') is valid.
   1194     mutable unsigned CacheValid : 1;
   1195 
   1196     /// \brief Linkage of this type.
   1197     mutable unsigned CachedLinkage : 3;
   1198 
   1199     /// \brief Whether this type involves and local or unnamed types.
   1200     mutable unsigned CachedLocalOrUnnamed : 1;
   1201 
   1202     /// \brief FromAST - Whether this type comes from an AST file.
   1203     mutable unsigned FromAST : 1;
   1204 
   1205     bool isCacheValid() const {
   1206       return CacheValid;
   1207     }
   1208     Linkage getLinkage() const {
   1209       assert(isCacheValid() && "getting linkage from invalid cache");
   1210       return static_cast<Linkage>(CachedLinkage);
   1211     }
   1212     bool hasLocalOrUnnamedType() const {
   1213       assert(isCacheValid() && "getting linkage from invalid cache");
   1214       return CachedLocalOrUnnamed;
   1215     }
   1216   };
   1217   enum { NumTypeBits = 19 };
   1218 
   1219 protected:
   1220   // These classes allow subclasses to somewhat cleanly pack bitfields
   1221   // into Type.
   1222 
   1223   class ArrayTypeBitfields {
   1224     friend class ArrayType;
   1225 
   1226     unsigned : NumTypeBits;
   1227 
   1228     /// IndexTypeQuals - CVR qualifiers from declarations like
   1229     /// 'int X[static restrict 4]'. For function parameters only.
   1230     unsigned IndexTypeQuals : 3;
   1231 
   1232     /// SizeModifier - storage class qualifiers from declarations like
   1233     /// 'int X[static restrict 4]'. For function parameters only.
   1234     /// Actually an ArrayType::ArraySizeModifier.
   1235     unsigned SizeModifier : 3;
   1236   };
   1237 
   1238   class BuiltinTypeBitfields {
   1239     friend class BuiltinType;
   1240 
   1241     unsigned : NumTypeBits;
   1242 
   1243     /// The kind (BuiltinType::Kind) of builtin type this is.
   1244     unsigned Kind : 8;
   1245   };
   1246 
   1247   class FunctionTypeBitfields {
   1248     friend class FunctionType;
   1249 
   1250     unsigned : NumTypeBits;
   1251 
   1252     /// Extra information which affects how the function is called, like
   1253     /// regparm and the calling convention.
   1254     unsigned ExtInfo : 9;
   1255 
   1256     /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
   1257     /// other bitfields.
   1258     /// The qualifiers are part of FunctionProtoType because...
   1259     ///
   1260     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1261     /// cv-qualifier-seq, [...], are part of the function type.
   1262     unsigned TypeQuals : 3;
   1263   };
   1264 
   1265   class ObjCObjectTypeBitfields {
   1266     friend class ObjCObjectType;
   1267 
   1268     unsigned : NumTypeBits;
   1269 
   1270     /// NumProtocols - The number of protocols stored directly on this
   1271     /// object type.
   1272     unsigned NumProtocols : 32 - NumTypeBits;
   1273   };
   1274 
   1275   class ReferenceTypeBitfields {
   1276     friend class ReferenceType;
   1277 
   1278     unsigned : NumTypeBits;
   1279 
   1280     /// True if the type was originally spelled with an lvalue sigil.
   1281     /// This is never true of rvalue references but can also be false
   1282     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1283     /// as follows:
   1284     ///
   1285     ///   typedef int &ref;    // lvalue, spelled lvalue
   1286     ///   typedef int &&rvref; // rvalue
   1287     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1288     ///   ref &&a;             // lvalue, inner ref
   1289     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1290     ///   rvref &&a;           // rvalue, inner ref
   1291     unsigned SpelledAsLValue : 1;
   1292 
   1293     /// True if the inner type is a reference type.  This only happens
   1294     /// in non-canonical forms.
   1295     unsigned InnerRef : 1;
   1296   };
   1297 
   1298   class TypeWithKeywordBitfields {
   1299     friend class TypeWithKeyword;
   1300 
   1301     unsigned : NumTypeBits;
   1302 
   1303     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1304     unsigned Keyword : 8;
   1305   };
   1306 
   1307   class VectorTypeBitfields {
   1308     friend class VectorType;
   1309 
   1310     unsigned : NumTypeBits;
   1311 
   1312     /// VecKind - The kind of vector, either a generic vector type or some
   1313     /// target-specific vector type such as for AltiVec or Neon.
   1314     unsigned VecKind : 3;
   1315 
   1316     /// NumElements - The number of elements in the vector.
   1317     unsigned NumElements : 29 - NumTypeBits;
   1318 
   1319     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
   1320   };
   1321 
   1322   class AttributedTypeBitfields {
   1323     friend class AttributedType;
   1324 
   1325     unsigned : NumTypeBits;
   1326 
   1327     /// AttrKind - an AttributedType::Kind
   1328     unsigned AttrKind : 32 - NumTypeBits;
   1329   };
   1330 
   1331   class AutoTypeBitfields {
   1332     friend class AutoType;
   1333 
   1334     unsigned : NumTypeBits;
   1335 
   1336     /// Was this placeholder type spelled as 'decltype(auto)'?
   1337     unsigned IsDecltypeAuto : 1;
   1338   };
   1339 
   1340   union {
   1341     TypeBitfields TypeBits;
   1342     ArrayTypeBitfields ArrayTypeBits;
   1343     AttributedTypeBitfields AttributedTypeBits;
   1344     AutoTypeBitfields AutoTypeBits;
   1345     BuiltinTypeBitfields BuiltinTypeBits;
   1346     FunctionTypeBitfields FunctionTypeBits;
   1347     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1348     ReferenceTypeBitfields ReferenceTypeBits;
   1349     TypeWithKeywordBitfields TypeWithKeywordBits;
   1350     VectorTypeBitfields VectorTypeBits;
   1351   };
   1352 
   1353 private:
   1354   /// \brief Set whether this type comes from an AST file.
   1355   void setFromAST(bool V = true) const {
   1356     TypeBits.FromAST = V;
   1357   }
   1358 
   1359   template <class T> friend class TypePropertyCache;
   1360 
   1361 protected:
   1362   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1363   Type *this_() { return this; }
   1364   Type(TypeClass tc, QualType canon, bool Dependent,
   1365        bool InstantiationDependent, bool VariablyModified,
   1366        bool ContainsUnexpandedParameterPack)
   1367     : ExtQualsTypeCommonBase(this,
   1368                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1369     TypeBits.TC = tc;
   1370     TypeBits.Dependent = Dependent;
   1371     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1372     TypeBits.VariablyModified = VariablyModified;
   1373     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1374     TypeBits.CacheValid = false;
   1375     TypeBits.CachedLocalOrUnnamed = false;
   1376     TypeBits.CachedLinkage = NoLinkage;
   1377     TypeBits.FromAST = false;
   1378   }
   1379   friend class ASTContext;
   1380 
   1381   void setDependent(bool D = true) {
   1382     TypeBits.Dependent = D;
   1383     if (D)
   1384       TypeBits.InstantiationDependent = true;
   1385   }
   1386   void setInstantiationDependent(bool D = true) {
   1387     TypeBits.InstantiationDependent = D; }
   1388   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1389   }
   1390   void setContainsUnexpandedParameterPack(bool PP = true) {
   1391     TypeBits.ContainsUnexpandedParameterPack = PP;
   1392   }
   1393 
   1394 public:
   1395   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1396 
   1397   /// \brief Whether this type comes from an AST file.
   1398   bool isFromAST() const { return TypeBits.FromAST; }
   1399 
   1400   /// \brief Whether this type is or contains an unexpanded parameter
   1401   /// pack, used to support C++0x variadic templates.
   1402   ///
   1403   /// A type that contains a parameter pack shall be expanded by the
   1404   /// ellipsis operator at some point. For example, the typedef in the
   1405   /// following example contains an unexpanded parameter pack 'T':
   1406   ///
   1407   /// \code
   1408   /// template<typename ...T>
   1409   /// struct X {
   1410   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1411   /// };
   1412   /// \endcode
   1413   ///
   1414   /// Note that this routine does not specify which
   1415   bool containsUnexpandedParameterPack() const {
   1416     return TypeBits.ContainsUnexpandedParameterPack;
   1417   }
   1418 
   1419   /// Determines if this type would be canonical if it had no further
   1420   /// qualification.
   1421   bool isCanonicalUnqualified() const {
   1422     return CanonicalType == QualType(this, 0);
   1423   }
   1424 
   1425   /// Pull a single level of sugar off of this locally-unqualified type.
   1426   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1427   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1428   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1429 
   1430   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1431   /// object types, function types, and incomplete types.
   1432 
   1433   /// isIncompleteType - Return true if this is an incomplete type.
   1434   /// A type that can describe objects, but which lacks information needed to
   1435   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1436   /// routine will need to determine if the size is actually required.
   1437   ///
   1438   /// \brief Def If non-NULL, and the type refers to some kind of declaration
   1439   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1440   /// class), will be set to the declaration.
   1441   bool isIncompleteType(NamedDecl **Def = 0) const;
   1442 
   1443   /// isIncompleteOrObjectType - Return true if this is an incomplete or object
   1444   /// type, in other words, not a function type.
   1445   bool isIncompleteOrObjectType() const {
   1446     return !isFunctionType();
   1447   }
   1448 
   1449   /// \brief Determine whether this type is an object type.
   1450   bool isObjectType() const {
   1451     // C++ [basic.types]p8:
   1452     //   An object type is a (possibly cv-qualified) type that is not a
   1453     //   function type, not a reference type, and not a void type.
   1454     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1455   }
   1456 
   1457   /// isLiteralType - Return true if this is a literal type
   1458   /// (C++11 [basic.types]p10)
   1459   bool isLiteralType(ASTContext &Ctx) const;
   1460 
   1461   /// \brief Test if this type is a standard-layout type.
   1462   /// (C++0x [basic.type]p9)
   1463   bool isStandardLayoutType() const;
   1464 
   1465   /// Helper methods to distinguish type categories. All type predicates
   1466   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1467 
   1468   /// isBuiltinType - returns true if the type is a builtin type.
   1469   bool isBuiltinType() const;
   1470 
   1471   /// isSpecificBuiltinType - Test for a particular builtin type.
   1472   bool isSpecificBuiltinType(unsigned K) const;
   1473 
   1474   /// isPlaceholderType - Test for a type which does not represent an
   1475   /// actual type-system type but is instead used as a placeholder for
   1476   /// various convenient purposes within Clang.  All such types are
   1477   /// BuiltinTypes.
   1478   bool isPlaceholderType() const;
   1479   const BuiltinType *getAsPlaceholderType() const;
   1480 
   1481   /// isSpecificPlaceholderType - Test for a specific placeholder type.
   1482   bool isSpecificPlaceholderType(unsigned K) const;
   1483 
   1484   /// isNonOverloadPlaceholderType - Test for a placeholder type
   1485   /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
   1486   bool isNonOverloadPlaceholderType() const;
   1487 
   1488   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1489   /// isComplexIntegerType() can be used to test for complex integers.
   1490   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1491   bool isEnumeralType() const;
   1492   bool isBooleanType() const;
   1493   bool isCharType() const;
   1494   bool isWideCharType() const;
   1495   bool isChar16Type() const;
   1496   bool isChar32Type() const;
   1497   bool isAnyCharacterType() const;
   1498   bool isIntegralType(ASTContext &Ctx) const;
   1499 
   1500   /// \brief Determine whether this type is an integral or enumeration type.
   1501   bool isIntegralOrEnumerationType() const;
   1502   /// \brief Determine whether this type is an integral or unscoped enumeration
   1503   /// type.
   1504   bool isIntegralOrUnscopedEnumerationType() const;
   1505 
   1506   /// Floating point categories.
   1507   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1508   /// isComplexType() does *not* include complex integers (a GCC extension).
   1509   /// isComplexIntegerType() can be used to test for complex integers.
   1510   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1511   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1512   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1513   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1514   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1515   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1516   bool isVoidType() const;         // C99 6.2.5p19
   1517   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1518   bool isAggregateType() const;
   1519   bool isFundamentalType() const;
   1520   bool isCompoundType() const;
   1521 
   1522   // Type Predicates: Check to see if this type is structurally the specified
   1523   // type, ignoring typedefs and qualifiers.
   1524   bool isFunctionType() const;
   1525   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1526   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1527   bool isPointerType() const;
   1528   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1529   bool isBlockPointerType() const;
   1530   bool isVoidPointerType() const;
   1531   bool isReferenceType() const;
   1532   bool isLValueReferenceType() const;
   1533   bool isRValueReferenceType() const;
   1534   bool isFunctionPointerType() const;
   1535   bool isMemberPointerType() const;
   1536   bool isMemberFunctionPointerType() const;
   1537   bool isMemberDataPointerType() const;
   1538   bool isArrayType() const;
   1539   bool isConstantArrayType() const;
   1540   bool isIncompleteArrayType() const;
   1541   bool isVariableArrayType() const;
   1542   bool isDependentSizedArrayType() const;
   1543   bool isRecordType() const;
   1544   bool isClassType() const;
   1545   bool isStructureType() const;
   1546   bool isInterfaceType() const;
   1547   bool isStructureOrClassType() const;
   1548   bool isUnionType() const;
   1549   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1550   bool isVectorType() const;                    // GCC vector type.
   1551   bool isExtVectorType() const;                 // Extended vector type.
   1552   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1553   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1554   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1555   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1556   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1557   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1558   // for the common case.
   1559   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1560   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1561   bool isObjCQualifiedIdType() const;           // id<foo>
   1562   bool isObjCQualifiedClassType() const;        // Class<foo>
   1563   bool isObjCObjectOrInterfaceType() const;
   1564   bool isObjCIdType() const;                    // id
   1565   bool isObjCClassType() const;                 // Class
   1566   bool isObjCSelType() const;                 // Class
   1567   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1568   bool isObjCARCBridgableType() const;
   1569   bool isCARCBridgableType() const;
   1570   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1571   bool isNullPtrType() const;                   // C++0x nullptr_t
   1572   bool isAtomicType() const;                    // C11 _Atomic()
   1573 
   1574   bool isImage1dT() const;                      // OpenCL image1d_t
   1575   bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
   1576   bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
   1577   bool isImage2dT() const;                      // OpenCL image2d_t
   1578   bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
   1579   bool isImage3dT() const;                      // OpenCL image3d_t
   1580 
   1581   bool isImageType() const;                     // Any OpenCL image type
   1582 
   1583   bool isSamplerT() const;                      // OpenCL sampler_t
   1584   bool isEventT() const;                        // OpenCL event_t
   1585 
   1586   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
   1587 
   1588   /// Determines if this type, which must satisfy
   1589   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1590   /// than implicitly __strong.
   1591   bool isObjCARCImplicitlyUnretainedType() const;
   1592 
   1593   /// Return the implicit lifetime for this type, which must not be dependent.
   1594   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1595 
   1596   enum ScalarTypeKind {
   1597     STK_CPointer,
   1598     STK_BlockPointer,
   1599     STK_ObjCObjectPointer,
   1600     STK_MemberPointer,
   1601     STK_Bool,
   1602     STK_Integral,
   1603     STK_Floating,
   1604     STK_IntegralComplex,
   1605     STK_FloatingComplex
   1606   };
   1607   /// getScalarTypeKind - Given that this is a scalar type, classify it.
   1608   ScalarTypeKind getScalarTypeKind() const;
   1609 
   1610   /// isDependentType - Whether this type is a dependent type, meaning
   1611   /// that its definition somehow depends on a template parameter
   1612   /// (C++ [temp.dep.type]).
   1613   bool isDependentType() const { return TypeBits.Dependent; }
   1614 
   1615   /// \brief Determine whether this type is an instantiation-dependent type,
   1616   /// meaning that the type involves a template parameter (even if the
   1617   /// definition does not actually depend on the type substituted for that
   1618   /// template parameter).
   1619   bool isInstantiationDependentType() const {
   1620     return TypeBits.InstantiationDependent;
   1621   }
   1622 
   1623   /// \brief Determine whether this type is an undeduced type, meaning that
   1624   /// it somehow involves a C++11 'auto' type which has not yet been deduced.
   1625   bool isUndeducedType() const;
   1626 
   1627   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1628   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1629 
   1630   /// \brief Whether this type involves a variable-length array type
   1631   /// with a definite size.
   1632   bool hasSizedVLAType() const;
   1633 
   1634   /// \brief Whether this type is or contains a local or unnamed type.
   1635   bool hasUnnamedOrLocalType() const;
   1636 
   1637   bool isOverloadableType() const;
   1638 
   1639   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1640   bool isElaboratedTypeSpecifier() const;
   1641 
   1642   bool canDecayToPointerType() const;
   1643 
   1644   /// hasPointerRepresentation - Whether this type is represented
   1645   /// natively as a pointer; this includes pointers, references, block
   1646   /// pointers, and Objective-C interface, qualified id, and qualified
   1647   /// interface types, as well as nullptr_t.
   1648   bool hasPointerRepresentation() const;
   1649 
   1650   /// hasObjCPointerRepresentation - Whether this type can represent
   1651   /// an objective pointer type for the purpose of GC'ability
   1652   bool hasObjCPointerRepresentation() const;
   1653 
   1654   /// \brief Determine whether this type has an integer representation
   1655   /// of some sort, e.g., it is an integer type or a vector.
   1656   bool hasIntegerRepresentation() const;
   1657 
   1658   /// \brief Determine whether this type has an signed integer representation
   1659   /// of some sort, e.g., it is an signed integer type or a vector.
   1660   bool hasSignedIntegerRepresentation() const;
   1661 
   1662   /// \brief Determine whether this type has an unsigned integer representation
   1663   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1664   bool hasUnsignedIntegerRepresentation() const;
   1665 
   1666   /// \brief Determine whether this type has a floating-point representation
   1667   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1668   bool hasFloatingRepresentation() const;
   1669 
   1670   // Type Checking Functions: Check to see if this type is structurally the
   1671   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1672   // the best type we can.
   1673   const RecordType *getAsStructureType() const;
   1674   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1675   const RecordType *getAsUnionType() const;
   1676   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1677   // The following is a convenience method that returns an ObjCObjectPointerType
   1678   // for object declared using an interface.
   1679   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1680   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1681   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1682   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1683 
   1684   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1685   /// because the type is a RecordType or because it is the injected-class-name
   1686   /// type of a class template or class template partial specialization.
   1687   CXXRecordDecl *getAsCXXRecordDecl() const;
   1688 
   1689   /// If this is a pointer or reference to a RecordType, return the
   1690   /// CXXRecordDecl that that type refers to.
   1691   ///
   1692   /// If this is not a pointer or reference, or the type being pointed to does
   1693   /// not refer to a CXXRecordDecl, returns NULL.
   1694   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
   1695 
   1696   /// \brief Get the AutoType whose type will be deduced for a variable with
   1697   /// an initializer of this type. This looks through declarators like pointer
   1698   /// types, but not through decltype or typedefs.
   1699   AutoType *getContainedAutoType() const;
   1700 
   1701   /// Member-template getAs<specific type>'.  Look through sugar for
   1702   /// an instance of \<specific type>.   This scheme will eventually
   1703   /// replace the specific getAsXXXX methods above.
   1704   ///
   1705   /// There are some specializations of this member template listed
   1706   /// immediately following this class.
   1707   template <typename T> const T *getAs() const;
   1708 
   1709   /// A variant of getAs<> for array types which silently discards
   1710   /// qualifiers from the outermost type.
   1711   const ArrayType *getAsArrayTypeUnsafe() const;
   1712 
   1713   /// Member-template castAs<specific type>.  Look through sugar for
   1714   /// the underlying instance of \<specific type>.
   1715   ///
   1716   /// This method has the same relationship to getAs<T> as cast<T> has
   1717   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1718   /// have the intended type, and this method will never return null.
   1719   template <typename T> const T *castAs() const;
   1720 
   1721   /// A variant of castAs<> for array type which silently discards
   1722   /// qualifiers from the outermost type.
   1723   const ArrayType *castAsArrayTypeUnsafe() const;
   1724 
   1725   /// getBaseElementTypeUnsafe - Get the base element type of this
   1726   /// type, potentially discarding type qualifiers.  This method
   1727   /// should never be used when type qualifiers are meaningful.
   1728   const Type *getBaseElementTypeUnsafe() const;
   1729 
   1730   /// getArrayElementTypeNoTypeQual - If this is an array type, return the
   1731   /// element type of the array, potentially with type qualifiers missing.
   1732   /// This method should never be used when type qualifiers are meaningful.
   1733   const Type *getArrayElementTypeNoTypeQual() const;
   1734 
   1735   /// getPointeeType - If this is a pointer, ObjC object pointer, or block
   1736   /// pointer, this returns the respective pointee.
   1737   QualType getPointeeType() const;
   1738 
   1739   /// getUnqualifiedDesugaredType() - Return the specified type with
   1740   /// any "sugar" removed from the type, removing any typedefs,
   1741   /// typeofs, etc., as well as any qualifiers.
   1742   const Type *getUnqualifiedDesugaredType() const;
   1743 
   1744   /// More type predicates useful for type checking/promotion
   1745   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1746 
   1747   /// isSignedIntegerType - Return true if this is an integer type that is
   1748   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1749   /// or an enum decl which has a signed representation.
   1750   bool isSignedIntegerType() const;
   1751 
   1752   /// isUnsignedIntegerType - Return true if this is an integer type that is
   1753   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1754   /// or an enum decl which has an unsigned representation.
   1755   bool isUnsignedIntegerType() const;
   1756 
   1757   /// Determines whether this is an integer type that is signed or an
   1758   /// enumeration types whose underlying type is a signed integer type.
   1759   bool isSignedIntegerOrEnumerationType() const;
   1760 
   1761   /// Determines whether this is an integer type that is unsigned or an
   1762   /// enumeration types whose underlying type is a unsigned integer type.
   1763   bool isUnsignedIntegerOrEnumerationType() const;
   1764 
   1765   /// isConstantSizeType - Return true if this is not a variable sized type,
   1766   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1767   /// incomplete types.
   1768   bool isConstantSizeType() const;
   1769 
   1770   /// isSpecifierType - Returns true if this type can be represented by some
   1771   /// set of type specifiers.
   1772   bool isSpecifierType() const;
   1773 
   1774   /// \brief Determine the linkage of this type.
   1775   Linkage getLinkage() const;
   1776 
   1777   /// \brief Determine the visibility of this type.
   1778   Visibility getVisibility() const {
   1779     return getLinkageAndVisibility().getVisibility();
   1780   }
   1781 
   1782   /// \brief Return true if the visibility was explicitly set is the code.
   1783   bool isVisibilityExplicit() const {
   1784     return getLinkageAndVisibility().isVisibilityExplicit();
   1785   }
   1786 
   1787   /// \brief Determine the linkage and visibility of this type.
   1788   LinkageInfo getLinkageAndVisibility() const;
   1789 
   1790   /// \brief True if the computed linkage is valid. Used for consistency
   1791   /// checking. Should always return true.
   1792   bool isLinkageValid() const;
   1793 
   1794   const char *getTypeClassName() const;
   1795 
   1796   QualType getCanonicalTypeInternal() const {
   1797     return CanonicalType;
   1798   }
   1799   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   1800   LLVM_ATTRIBUTE_USED void dump() const;
   1801 
   1802   friend class ASTReader;
   1803   friend class ASTWriter;
   1804 };
   1805 
   1806 /// \brief This will check for a TypedefType by removing any existing sugar
   1807 /// until it reaches a TypedefType or a non-sugared type.
   1808 template <> const TypedefType *Type::getAs() const;
   1809 
   1810 /// \brief This will check for a TemplateSpecializationType by removing any
   1811 /// existing sugar until it reaches a TemplateSpecializationType or a
   1812 /// non-sugared type.
   1813 template <> const TemplateSpecializationType *Type::getAs() const;
   1814 
   1815 // We can do canonical leaf types faster, because we don't have to
   1816 // worry about preserving child type decoration.
   1817 #define TYPE(Class, Base)
   1818 #define LEAF_TYPE(Class) \
   1819 template <> inline const Class##Type *Type::getAs() const { \
   1820   return dyn_cast<Class##Type>(CanonicalType); \
   1821 } \
   1822 template <> inline const Class##Type *Type::castAs() const { \
   1823   return cast<Class##Type>(CanonicalType); \
   1824 }
   1825 #include "clang/AST/TypeNodes.def"
   1826 
   1827 
   1828 /// BuiltinType - This class is used for builtin types like 'int'.  Builtin
   1829 /// types are always canonical and have a literal name field.
   1830 class BuiltinType : public Type {
   1831 public:
   1832   enum Kind {
   1833 #define BUILTIN_TYPE(Id, SingletonId) Id,
   1834 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   1835 #include "clang/AST/BuiltinTypes.def"
   1836   };
   1837 
   1838 public:
   1839   BuiltinType(Kind K)
   1840     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   1841            /*InstantiationDependent=*/(K == Dependent),
   1842            /*VariablyModified=*/false,
   1843            /*Unexpanded paramter pack=*/false) {
   1844     BuiltinTypeBits.Kind = K;
   1845   }
   1846 
   1847   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   1848   StringRef getName(const PrintingPolicy &Policy) const;
   1849   const char *getNameAsCString(const PrintingPolicy &Policy) const {
   1850     // The StringRef is null-terminated.
   1851     StringRef str = getName(Policy);
   1852     assert(!str.empty() && str.data()[str.size()] == '\0');
   1853     return str.data();
   1854   }
   1855 
   1856   bool isSugared() const { return false; }
   1857   QualType desugar() const { return QualType(this, 0); }
   1858 
   1859   bool isInteger() const {
   1860     return getKind() >= Bool && getKind() <= Int128;
   1861   }
   1862 
   1863   bool isSignedInteger() const {
   1864     return getKind() >= Char_S && getKind() <= Int128;
   1865   }
   1866 
   1867   bool isUnsignedInteger() const {
   1868     return getKind() >= Bool && getKind() <= UInt128;
   1869   }
   1870 
   1871   bool isFloatingPoint() const {
   1872     return getKind() >= Half && getKind() <= LongDouble;
   1873   }
   1874 
   1875   /// Determines whether the given kind corresponds to a placeholder type.
   1876   static bool isPlaceholderTypeKind(Kind K) {
   1877     return K >= Overload;
   1878   }
   1879 
   1880   /// Determines whether this type is a placeholder type, i.e. a type
   1881   /// which cannot appear in arbitrary positions in a fully-formed
   1882   /// expression.
   1883   bool isPlaceholderType() const {
   1884     return isPlaceholderTypeKind(getKind());
   1885   }
   1886 
   1887   /// Determines whether this type is a placeholder type other than
   1888   /// Overload.  Most placeholder types require only syntactic
   1889   /// information about their context in order to be resolved (e.g.
   1890   /// whether it is a call expression), which means they can (and
   1891   /// should) be resolved in an earlier "phase" of analysis.
   1892   /// Overload expressions sometimes pick up further information
   1893   /// from their context, like whether the context expects a
   1894   /// specific function-pointer type, and so frequently need
   1895   /// special treatment.
   1896   bool isNonOverloadPlaceholderType() const {
   1897     return getKind() > Overload;
   1898   }
   1899 
   1900   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   1901 };
   1902 
   1903 /// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
   1904 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   1905 ///
   1906 class ComplexType : public Type, public llvm::FoldingSetNode {
   1907   QualType ElementType;
   1908   ComplexType(QualType Element, QualType CanonicalPtr) :
   1909     Type(Complex, CanonicalPtr, Element->isDependentType(),
   1910          Element->isInstantiationDependentType(),
   1911          Element->isVariablyModifiedType(),
   1912          Element->containsUnexpandedParameterPack()),
   1913     ElementType(Element) {
   1914   }
   1915   friend class ASTContext;  // ASTContext creates these.
   1916 
   1917 public:
   1918   QualType getElementType() const { return ElementType; }
   1919 
   1920   bool isSugared() const { return false; }
   1921   QualType desugar() const { return QualType(this, 0); }
   1922 
   1923   void Profile(llvm::FoldingSetNodeID &ID) {
   1924     Profile(ID, getElementType());
   1925   }
   1926   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   1927     ID.AddPointer(Element.getAsOpaquePtr());
   1928   }
   1929 
   1930   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   1931 };
   1932 
   1933 /// ParenType - Sugar for parentheses used when specifying types.
   1934 ///
   1935 class ParenType : public Type, public llvm::FoldingSetNode {
   1936   QualType Inner;
   1937 
   1938   ParenType(QualType InnerType, QualType CanonType) :
   1939     Type(Paren, CanonType, InnerType->isDependentType(),
   1940          InnerType->isInstantiationDependentType(),
   1941          InnerType->isVariablyModifiedType(),
   1942          InnerType->containsUnexpandedParameterPack()),
   1943     Inner(InnerType) {
   1944   }
   1945   friend class ASTContext;  // ASTContext creates these.
   1946 
   1947 public:
   1948 
   1949   QualType getInnerType() const { return Inner; }
   1950 
   1951   bool isSugared() const { return true; }
   1952   QualType desugar() const { return getInnerType(); }
   1953 
   1954   void Profile(llvm::FoldingSetNodeID &ID) {
   1955     Profile(ID, getInnerType());
   1956   }
   1957   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   1958     Inner.Profile(ID);
   1959   }
   1960 
   1961   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   1962 };
   1963 
   1964 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   1965 ///
   1966 class PointerType : public Type, public llvm::FoldingSetNode {
   1967   QualType PointeeType;
   1968 
   1969   PointerType(QualType Pointee, QualType CanonicalPtr) :
   1970     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   1971          Pointee->isInstantiationDependentType(),
   1972          Pointee->isVariablyModifiedType(),
   1973          Pointee->containsUnexpandedParameterPack()),
   1974     PointeeType(Pointee) {
   1975   }
   1976   friend class ASTContext;  // ASTContext creates these.
   1977 
   1978 public:
   1979 
   1980   QualType getPointeeType() const { return PointeeType; }
   1981 
   1982   bool isSugared() const { return false; }
   1983   QualType desugar() const { return QualType(this, 0); }
   1984 
   1985   void Profile(llvm::FoldingSetNodeID &ID) {
   1986     Profile(ID, getPointeeType());
   1987   }
   1988   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1989     ID.AddPointer(Pointee.getAsOpaquePtr());
   1990   }
   1991 
   1992   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   1993 };
   1994 
   1995 /// \brief Represents a pointer type decayed from an array or function type.
   1996 class DecayedType : public Type, public llvm::FoldingSetNode {
   1997   QualType OriginalType;
   1998   QualType DecayedPointer;
   1999 
   2000   DecayedType(QualType OriginalType, QualType DecayedPointer,
   2001               QualType CanonicalPtr)
   2002       : Type(Decayed, CanonicalPtr, OriginalType->isDependentType(),
   2003              OriginalType->isInstantiationDependentType(),
   2004              OriginalType->isVariablyModifiedType(),
   2005              OriginalType->containsUnexpandedParameterPack()),
   2006         OriginalType(OriginalType), DecayedPointer(DecayedPointer) {
   2007     assert(isa<PointerType>(DecayedPointer));
   2008   }
   2009 
   2010   friend class ASTContext;  // ASTContext creates these.
   2011 
   2012 public:
   2013   QualType getDecayedType() const { return DecayedPointer; }
   2014   QualType getOriginalType() const { return OriginalType; }
   2015 
   2016   QualType getPointeeType() const {
   2017     return cast<PointerType>(DecayedPointer)->getPointeeType();
   2018   }
   2019 
   2020   bool isSugared() const { return true; }
   2021   QualType desugar() const { return DecayedPointer; }
   2022 
   2023   void Profile(llvm::FoldingSetNodeID &ID) {
   2024     Profile(ID, OriginalType);
   2025   }
   2026   static void Profile(llvm::FoldingSetNodeID &ID, QualType OriginalType) {
   2027     ID.AddPointer(OriginalType.getAsOpaquePtr());
   2028   }
   2029 
   2030   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
   2031 };
   2032 
   2033 /// BlockPointerType - pointer to a block type.
   2034 /// This type is to represent types syntactically represented as
   2035 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   2036 ///
   2037 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   2038   QualType PointeeType;  // Block is some kind of pointer type
   2039   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   2040     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   2041          Pointee->isInstantiationDependentType(),
   2042          Pointee->isVariablyModifiedType(),
   2043          Pointee->containsUnexpandedParameterPack()),
   2044     PointeeType(Pointee) {
   2045   }
   2046   friend class ASTContext;  // ASTContext creates these.
   2047 
   2048 public:
   2049 
   2050   // Get the pointee type. Pointee is required to always be a function type.
   2051   QualType getPointeeType() const { return PointeeType; }
   2052 
   2053   bool isSugared() const { return false; }
   2054   QualType desugar() const { return QualType(this, 0); }
   2055 
   2056   void Profile(llvm::FoldingSetNodeID &ID) {
   2057       Profile(ID, getPointeeType());
   2058   }
   2059   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2060       ID.AddPointer(Pointee.getAsOpaquePtr());
   2061   }
   2062 
   2063   static bool classof(const Type *T) {
   2064     return T->getTypeClass() == BlockPointer;
   2065   }
   2066 };
   2067 
   2068 /// ReferenceType - Base for LValueReferenceType and RValueReferenceType
   2069 ///
   2070 class ReferenceType : public Type, public llvm::FoldingSetNode {
   2071   QualType PointeeType;
   2072 
   2073 protected:
   2074   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   2075                 bool SpelledAsLValue) :
   2076     Type(tc, CanonicalRef, Referencee->isDependentType(),
   2077          Referencee->isInstantiationDependentType(),
   2078          Referencee->isVariablyModifiedType(),
   2079          Referencee->containsUnexpandedParameterPack()),
   2080     PointeeType(Referencee)
   2081   {
   2082     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   2083     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   2084   }
   2085 
   2086 public:
   2087   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   2088   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   2089 
   2090   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   2091   QualType getPointeeType() const {
   2092     // FIXME: this might strip inner qualifiers; okay?
   2093     const ReferenceType *T = this;
   2094     while (T->isInnerRef())
   2095       T = T->PointeeType->castAs<ReferenceType>();
   2096     return T->PointeeType;
   2097   }
   2098 
   2099   void Profile(llvm::FoldingSetNodeID &ID) {
   2100     Profile(ID, PointeeType, isSpelledAsLValue());
   2101   }
   2102   static void Profile(llvm::FoldingSetNodeID &ID,
   2103                       QualType Referencee,
   2104                       bool SpelledAsLValue) {
   2105     ID.AddPointer(Referencee.getAsOpaquePtr());
   2106     ID.AddBoolean(SpelledAsLValue);
   2107   }
   2108 
   2109   static bool classof(const Type *T) {
   2110     return T->getTypeClass() == LValueReference ||
   2111            T->getTypeClass() == RValueReference;
   2112   }
   2113 };
   2114 
   2115 /// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
   2116 ///
   2117 class LValueReferenceType : public ReferenceType {
   2118   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   2119                       bool SpelledAsLValue) :
   2120     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   2121   {}
   2122   friend class ASTContext; // ASTContext creates these
   2123 public:
   2124   bool isSugared() const { return false; }
   2125   QualType desugar() const { return QualType(this, 0); }
   2126 
   2127   static bool classof(const Type *T) {
   2128     return T->getTypeClass() == LValueReference;
   2129   }
   2130 };
   2131 
   2132 /// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
   2133 ///
   2134 class RValueReferenceType : public ReferenceType {
   2135   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2136     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2137   }
   2138   friend class ASTContext; // ASTContext creates these
   2139 public:
   2140   bool isSugared() const { return false; }
   2141   QualType desugar() const { return QualType(this, 0); }
   2142 
   2143   static bool classof(const Type *T) {
   2144     return T->getTypeClass() == RValueReference;
   2145   }
   2146 };
   2147 
   2148 /// MemberPointerType - C++ 8.3.3 - Pointers to members
   2149 ///
   2150 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2151   QualType PointeeType;
   2152   /// The class of which the pointee is a member. Must ultimately be a
   2153   /// RecordType, but could be a typedef or a template parameter too.
   2154   const Type *Class;
   2155 
   2156   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2157     Type(MemberPointer, CanonicalPtr,
   2158          Cls->isDependentType() || Pointee->isDependentType(),
   2159          (Cls->isInstantiationDependentType() ||
   2160           Pointee->isInstantiationDependentType()),
   2161          Pointee->isVariablyModifiedType(),
   2162          (Cls->containsUnexpandedParameterPack() ||
   2163           Pointee->containsUnexpandedParameterPack())),
   2164     PointeeType(Pointee), Class(Cls) {
   2165   }
   2166   friend class ASTContext; // ASTContext creates these.
   2167 
   2168 public:
   2169   QualType getPointeeType() const { return PointeeType; }
   2170 
   2171   /// Returns true if the member type (i.e. the pointee type) is a
   2172   /// function type rather than a data-member type.
   2173   bool isMemberFunctionPointer() const {
   2174     return PointeeType->isFunctionProtoType();
   2175   }
   2176 
   2177   /// Returns true if the member type (i.e. the pointee type) is a
   2178   /// data type rather than a function type.
   2179   bool isMemberDataPointer() const {
   2180     return !PointeeType->isFunctionProtoType();
   2181   }
   2182 
   2183   const Type *getClass() const { return Class; }
   2184 
   2185   bool isSugared() const { return false; }
   2186   QualType desugar() const { return QualType(this, 0); }
   2187 
   2188   void Profile(llvm::FoldingSetNodeID &ID) {
   2189     Profile(ID, getPointeeType(), getClass());
   2190   }
   2191   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2192                       const Type *Class) {
   2193     ID.AddPointer(Pointee.getAsOpaquePtr());
   2194     ID.AddPointer(Class);
   2195   }
   2196 
   2197   static bool classof(const Type *T) {
   2198     return T->getTypeClass() == MemberPointer;
   2199   }
   2200 };
   2201 
   2202 /// ArrayType - C99 6.7.5.2 - Array Declarators.
   2203 ///
   2204 class ArrayType : public Type, public llvm::FoldingSetNode {
   2205 public:
   2206   /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
   2207   /// an array with a static size (e.g. int X[static 4]), or an array
   2208   /// with a star size (e.g. int X[*]).
   2209   /// 'static' is only allowed on function parameters.
   2210   enum ArraySizeModifier {
   2211     Normal, Static, Star
   2212   };
   2213 private:
   2214   /// ElementType - The element type of the array.
   2215   QualType ElementType;
   2216 
   2217 protected:
   2218   // C++ [temp.dep.type]p1:
   2219   //   A type is dependent if it is...
   2220   //     - an array type constructed from any dependent type or whose
   2221   //       size is specified by a constant expression that is
   2222   //       value-dependent,
   2223   ArrayType(TypeClass tc, QualType et, QualType can,
   2224             ArraySizeModifier sm, unsigned tq,
   2225             bool ContainsUnexpandedParameterPack)
   2226     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2227            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2228            (tc == VariableArray || et->isVariablyModifiedType()),
   2229            ContainsUnexpandedParameterPack),
   2230       ElementType(et) {
   2231     ArrayTypeBits.IndexTypeQuals = tq;
   2232     ArrayTypeBits.SizeModifier = sm;
   2233   }
   2234 
   2235   friend class ASTContext;  // ASTContext creates these.
   2236 
   2237 public:
   2238   QualType getElementType() const { return ElementType; }
   2239   ArraySizeModifier getSizeModifier() const {
   2240     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2241   }
   2242   Qualifiers getIndexTypeQualifiers() const {
   2243     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2244   }
   2245   unsigned getIndexTypeCVRQualifiers() const {
   2246     return ArrayTypeBits.IndexTypeQuals;
   2247   }
   2248 
   2249   static bool classof(const Type *T) {
   2250     return T->getTypeClass() == ConstantArray ||
   2251            T->getTypeClass() == VariableArray ||
   2252            T->getTypeClass() == IncompleteArray ||
   2253            T->getTypeClass() == DependentSizedArray;
   2254   }
   2255 };
   2256 
   2257 /// ConstantArrayType - This class represents the canonical version of
   2258 /// C arrays with a specified constant size.  For example, the canonical
   2259 /// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
   2260 /// type is 'int' and the size is 404.
   2261 class ConstantArrayType : public ArrayType {
   2262   llvm::APInt Size; // Allows us to unique the type.
   2263 
   2264   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2265                     ArraySizeModifier sm, unsigned tq)
   2266     : ArrayType(ConstantArray, et, can, sm, tq,
   2267                 et->containsUnexpandedParameterPack()),
   2268       Size(size) {}
   2269 protected:
   2270   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2271                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2272     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2273       Size(size) {}
   2274   friend class ASTContext;  // ASTContext creates these.
   2275 public:
   2276   const llvm::APInt &getSize() const { return Size; }
   2277   bool isSugared() const { return false; }
   2278   QualType desugar() const { return QualType(this, 0); }
   2279 
   2280 
   2281   /// \brief Determine the number of bits required to address a member of
   2282   // an array with the given element type and number of elements.
   2283   static unsigned getNumAddressingBits(ASTContext &Context,
   2284                                        QualType ElementType,
   2285                                        const llvm::APInt &NumElements);
   2286 
   2287   /// \brief Determine the maximum number of active bits that an array's size
   2288   /// can require, which limits the maximum size of the array.
   2289   static unsigned getMaxSizeBits(ASTContext &Context);
   2290 
   2291   void Profile(llvm::FoldingSetNodeID &ID) {
   2292     Profile(ID, getElementType(), getSize(),
   2293             getSizeModifier(), getIndexTypeCVRQualifiers());
   2294   }
   2295   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2296                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2297                       unsigned TypeQuals) {
   2298     ID.AddPointer(ET.getAsOpaquePtr());
   2299     ID.AddInteger(ArraySize.getZExtValue());
   2300     ID.AddInteger(SizeMod);
   2301     ID.AddInteger(TypeQuals);
   2302   }
   2303   static bool classof(const Type *T) {
   2304     return T->getTypeClass() == ConstantArray;
   2305   }
   2306 };
   2307 
   2308 /// IncompleteArrayType - This class represents C arrays with an unspecified
   2309 /// size.  For example 'int A[]' has an IncompleteArrayType where the element
   2310 /// type is 'int' and the size is unspecified.
   2311 class IncompleteArrayType : public ArrayType {
   2312 
   2313   IncompleteArrayType(QualType et, QualType can,
   2314                       ArraySizeModifier sm, unsigned tq)
   2315     : ArrayType(IncompleteArray, et, can, sm, tq,
   2316                 et->containsUnexpandedParameterPack()) {}
   2317   friend class ASTContext;  // ASTContext creates these.
   2318 public:
   2319   bool isSugared() const { return false; }
   2320   QualType desugar() const { return QualType(this, 0); }
   2321 
   2322   static bool classof(const Type *T) {
   2323     return T->getTypeClass() == IncompleteArray;
   2324   }
   2325 
   2326   friend class StmtIteratorBase;
   2327 
   2328   void Profile(llvm::FoldingSetNodeID &ID) {
   2329     Profile(ID, getElementType(), getSizeModifier(),
   2330             getIndexTypeCVRQualifiers());
   2331   }
   2332 
   2333   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2334                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2335     ID.AddPointer(ET.getAsOpaquePtr());
   2336     ID.AddInteger(SizeMod);
   2337     ID.AddInteger(TypeQuals);
   2338   }
   2339 };
   2340 
   2341 /// VariableArrayType - This class represents C arrays with a specified size
   2342 /// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
   2343 /// Since the size expression is an arbitrary expression, we store it as such.
   2344 ///
   2345 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2346 /// should not be: two lexically equivalent variable array types could mean
   2347 /// different things, for example, these variables do not have the same type
   2348 /// dynamically:
   2349 ///
   2350 /// void foo(int x) {
   2351 ///   int Y[x];
   2352 ///   ++x;
   2353 ///   int Z[x];
   2354 /// }
   2355 ///
   2356 class VariableArrayType : public ArrayType {
   2357   /// SizeExpr - An assignment expression. VLA's are only permitted within
   2358   /// a function block.
   2359   Stmt *SizeExpr;
   2360   /// Brackets - The left and right array brackets.
   2361   SourceRange Brackets;
   2362 
   2363   VariableArrayType(QualType et, QualType can, Expr *e,
   2364                     ArraySizeModifier sm, unsigned tq,
   2365                     SourceRange brackets)
   2366     : ArrayType(VariableArray, et, can, sm, tq,
   2367                 et->containsUnexpandedParameterPack()),
   2368       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2369   friend class ASTContext;  // ASTContext creates these.
   2370 
   2371 public:
   2372   Expr *getSizeExpr() const {
   2373     // We use C-style casts instead of cast<> here because we do not wish
   2374     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2375     return (Expr*) SizeExpr;
   2376   }
   2377   SourceRange getBracketsRange() const { return Brackets; }
   2378   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2379   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2380 
   2381   bool isSugared() const { return false; }
   2382   QualType desugar() const { return QualType(this, 0); }
   2383 
   2384   static bool classof(const Type *T) {
   2385     return T->getTypeClass() == VariableArray;
   2386   }
   2387 
   2388   friend class StmtIteratorBase;
   2389 
   2390   void Profile(llvm::FoldingSetNodeID &ID) {
   2391     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2392   }
   2393 };
   2394 
   2395 /// DependentSizedArrayType - This type represents an array type in
   2396 /// C++ whose size is a value-dependent expression. For example:
   2397 ///
   2398 /// \code
   2399 /// template<typename T, int Size>
   2400 /// class array {
   2401 ///   T data[Size];
   2402 /// };
   2403 /// \endcode
   2404 ///
   2405 /// For these types, we won't actually know what the array bound is
   2406 /// until template instantiation occurs, at which point this will
   2407 /// become either a ConstantArrayType or a VariableArrayType.
   2408 class DependentSizedArrayType : public ArrayType {
   2409   const ASTContext &Context;
   2410 
   2411   /// \brief An assignment expression that will instantiate to the
   2412   /// size of the array.
   2413   ///
   2414   /// The expression itself might be NULL, in which case the array
   2415   /// type will have its size deduced from an initializer.
   2416   Stmt *SizeExpr;
   2417 
   2418   /// Brackets - The left and right array brackets.
   2419   SourceRange Brackets;
   2420 
   2421   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2422                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2423                           SourceRange brackets);
   2424 
   2425   friend class ASTContext;  // ASTContext creates these.
   2426 
   2427 public:
   2428   Expr *getSizeExpr() const {
   2429     // We use C-style casts instead of cast<> here because we do not wish
   2430     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2431     return (Expr*) SizeExpr;
   2432   }
   2433   SourceRange getBracketsRange() const { return Brackets; }
   2434   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2435   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2436 
   2437   bool isSugared() const { return false; }
   2438   QualType desugar() const { return QualType(this, 0); }
   2439 
   2440   static bool classof(const Type *T) {
   2441     return T->getTypeClass() == DependentSizedArray;
   2442   }
   2443 
   2444   friend class StmtIteratorBase;
   2445 
   2446 
   2447   void Profile(llvm::FoldingSetNodeID &ID) {
   2448     Profile(ID, Context, getElementType(),
   2449             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2450   }
   2451 
   2452   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2453                       QualType ET, ArraySizeModifier SizeMod,
   2454                       unsigned TypeQuals, Expr *E);
   2455 };
   2456 
   2457 /// DependentSizedExtVectorType - This type represent an extended vector type
   2458 /// where either the type or size is dependent. For example:
   2459 /// @code
   2460 /// template<typename T, int Size>
   2461 /// class vector {
   2462 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2463 /// }
   2464 /// @endcode
   2465 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2466   const ASTContext &Context;
   2467   Expr *SizeExpr;
   2468   /// ElementType - The element type of the array.
   2469   QualType ElementType;
   2470   SourceLocation loc;
   2471 
   2472   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2473                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2474 
   2475   friend class ASTContext;
   2476 
   2477 public:
   2478   Expr *getSizeExpr() const { return SizeExpr; }
   2479   QualType getElementType() const { return ElementType; }
   2480   SourceLocation getAttributeLoc() const { return loc; }
   2481 
   2482   bool isSugared() const { return false; }
   2483   QualType desugar() const { return QualType(this, 0); }
   2484 
   2485   static bool classof(const Type *T) {
   2486     return T->getTypeClass() == DependentSizedExtVector;
   2487   }
   2488 
   2489   void Profile(llvm::FoldingSetNodeID &ID) {
   2490     Profile(ID, Context, getElementType(), getSizeExpr());
   2491   }
   2492 
   2493   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2494                       QualType ElementType, Expr *SizeExpr);
   2495 };
   2496 
   2497 
   2498 /// VectorType - GCC generic vector type. This type is created using
   2499 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2500 /// bytes; or from an Altivec __vector or vector declaration.
   2501 /// Since the constructor takes the number of vector elements, the
   2502 /// client is responsible for converting the size into the number of elements.
   2503 class VectorType : public Type, public llvm::FoldingSetNode {
   2504 public:
   2505   enum VectorKind {
   2506     GenericVector,  // not a target-specific vector type
   2507     AltiVecVector,  // is AltiVec vector
   2508     AltiVecPixel,   // is AltiVec 'vector Pixel'
   2509     AltiVecBool,    // is AltiVec 'vector bool ...'
   2510     NeonVector,     // is ARM Neon vector
   2511     NeonPolyVector  // is ARM Neon polynomial vector
   2512   };
   2513 protected:
   2514   /// ElementType - The element type of the vector.
   2515   QualType ElementType;
   2516 
   2517   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2518              VectorKind vecKind);
   2519 
   2520   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2521              QualType canonType, VectorKind vecKind);
   2522 
   2523   friend class ASTContext;  // ASTContext creates these.
   2524 
   2525 public:
   2526 
   2527   QualType getElementType() const { return ElementType; }
   2528   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2529   static bool isVectorSizeTooLarge(unsigned NumElements) {
   2530     return NumElements > VectorTypeBitfields::MaxNumElements;
   2531   }
   2532 
   2533   bool isSugared() const { return false; }
   2534   QualType desugar() const { return QualType(this, 0); }
   2535 
   2536   VectorKind getVectorKind() const {
   2537     return VectorKind(VectorTypeBits.VecKind);
   2538   }
   2539 
   2540   void Profile(llvm::FoldingSetNodeID &ID) {
   2541     Profile(ID, getElementType(), getNumElements(),
   2542             getTypeClass(), getVectorKind());
   2543   }
   2544   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2545                       unsigned NumElements, TypeClass TypeClass,
   2546                       VectorKind VecKind) {
   2547     ID.AddPointer(ElementType.getAsOpaquePtr());
   2548     ID.AddInteger(NumElements);
   2549     ID.AddInteger(TypeClass);
   2550     ID.AddInteger(VecKind);
   2551   }
   2552 
   2553   static bool classof(const Type *T) {
   2554     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2555   }
   2556 };
   2557 
   2558 /// ExtVectorType - Extended vector type. This type is created using
   2559 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2560 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2561 /// class enables syntactic extensions, like Vector Components for accessing
   2562 /// points, colors, and textures (modeled after OpenGL Shading Language).
   2563 class ExtVectorType : public VectorType {
   2564   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2565     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2566   friend class ASTContext;  // ASTContext creates these.
   2567 public:
   2568   static int getPointAccessorIdx(char c) {
   2569     switch (c) {
   2570     default: return -1;
   2571     case 'x': case 'r': return 0;
   2572     case 'y': case 'g': return 1;
   2573     case 'z': case 'b': return 2;
   2574     case 'w': case 'a': return 3;
   2575     }
   2576   }
   2577   static int getNumericAccessorIdx(char c) {
   2578     switch (c) {
   2579       default: return -1;
   2580       case '0': return 0;
   2581       case '1': return 1;
   2582       case '2': return 2;
   2583       case '3': return 3;
   2584       case '4': return 4;
   2585       case '5': return 5;
   2586       case '6': return 6;
   2587       case '7': return 7;
   2588       case '8': return 8;
   2589       case '9': return 9;
   2590       case 'A':
   2591       case 'a': return 10;
   2592       case 'B':
   2593       case 'b': return 11;
   2594       case 'C':
   2595       case 'c': return 12;
   2596       case 'D':
   2597       case 'd': return 13;
   2598       case 'E':
   2599       case 'e': return 14;
   2600       case 'F':
   2601       case 'f': return 15;
   2602     }
   2603   }
   2604 
   2605   static int getAccessorIdx(char c) {
   2606     if (int idx = getPointAccessorIdx(c)+1) return idx-1;
   2607     return getNumericAccessorIdx(c);
   2608   }
   2609 
   2610   bool isAccessorWithinNumElements(char c) const {
   2611     if (int idx = getAccessorIdx(c)+1)
   2612       return unsigned(idx-1) < getNumElements();
   2613     return false;
   2614   }
   2615   bool isSugared() const { return false; }
   2616   QualType desugar() const { return QualType(this, 0); }
   2617 
   2618   static bool classof(const Type *T) {
   2619     return T->getTypeClass() == ExtVector;
   2620   }
   2621 };
   2622 
   2623 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2624 /// class of FunctionNoProtoType and FunctionProtoType.
   2625 ///
   2626 class FunctionType : public Type {
   2627   // The type returned by the function.
   2628   QualType ResultType;
   2629 
   2630  public:
   2631   /// ExtInfo - A class which abstracts out some details necessary for
   2632   /// making a call.
   2633   ///
   2634   /// It is not actually used directly for storing this information in
   2635   /// a FunctionType, although FunctionType does currently use the
   2636   /// same bit-pattern.
   2637   ///
   2638   // If you add a field (say Foo), other than the obvious places (both,
   2639   // constructors, compile failures), what you need to update is
   2640   // * Operator==
   2641   // * getFoo
   2642   // * withFoo
   2643   // * functionType. Add Foo, getFoo.
   2644   // * ASTContext::getFooType
   2645   // * ASTContext::mergeFunctionTypes
   2646   // * FunctionNoProtoType::Profile
   2647   // * FunctionProtoType::Profile
   2648   // * TypePrinter::PrintFunctionProto
   2649   // * AST read and write
   2650   // * Codegen
   2651   class ExtInfo {
   2652     // Feel free to rearrange or add bits, but if you go over 9,
   2653     // you'll need to adjust both the Bits field below and
   2654     // Type::FunctionTypeBitfields.
   2655 
   2656     //   |  CC  |noreturn|produces|regparm|
   2657     //   |0 .. 3|   4    |    5   | 6 .. 8|
   2658     //
   2659     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2660     enum { CallConvMask = 0xF };
   2661     enum { NoReturnMask = 0x10 };
   2662     enum { ProducesResultMask = 0x20 };
   2663     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2664            RegParmOffset = 6 }; // Assumed to be the last field
   2665 
   2666     uint16_t Bits;
   2667 
   2668     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2669 
   2670     friend class FunctionType;
   2671 
   2672    public:
   2673     // Constructor with no defaults. Use this when you know that you
   2674     // have all the elements (when reading an AST file for example).
   2675     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2676             bool producesResult) {
   2677       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2678       Bits = ((unsigned) cc) |
   2679              (noReturn ? NoReturnMask : 0) |
   2680              (producesResult ? ProducesResultMask : 0) |
   2681              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2682     }
   2683 
   2684     // Constructor with all defaults. Use when for example creating a
   2685     // function know to use defaults.
   2686     ExtInfo() : Bits(0) {}
   2687 
   2688     bool getNoReturn() const { return Bits & NoReturnMask; }
   2689     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2690     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2691     unsigned getRegParm() const {
   2692       unsigned RegParm = Bits >> RegParmOffset;
   2693       if (RegParm > 0)
   2694         --RegParm;
   2695       return RegParm;
   2696     }
   2697     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2698 
   2699     bool operator==(ExtInfo Other) const {
   2700       return Bits == Other.Bits;
   2701     }
   2702     bool operator!=(ExtInfo Other) const {
   2703       return Bits != Other.Bits;
   2704     }
   2705 
   2706     // Note that we don't have setters. That is by design, use
   2707     // the following with methods instead of mutating these objects.
   2708 
   2709     ExtInfo withNoReturn(bool noReturn) const {
   2710       if (noReturn)
   2711         return ExtInfo(Bits | NoReturnMask);
   2712       else
   2713         return ExtInfo(Bits & ~NoReturnMask);
   2714     }
   2715 
   2716     ExtInfo withProducesResult(bool producesResult) const {
   2717       if (producesResult)
   2718         return ExtInfo(Bits | ProducesResultMask);
   2719       else
   2720         return ExtInfo(Bits & ~ProducesResultMask);
   2721     }
   2722 
   2723     ExtInfo withRegParm(unsigned RegParm) const {
   2724       assert(RegParm < 7 && "Invalid regparm value");
   2725       return ExtInfo((Bits & ~RegParmMask) |
   2726                      ((RegParm + 1) << RegParmOffset));
   2727     }
   2728 
   2729     ExtInfo withCallingConv(CallingConv cc) const {
   2730       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   2731     }
   2732 
   2733     void Profile(llvm::FoldingSetNodeID &ID) const {
   2734       ID.AddInteger(Bits);
   2735     }
   2736   };
   2737 
   2738 protected:
   2739   FunctionType(TypeClass tc, QualType res,
   2740                unsigned typeQuals, QualType Canonical, bool Dependent,
   2741                bool InstantiationDependent,
   2742                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   2743                ExtInfo Info)
   2744     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   2745            ContainsUnexpandedParameterPack),
   2746       ResultType(res) {
   2747     FunctionTypeBits.ExtInfo = Info.Bits;
   2748     FunctionTypeBits.TypeQuals = typeQuals;
   2749   }
   2750   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   2751 
   2752 public:
   2753 
   2754   QualType getResultType() const { return ResultType; }
   2755 
   2756   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   2757   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   2758   /// \brief Determine whether this function type includes the GNU noreturn
   2759   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
   2760   /// type.
   2761   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   2762   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   2763   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   2764   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
   2765   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
   2766   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
   2767 
   2768   /// \brief Determine the type of an expression that calls a function of
   2769   /// this type.
   2770   QualType getCallResultType(ASTContext &Context) const {
   2771     return getResultType().getNonLValueExprType(Context);
   2772   }
   2773 
   2774   static StringRef getNameForCallConv(CallingConv CC);
   2775 
   2776   static bool classof(const Type *T) {
   2777     return T->getTypeClass() == FunctionNoProto ||
   2778            T->getTypeClass() == FunctionProto;
   2779   }
   2780 };
   2781 
   2782 /// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
   2783 /// no information available about its arguments.
   2784 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   2785   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   2786     : FunctionType(FunctionNoProto, Result, 0, Canonical,
   2787                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   2788                    Result->isVariablyModifiedType(),
   2789                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   2790 
   2791   friend class ASTContext;  // ASTContext creates these.
   2792 
   2793 public:
   2794   // No additional state past what FunctionType provides.
   2795 
   2796   bool isSugared() const { return false; }
   2797   QualType desugar() const { return QualType(this, 0); }
   2798 
   2799   void Profile(llvm::FoldingSetNodeID &ID) {
   2800     Profile(ID, getResultType(), getExtInfo());
   2801   }
   2802   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   2803                       ExtInfo Info) {
   2804     Info.Profile(ID);
   2805     ID.AddPointer(ResultType.getAsOpaquePtr());
   2806   }
   2807 
   2808   static bool classof(const Type *T) {
   2809     return T->getTypeClass() == FunctionNoProto;
   2810   }
   2811 };
   2812 
   2813 /// FunctionProtoType - Represents a prototype with argument type info, e.g.
   2814 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   2815 /// arguments, not as having a single void argument. Such a type can have an
   2816 /// exception specification, but this specification is not part of the canonical
   2817 /// type.
   2818 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   2819 public:
   2820   /// ExtProtoInfo - Extra information about a function prototype.
   2821   struct ExtProtoInfo {
   2822     ExtProtoInfo() :
   2823       Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   2824       ExceptionSpecType(EST_None), RefQualifier(RQ_None),
   2825       NumExceptions(0), Exceptions(0), NoexceptExpr(0),
   2826       ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
   2827       ConsumedArguments(0) {}
   2828 
   2829     FunctionType::ExtInfo ExtInfo;
   2830     bool Variadic : 1;
   2831     bool HasTrailingReturn : 1;
   2832     unsigned char TypeQuals;
   2833     ExceptionSpecificationType ExceptionSpecType;
   2834     RefQualifierKind RefQualifier;
   2835     unsigned NumExceptions;
   2836     const QualType *Exceptions;
   2837     Expr *NoexceptExpr;
   2838     FunctionDecl *ExceptionSpecDecl;
   2839     FunctionDecl *ExceptionSpecTemplate;
   2840     const bool *ConsumedArguments;
   2841   };
   2842 
   2843 private:
   2844   /// \brief Determine whether there are any argument types that
   2845   /// contain an unexpanded parameter pack.
   2846   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   2847                                                  unsigned numArgs) {
   2848     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   2849       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   2850         return true;
   2851 
   2852     return false;
   2853   }
   2854 
   2855   FunctionProtoType(QualType result, ArrayRef<QualType> args,
   2856                     QualType canonical, const ExtProtoInfo &epi);
   2857 
   2858   /// NumArgs - The number of arguments this function has, not counting '...'.
   2859   unsigned NumArgs : 15;
   2860 
   2861   /// NumExceptions - The number of types in the exception spec, if any.
   2862   unsigned NumExceptions : 9;
   2863 
   2864   /// ExceptionSpecType - The type of exception specification this function has.
   2865   unsigned ExceptionSpecType : 3;
   2866 
   2867   /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
   2868   unsigned HasAnyConsumedArgs : 1;
   2869 
   2870   /// Variadic - Whether the function is variadic.
   2871   unsigned Variadic : 1;
   2872 
   2873   /// HasTrailingReturn - Whether this function has a trailing return type.
   2874   unsigned HasTrailingReturn : 1;
   2875 
   2876   /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   2877   ///
   2878   /// This is a value of type \c RefQualifierKind.
   2879   unsigned RefQualifier : 2;
   2880 
   2881   // ArgInfo - There is an variable size array after the class in memory that
   2882   // holds the argument types.
   2883 
   2884   // Exceptions - There is another variable size array after ArgInfo that
   2885   // holds the exception types.
   2886 
   2887   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   2888   // to the expression in the noexcept() specifier.
   2889 
   2890   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   2891   // be a pair of FunctionDecl* pointing to the function which should be used to
   2892   // instantiate this function type's exception specification, and the function
   2893   // from which it should be instantiated.
   2894 
   2895   // ConsumedArgs - A variable size array, following Exceptions
   2896   // and of length NumArgs, holding flags indicating which arguments
   2897   // are consumed.  This only appears if HasAnyConsumedArgs is true.
   2898 
   2899   friend class ASTContext;  // ASTContext creates these.
   2900 
   2901   const bool *getConsumedArgsBuffer() const {
   2902     assert(hasAnyConsumedArgs());
   2903 
   2904     // Find the end of the exceptions.
   2905     Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
   2906     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2907       eh_end += NumExceptions;
   2908     else
   2909       eh_end += 1; // NoexceptExpr
   2910 
   2911     return reinterpret_cast<const bool*>(eh_end);
   2912   }
   2913 
   2914 public:
   2915   unsigned getNumArgs() const { return NumArgs; }
   2916   QualType getArgType(unsigned i) const {
   2917     assert(i < NumArgs && "Invalid argument number!");
   2918     return arg_type_begin()[i];
   2919   }
   2920   ArrayRef<QualType> getArgTypes() const {
   2921     return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
   2922   }
   2923 
   2924   ExtProtoInfo getExtProtoInfo() const {
   2925     ExtProtoInfo EPI;
   2926     EPI.ExtInfo = getExtInfo();
   2927     EPI.Variadic = isVariadic();
   2928     EPI.HasTrailingReturn = hasTrailingReturn();
   2929     EPI.ExceptionSpecType = getExceptionSpecType();
   2930     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   2931     EPI.RefQualifier = getRefQualifier();
   2932     if (EPI.ExceptionSpecType == EST_Dynamic) {
   2933       EPI.NumExceptions = NumExceptions;
   2934       EPI.Exceptions = exception_begin();
   2935     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2936       EPI.NoexceptExpr = getNoexceptExpr();
   2937     } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2938       EPI.ExceptionSpecDecl = getExceptionSpecDecl();
   2939       EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
   2940     } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2941       EPI.ExceptionSpecDecl = getExceptionSpecDecl();
   2942     }
   2943     if (hasAnyConsumedArgs())
   2944       EPI.ConsumedArguments = getConsumedArgsBuffer();
   2945     return EPI;
   2946   }
   2947 
   2948   /// \brief Get the kind of exception specification on this function.
   2949   ExceptionSpecificationType getExceptionSpecType() const {
   2950     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   2951   }
   2952   /// \brief Return whether this function has any kind of exception spec.
   2953   bool hasExceptionSpec() const {
   2954     return getExceptionSpecType() != EST_None;
   2955   }
   2956   /// \brief Return whether this function has a dynamic (throw) exception spec.
   2957   bool hasDynamicExceptionSpec() const {
   2958     return isDynamicExceptionSpec(getExceptionSpecType());
   2959   }
   2960   /// \brief Return whether this function has a noexcept exception spec.
   2961   bool hasNoexceptExceptionSpec() const {
   2962     return isNoexceptExceptionSpec(getExceptionSpecType());
   2963   }
   2964   /// \brief Result type of getNoexceptSpec().
   2965   enum NoexceptResult {
   2966     NR_NoNoexcept,  ///< There is no noexcept specifier.
   2967     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   2968     NR_Dependent,   ///< The noexcept specifier is dependent.
   2969     NR_Throw,       ///< The noexcept specifier evaluates to false.
   2970     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   2971   };
   2972   /// \brief Get the meaning of the noexcept spec on this function, if any.
   2973   NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
   2974   unsigned getNumExceptions() const { return NumExceptions; }
   2975   QualType getExceptionType(unsigned i) const {
   2976     assert(i < NumExceptions && "Invalid exception number!");
   2977     return exception_begin()[i];
   2978   }
   2979   Expr *getNoexceptExpr() const {
   2980     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2981       return 0;
   2982     // NoexceptExpr sits where the arguments end.
   2983     return *reinterpret_cast<Expr *const *>(arg_type_end());
   2984   }
   2985   /// \brief If this function type has an exception specification which hasn't
   2986   /// been determined yet (either because it has not been evaluated or because
   2987   /// it has not been instantiated), this is the function whose exception
   2988   /// specification is represented by this type.
   2989   FunctionDecl *getExceptionSpecDecl() const {
   2990     if (getExceptionSpecType() != EST_Uninstantiated &&
   2991         getExceptionSpecType() != EST_Unevaluated)
   2992       return 0;
   2993     return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
   2994   }
   2995   /// \brief If this function type has an uninstantiated exception
   2996   /// specification, this is the function whose exception specification
   2997   /// should be instantiated to find the exception specification for
   2998   /// this type.
   2999   FunctionDecl *getExceptionSpecTemplate() const {
   3000     if (getExceptionSpecType() != EST_Uninstantiated)
   3001       return 0;
   3002     return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
   3003   }
   3004   bool isNothrow(ASTContext &Ctx) const {
   3005     ExceptionSpecificationType EST = getExceptionSpecType();
   3006     assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
   3007     if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
   3008       return true;
   3009     if (EST != EST_ComputedNoexcept)
   3010       return false;
   3011     return getNoexceptSpec(Ctx) == NR_Nothrow;
   3012   }
   3013 
   3014   bool isVariadic() const { return Variadic; }
   3015 
   3016   /// \brief Determines whether this function prototype contains a
   3017   /// parameter pack at the end.
   3018   ///
   3019   /// A function template whose last parameter is a parameter pack can be
   3020   /// called with an arbitrary number of arguments, much like a variadic
   3021   /// function.
   3022   bool isTemplateVariadic() const;
   3023 
   3024   bool hasTrailingReturn() const { return HasTrailingReturn; }
   3025 
   3026   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   3027 
   3028 
   3029   /// \brief Retrieve the ref-qualifier associated with this function type.
   3030   RefQualifierKind getRefQualifier() const {
   3031     return static_cast<RefQualifierKind>(RefQualifier);
   3032   }
   3033 
   3034   typedef const QualType *arg_type_iterator;
   3035   arg_type_iterator arg_type_begin() const {
   3036     return reinterpret_cast<const QualType *>(this+1);
   3037   }
   3038   arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
   3039 
   3040   typedef const QualType *exception_iterator;
   3041   exception_iterator exception_begin() const {
   3042     // exceptions begin where arguments end
   3043     return arg_type_end();
   3044   }
   3045   exception_iterator exception_end() const {
   3046     if (getExceptionSpecType() != EST_Dynamic)
   3047       return exception_begin();
   3048     return exception_begin() + NumExceptions;
   3049   }
   3050 
   3051   bool hasAnyConsumedArgs() const {
   3052     return HasAnyConsumedArgs;
   3053   }
   3054   bool isArgConsumed(unsigned I) const {
   3055     assert(I < getNumArgs() && "argument index out of range!");
   3056     if (hasAnyConsumedArgs())
   3057       return getConsumedArgsBuffer()[I];
   3058     return false;
   3059   }
   3060 
   3061   bool isSugared() const { return false; }
   3062   QualType desugar() const { return QualType(this, 0); }
   3063 
   3064   void printExceptionSpecification(raw_ostream &OS,
   3065                                    const PrintingPolicy &Policy) const;
   3066 
   3067   static bool classof(const Type *T) {
   3068     return T->getTypeClass() == FunctionProto;
   3069   }
   3070 
   3071   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   3072   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   3073                       arg_type_iterator ArgTys, unsigned NumArgs,
   3074                       const ExtProtoInfo &EPI, const ASTContext &Context);
   3075 };
   3076 
   3077 
   3078 /// \brief Represents the dependent type named by a dependently-scoped
   3079 /// typename using declaration, e.g.
   3080 ///   using typename Base<T>::foo;
   3081 /// Template instantiation turns these into the underlying type.
   3082 class UnresolvedUsingType : public Type {
   3083   UnresolvedUsingTypenameDecl *Decl;
   3084 
   3085   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   3086     : Type(UnresolvedUsing, QualType(), true, true, false,
   3087            /*ContainsUnexpandedParameterPack=*/false),
   3088       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   3089   friend class ASTContext; // ASTContext creates these.
   3090 public:
   3091 
   3092   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   3093 
   3094   bool isSugared() const { return false; }
   3095   QualType desugar() const { return QualType(this, 0); }
   3096 
   3097   static bool classof(const Type *T) {
   3098     return T->getTypeClass() == UnresolvedUsing;
   3099   }
   3100 
   3101   void Profile(llvm::FoldingSetNodeID &ID) {
   3102     return Profile(ID, Decl);
   3103   }
   3104   static void Profile(llvm::FoldingSetNodeID &ID,
   3105                       UnresolvedUsingTypenameDecl *D) {
   3106     ID.AddPointer(D);
   3107   }
   3108 };
   3109 
   3110 
   3111 class TypedefType : public Type {
   3112   TypedefNameDecl *Decl;
   3113 protected:
   3114   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   3115     : Type(tc, can, can->isDependentType(),
   3116            can->isInstantiationDependentType(),
   3117            can->isVariablyModifiedType(),
   3118            /*ContainsUnexpandedParameterPack=*/false),
   3119       Decl(const_cast<TypedefNameDecl*>(D)) {
   3120     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3121   }
   3122   friend class ASTContext;  // ASTContext creates these.
   3123 public:
   3124 
   3125   TypedefNameDecl *getDecl() const { return Decl; }
   3126 
   3127   bool isSugared() const { return true; }
   3128   QualType desugar() const;
   3129 
   3130   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3131 };
   3132 
   3133 /// TypeOfExprType (GCC extension).
   3134 class TypeOfExprType : public Type {
   3135   Expr *TOExpr;
   3136 
   3137 protected:
   3138   TypeOfExprType(Expr *E, QualType can = QualType());
   3139   friend class ASTContext;  // ASTContext creates these.
   3140 public:
   3141   Expr *getUnderlyingExpr() const { return TOExpr; }
   3142 
   3143   /// \brief Remove a single level of sugar.
   3144   QualType desugar() const;
   3145 
   3146   /// \brief Returns whether this type directly provides sugar.
   3147   bool isSugared() const;
   3148 
   3149   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3150 };
   3151 
   3152 /// \brief Internal representation of canonical, dependent
   3153 /// typeof(expr) types.
   3154 ///
   3155 /// This class is used internally by the ASTContext to manage
   3156 /// canonical, dependent types, only. Clients will only see instances
   3157 /// of this class via TypeOfExprType nodes.
   3158 class DependentTypeOfExprType
   3159   : public TypeOfExprType, public llvm::FoldingSetNode {
   3160   const ASTContext &Context;
   3161 
   3162 public:
   3163   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3164     : TypeOfExprType(E), Context(Context) { }
   3165 
   3166   void Profile(llvm::FoldingSetNodeID &ID) {
   3167     Profile(ID, Context, getUnderlyingExpr());
   3168   }
   3169 
   3170   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3171                       Expr *E);
   3172 };
   3173 
   3174 /// TypeOfType (GCC extension).
   3175 class TypeOfType : public Type {
   3176   QualType TOType;
   3177   TypeOfType(QualType T, QualType can)
   3178     : Type(TypeOf, can, T->isDependentType(),
   3179            T->isInstantiationDependentType(),
   3180            T->isVariablyModifiedType(),
   3181            T->containsUnexpandedParameterPack()),
   3182       TOType(T) {
   3183     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3184   }
   3185   friend class ASTContext;  // ASTContext creates these.
   3186 public:
   3187   QualType getUnderlyingType() const { return TOType; }
   3188 
   3189   /// \brief Remove a single level of sugar.
   3190   QualType desugar() const { return getUnderlyingType(); }
   3191 
   3192   /// \brief Returns whether this type directly provides sugar.
   3193   bool isSugared() const { return true; }
   3194 
   3195   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3196 };
   3197 
   3198 /// DecltypeType (C++0x)
   3199 class DecltypeType : public Type {
   3200   Expr *E;
   3201   QualType UnderlyingType;
   3202 
   3203 protected:
   3204   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3205   friend class ASTContext;  // ASTContext creates these.
   3206 public:
   3207   Expr *getUnderlyingExpr() const { return E; }
   3208   QualType getUnderlyingType() const { return UnderlyingType; }
   3209 
   3210   /// \brief Remove a single level of sugar.
   3211   QualType desugar() const;
   3212 
   3213   /// \brief Returns whether this type directly provides sugar.
   3214   bool isSugared() const;
   3215 
   3216   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3217 };
   3218 
   3219 /// \brief Internal representation of canonical, dependent
   3220 /// decltype(expr) types.
   3221 ///
   3222 /// This class is used internally by the ASTContext to manage
   3223 /// canonical, dependent types, only. Clients will only see instances
   3224 /// of this class via DecltypeType nodes.
   3225 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3226   const ASTContext &Context;
   3227 
   3228 public:
   3229   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3230 
   3231   void Profile(llvm::FoldingSetNodeID &ID) {
   3232     Profile(ID, Context, getUnderlyingExpr());
   3233   }
   3234 
   3235   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3236                       Expr *E);
   3237 };
   3238 
   3239 /// \brief A unary type transform, which is a type constructed from another
   3240 class UnaryTransformType : public Type {
   3241 public:
   3242   enum UTTKind {
   3243     EnumUnderlyingType
   3244   };
   3245 
   3246 private:
   3247   /// The untransformed type.
   3248   QualType BaseType;
   3249   /// The transformed type if not dependent, otherwise the same as BaseType.
   3250   QualType UnderlyingType;
   3251 
   3252   UTTKind UKind;
   3253 protected:
   3254   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3255                      QualType CanonicalTy);
   3256   friend class ASTContext;
   3257 public:
   3258   bool isSugared() const { return !isDependentType(); }
   3259   QualType desugar() const { return UnderlyingType; }
   3260 
   3261   QualType getUnderlyingType() const { return UnderlyingType; }
   3262   QualType getBaseType() const { return BaseType; }
   3263 
   3264   UTTKind getUTTKind() const { return UKind; }
   3265 
   3266   static bool classof(const Type *T) {
   3267     return T->getTypeClass() == UnaryTransform;
   3268   }
   3269 };
   3270 
   3271 class TagType : public Type {
   3272   /// Stores the TagDecl associated with this type. The decl may point to any
   3273   /// TagDecl that declares the entity.
   3274   TagDecl * decl;
   3275 
   3276   friend class ASTReader;
   3277 
   3278 protected:
   3279   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3280 
   3281 public:
   3282   TagDecl *getDecl() const;
   3283 
   3284   /// @brief Determines whether this type is in the process of being
   3285   /// defined.
   3286   bool isBeingDefined() const;
   3287 
   3288   static bool classof(const Type *T) {
   3289     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3290   }
   3291 };
   3292 
   3293 /// RecordType - This is a helper class that allows the use of isa/cast/dyncast
   3294 /// to detect TagType objects of structs/unions/classes.
   3295 class RecordType : public TagType {
   3296 protected:
   3297   explicit RecordType(const RecordDecl *D)
   3298     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3299   explicit RecordType(TypeClass TC, RecordDecl *D)
   3300     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3301   friend class ASTContext;   // ASTContext creates these.
   3302 public:
   3303 
   3304   RecordDecl *getDecl() const {
   3305     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3306   }
   3307 
   3308   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3309   // recursively check all fields for const-ness. If any field is declared
   3310   // const, it needs to return false.
   3311   bool hasConstFields() const { return false; }
   3312 
   3313   bool isSugared() const { return false; }
   3314   QualType desugar() const { return QualType(this, 0); }
   3315 
   3316   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3317 };
   3318 
   3319 /// EnumType - This is a helper class that allows the use of isa/cast/dyncast
   3320 /// to detect TagType objects of enums.
   3321 class EnumType : public TagType {
   3322   explicit EnumType(const EnumDecl *D)
   3323     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3324   friend class ASTContext;   // ASTContext creates these.
   3325 public:
   3326 
   3327   EnumDecl *getDecl() const {
   3328     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3329   }
   3330 
   3331   bool isSugared() const { return false; }
   3332   QualType desugar() const { return QualType(this, 0); }
   3333 
   3334   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3335 };
   3336 
   3337 /// AttributedType - An attributed type is a type to which a type
   3338 /// attribute has been applied.  The "modified type" is the
   3339 /// fully-sugared type to which the attributed type was applied;
   3340 /// generally it is not canonically equivalent to the attributed type.
   3341 /// The "equivalent type" is the minimally-desugared type which the
   3342 /// type is canonically equivalent to.
   3343 ///
   3344 /// For example, in the following attributed type:
   3345 ///     int32_t __attribute__((vector_size(16)))
   3346 ///   - the modified type is the TypedefType for int32_t
   3347 ///   - the equivalent type is VectorType(16, int32_t)
   3348 ///   - the canonical type is VectorType(16, int)
   3349 class AttributedType : public Type, public llvm::FoldingSetNode {
   3350 public:
   3351   // It is really silly to have yet another attribute-kind enum, but
   3352   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3353   enum Kind {
   3354     // Expression operand.
   3355     attr_address_space,
   3356     attr_regparm,
   3357     attr_vector_size,
   3358     attr_neon_vector_type,
   3359     attr_neon_polyvector_type,
   3360 
   3361     FirstExprOperandKind = attr_address_space,
   3362     LastExprOperandKind = attr_neon_polyvector_type,
   3363 
   3364     // Enumerated operand (string or keyword).
   3365     attr_objc_gc,
   3366     attr_objc_ownership,
   3367     attr_pcs,
   3368     attr_pcs_vfp,
   3369 
   3370     FirstEnumOperandKind = attr_objc_gc,
   3371     LastEnumOperandKind = attr_pcs_vfp,
   3372 
   3373     // No operand.
   3374     attr_noreturn,
   3375     attr_cdecl,
   3376     attr_fastcall,
   3377     attr_stdcall,
   3378     attr_thiscall,
   3379     attr_pascal,
   3380     attr_pnaclcall,
   3381     attr_inteloclbicc,
   3382     attr_ptr32,
   3383     attr_ptr64,
   3384     attr_sptr,
   3385     attr_uptr
   3386   };
   3387 
   3388 private:
   3389   QualType ModifiedType;
   3390   QualType EquivalentType;
   3391 
   3392   friend class ASTContext; // creates these
   3393 
   3394   AttributedType(QualType canon, Kind attrKind,
   3395                  QualType modified, QualType equivalent)
   3396     : Type(Attributed, canon, canon->isDependentType(),
   3397            canon->isInstantiationDependentType(),
   3398            canon->isVariablyModifiedType(),
   3399            canon->containsUnexpandedParameterPack()),
   3400       ModifiedType(modified), EquivalentType(equivalent) {
   3401     AttributedTypeBits.AttrKind = attrKind;
   3402   }
   3403 
   3404 public:
   3405   Kind getAttrKind() const {
   3406     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3407   }
   3408 
   3409   QualType getModifiedType() const { return ModifiedType; }
   3410   QualType getEquivalentType() const { return EquivalentType; }
   3411 
   3412   bool isSugared() const { return true; }
   3413   QualType desugar() const { return getEquivalentType(); }
   3414 
   3415   bool isMSTypeSpec() const;
   3416 
   3417   bool isCallingConv() const;
   3418 
   3419   void Profile(llvm::FoldingSetNodeID &ID) {
   3420     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3421   }
   3422 
   3423   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3424                       QualType modified, QualType equivalent) {
   3425     ID.AddInteger(attrKind);
   3426     ID.AddPointer(modified.getAsOpaquePtr());
   3427     ID.AddPointer(equivalent.getAsOpaquePtr());
   3428   }
   3429 
   3430   static bool classof(const Type *T) {
   3431     return T->getTypeClass() == Attributed;
   3432   }
   3433 };
   3434 
   3435 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3436   // Helper data collector for canonical types.
   3437   struct CanonicalTTPTInfo {
   3438     unsigned Depth : 15;
   3439     unsigned ParameterPack : 1;
   3440     unsigned Index : 16;
   3441   };
   3442 
   3443   union {
   3444     // Info for the canonical type.
   3445     CanonicalTTPTInfo CanTTPTInfo;
   3446     // Info for the non-canonical type.
   3447     TemplateTypeParmDecl *TTPDecl;
   3448   };
   3449 
   3450   /// Build a non-canonical type.
   3451   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3452     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3453            /*InstantiationDependent=*/true,
   3454            /*VariablyModified=*/false,
   3455            Canon->containsUnexpandedParameterPack()),
   3456       TTPDecl(TTPDecl) { }
   3457 
   3458   /// Build the canonical type.
   3459   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3460     : Type(TemplateTypeParm, QualType(this, 0),
   3461            /*Dependent=*/true,
   3462            /*InstantiationDependent=*/true,
   3463            /*VariablyModified=*/false, PP) {
   3464     CanTTPTInfo.Depth = D;
   3465     CanTTPTInfo.Index = I;
   3466     CanTTPTInfo.ParameterPack = PP;
   3467   }
   3468 
   3469   friend class ASTContext;  // ASTContext creates these
   3470 
   3471   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   3472     QualType Can = getCanonicalTypeInternal();
   3473     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   3474   }
   3475 
   3476 public:
   3477   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   3478   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   3479   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   3480 
   3481   TemplateTypeParmDecl *getDecl() const {
   3482     return isCanonicalUnqualified() ? 0 : TTPDecl;
   3483   }
   3484 
   3485   IdentifierInfo *getIdentifier() const;
   3486 
   3487   bool isSugared() const { return false; }
   3488   QualType desugar() const { return QualType(this, 0); }
   3489 
   3490   void Profile(llvm::FoldingSetNodeID &ID) {
   3491     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   3492   }
   3493 
   3494   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   3495                       unsigned Index, bool ParameterPack,
   3496                       TemplateTypeParmDecl *TTPDecl) {
   3497     ID.AddInteger(Depth);
   3498     ID.AddInteger(Index);
   3499     ID.AddBoolean(ParameterPack);
   3500     ID.AddPointer(TTPDecl);
   3501   }
   3502 
   3503   static bool classof(const Type *T) {
   3504     return T->getTypeClass() == TemplateTypeParm;
   3505   }
   3506 };
   3507 
   3508 /// \brief Represents the result of substituting a type for a template
   3509 /// type parameter.
   3510 ///
   3511 /// Within an instantiated template, all template type parameters have
   3512 /// been replaced with these.  They are used solely to record that a
   3513 /// type was originally written as a template type parameter;
   3514 /// therefore they are never canonical.
   3515 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3516   // The original type parameter.
   3517   const TemplateTypeParmType *Replaced;
   3518 
   3519   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   3520     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   3521            Canon->isInstantiationDependentType(),
   3522            Canon->isVariablyModifiedType(),
   3523            Canon->containsUnexpandedParameterPack()),
   3524       Replaced(Param) { }
   3525 
   3526   friend class ASTContext;
   3527 
   3528 public:
   3529   /// Gets the template parameter that was substituted for.
   3530   const TemplateTypeParmType *getReplacedParameter() const {
   3531     return Replaced;
   3532   }
   3533 
   3534   /// Gets the type that was substituted for the template
   3535   /// parameter.
   3536   QualType getReplacementType() const {
   3537     return getCanonicalTypeInternal();
   3538   }
   3539 
   3540   bool isSugared() const { return true; }
   3541   QualType desugar() const { return getReplacementType(); }
   3542 
   3543   void Profile(llvm::FoldingSetNodeID &ID) {
   3544     Profile(ID, getReplacedParameter(), getReplacementType());
   3545   }
   3546   static void Profile(llvm::FoldingSetNodeID &ID,
   3547                       const TemplateTypeParmType *Replaced,
   3548                       QualType Replacement) {
   3549     ID.AddPointer(Replaced);
   3550     ID.AddPointer(Replacement.getAsOpaquePtr());
   3551   }
   3552 
   3553   static bool classof(const Type *T) {
   3554     return T->getTypeClass() == SubstTemplateTypeParm;
   3555   }
   3556 };
   3557 
   3558 /// \brief Represents the result of substituting a set of types for a template
   3559 /// type parameter pack.
   3560 ///
   3561 /// When a pack expansion in the source code contains multiple parameter packs
   3562 /// and those parameter packs correspond to different levels of template
   3563 /// parameter lists, this type node is used to represent a template type
   3564 /// parameter pack from an outer level, which has already had its argument pack
   3565 /// substituted but that still lives within a pack expansion that itself
   3566 /// could not be instantiated. When actually performing a substitution into
   3567 /// that pack expansion (e.g., when all template parameters have corresponding
   3568 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   3569 /// at the current pack substitution index.
   3570 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   3571   /// \brief The original type parameter.
   3572   const TemplateTypeParmType *Replaced;
   3573 
   3574   /// \brief A pointer to the set of template arguments that this
   3575   /// parameter pack is instantiated with.
   3576   const TemplateArgument *Arguments;
   3577 
   3578   /// \brief The number of template arguments in \c Arguments.
   3579   unsigned NumArguments;
   3580 
   3581   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3582                                 QualType Canon,
   3583                                 const TemplateArgument &ArgPack);
   3584 
   3585   friend class ASTContext;
   3586 
   3587 public:
   3588   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   3589 
   3590   /// Gets the template parameter that was substituted for.
   3591   const TemplateTypeParmType *getReplacedParameter() const {
   3592     return Replaced;
   3593   }
   3594 
   3595   bool isSugared() const { return false; }
   3596   QualType desugar() const { return QualType(this, 0); }
   3597 
   3598   TemplateArgument getArgumentPack() const;
   3599 
   3600   void Profile(llvm::FoldingSetNodeID &ID);
   3601   static void Profile(llvm::FoldingSetNodeID &ID,
   3602                       const TemplateTypeParmType *Replaced,
   3603                       const TemplateArgument &ArgPack);
   3604 
   3605   static bool classof(const Type *T) {
   3606     return T->getTypeClass() == SubstTemplateTypeParmPack;
   3607   }
   3608 };
   3609 
   3610 /// \brief Represents a C++11 auto or C++1y decltype(auto) type.
   3611 ///
   3612 /// These types are usually a placeholder for a deduced type. However, before
   3613 /// the initializer is attached, or if the initializer is type-dependent, there
   3614 /// is no deduced type and an auto type is canonical. In the latter case, it is
   3615 /// also a dependent type.
   3616 class AutoType : public Type, public llvm::FoldingSetNode {
   3617   AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
   3618     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
   3619            /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
   3620            /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
   3621     assert((DeducedType.isNull() || !IsDependent) &&
   3622            "auto deduced to dependent type");
   3623     AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
   3624   }
   3625 
   3626   friend class ASTContext;  // ASTContext creates these
   3627 
   3628 public:
   3629   bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
   3630 
   3631   bool isSugared() const { return !isCanonicalUnqualified(); }
   3632   QualType desugar() const { return getCanonicalTypeInternal(); }
   3633 
   3634   /// \brief Get the type deduced for this auto type, or null if it's either
   3635   /// not been deduced or was deduced to a dependent type.
   3636   QualType getDeducedType() const {
   3637     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
   3638   }
   3639   bool isDeduced() const {
   3640     return !isCanonicalUnqualified() || isDependentType();
   3641   }
   3642 
   3643   void Profile(llvm::FoldingSetNodeID &ID) {
   3644     Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
   3645   }
   3646 
   3647   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
   3648                       bool IsDecltypeAuto, bool IsDependent) {
   3649     ID.AddPointer(Deduced.getAsOpaquePtr());
   3650     ID.AddBoolean(IsDecltypeAuto);
   3651     ID.AddBoolean(IsDependent);
   3652   }
   3653 
   3654   static bool classof(const Type *T) {
   3655     return T->getTypeClass() == Auto;
   3656   }
   3657 };
   3658 
   3659 /// \brief Represents a type template specialization; the template
   3660 /// must be a class template, a type alias template, or a template
   3661 /// template parameter.  A template which cannot be resolved to one of
   3662 /// these, e.g. because it is written with a dependent scope
   3663 /// specifier, is instead represented as a
   3664 /// @c DependentTemplateSpecializationType.
   3665 ///
   3666 /// A non-dependent template specialization type is always "sugar",
   3667 /// typically for a @c RecordType.  For example, a class template
   3668 /// specialization type of @c vector<int> will refer to a tag type for
   3669 /// the instantiation @c std::vector<int, std::allocator<int>>
   3670 ///
   3671 /// Template specializations are dependent if either the template or
   3672 /// any of the template arguments are dependent, in which case the
   3673 /// type may also be canonical.
   3674 ///
   3675 /// Instances of this type are allocated with a trailing array of
   3676 /// TemplateArguments, followed by a QualType representing the
   3677 /// non-canonical aliased type when the template is a type alias
   3678 /// template.
   3679 class TemplateSpecializationType
   3680   : public Type, public llvm::FoldingSetNode {
   3681   /// \brief The name of the template being specialized.  This is
   3682   /// either a TemplateName::Template (in which case it is a
   3683   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   3684   /// TypeAliasTemplateDecl*), a
   3685   /// TemplateName::SubstTemplateTemplateParmPack, or a
   3686   /// TemplateName::SubstTemplateTemplateParm (in which case the
   3687   /// replacement must, recursively, be one of these).
   3688   TemplateName Template;
   3689 
   3690   /// \brief - The number of template arguments named in this class
   3691   /// template specialization.
   3692   unsigned NumArgs : 31;
   3693 
   3694   /// \brief Whether this template specialization type is a substituted
   3695   /// type alias.
   3696   bool TypeAlias : 1;
   3697 
   3698   TemplateSpecializationType(TemplateName T,
   3699                              const TemplateArgument *Args,
   3700                              unsigned NumArgs, QualType Canon,
   3701                              QualType Aliased);
   3702 
   3703   friend class ASTContext;  // ASTContext creates these
   3704 
   3705 public:
   3706   /// \brief Determine whether any of the given template arguments are
   3707   /// dependent.
   3708   static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
   3709                                             unsigned NumArgs,
   3710                                             bool &InstantiationDependent);
   3711 
   3712   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   3713                                             bool &InstantiationDependent);
   3714 
   3715   /// \brief Print a template argument list, including the '<' and '>'
   3716   /// enclosing the template arguments.
   3717   static void PrintTemplateArgumentList(raw_ostream &OS,
   3718                                         const TemplateArgument *Args,
   3719                                         unsigned NumArgs,
   3720                                         const PrintingPolicy &Policy,
   3721                                         bool SkipBrackets = false);
   3722 
   3723   static void PrintTemplateArgumentList(raw_ostream &OS,
   3724                                         const TemplateArgumentLoc *Args,
   3725                                         unsigned NumArgs,
   3726                                         const PrintingPolicy &Policy);
   3727 
   3728   static void PrintTemplateArgumentList(raw_ostream &OS,
   3729                                         const TemplateArgumentListInfo &,
   3730                                         const PrintingPolicy &Policy);
   3731 
   3732   /// True if this template specialization type matches a current
   3733   /// instantiation in the context in which it is found.
   3734   bool isCurrentInstantiation() const {
   3735     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   3736   }
   3737 
   3738   /// \brief Determine if this template specialization type is for a type alias
   3739   /// template that has been substituted.
   3740   ///
   3741   /// Nearly every template specialization type whose template is an alias
   3742   /// template will be substituted. However, this is not the case when
   3743   /// the specialization contains a pack expansion but the template alias
   3744   /// does not have a corresponding parameter pack, e.g.,
   3745   ///
   3746   /// \code
   3747   /// template<typename T, typename U, typename V> struct S;
   3748   /// template<typename T, typename U> using A = S<T, int, U>;
   3749   /// template<typename... Ts> struct X {
   3750   ///   typedef A<Ts...> type; // not a type alias
   3751   /// };
   3752   /// \endcode
   3753   bool isTypeAlias() const { return TypeAlias; }
   3754 
   3755   /// Get the aliased type, if this is a specialization of a type alias
   3756   /// template.
   3757   QualType getAliasedType() const {
   3758     assert(isTypeAlias() && "not a type alias template specialization");
   3759     return *reinterpret_cast<const QualType*>(end());
   3760   }
   3761 
   3762   typedef const TemplateArgument * iterator;
   3763 
   3764   iterator begin() const { return getArgs(); }
   3765   iterator end() const; // defined inline in TemplateBase.h
   3766 
   3767   /// \brief Retrieve the name of the template that we are specializing.
   3768   TemplateName getTemplateName() const { return Template; }
   3769 
   3770   /// \brief Retrieve the template arguments.
   3771   const TemplateArgument *getArgs() const {
   3772     return reinterpret_cast<const TemplateArgument *>(this + 1);
   3773   }
   3774 
   3775   /// \brief Retrieve the number of template arguments.
   3776   unsigned getNumArgs() const { return NumArgs; }
   3777 
   3778   /// \brief Retrieve a specific template argument as a type.
   3779   /// \pre @c isArgType(Arg)
   3780   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3781 
   3782   bool isSugared() const {
   3783     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   3784   }
   3785   QualType desugar() const { return getCanonicalTypeInternal(); }
   3786 
   3787   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   3788     Profile(ID, Template, getArgs(), NumArgs, Ctx);
   3789     if (isTypeAlias())
   3790       getAliasedType().Profile(ID);
   3791   }
   3792 
   3793   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   3794                       const TemplateArgument *Args,
   3795                       unsigned NumArgs,
   3796                       const ASTContext &Context);
   3797 
   3798   static bool classof(const Type *T) {
   3799     return T->getTypeClass() == TemplateSpecialization;
   3800   }
   3801 };
   3802 
   3803 /// \brief The injected class name of a C++ class template or class
   3804 /// template partial specialization.  Used to record that a type was
   3805 /// spelled with a bare identifier rather than as a template-id; the
   3806 /// equivalent for non-templated classes is just RecordType.
   3807 ///
   3808 /// Injected class name types are always dependent.  Template
   3809 /// instantiation turns these into RecordTypes.
   3810 ///
   3811 /// Injected class name types are always canonical.  This works
   3812 /// because it is impossible to compare an injected class name type
   3813 /// with the corresponding non-injected template type, for the same
   3814 /// reason that it is impossible to directly compare template
   3815 /// parameters from different dependent contexts: injected class name
   3816 /// types can only occur within the scope of a particular templated
   3817 /// declaration, and within that scope every template specialization
   3818 /// will canonicalize to the injected class name (when appropriate
   3819 /// according to the rules of the language).
   3820 class InjectedClassNameType : public Type {
   3821   CXXRecordDecl *Decl;
   3822 
   3823   /// The template specialization which this type represents.
   3824   /// For example, in
   3825   ///   template <class T> class A { ... };
   3826   /// this is A<T>, whereas in
   3827   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   3828   /// this is A<B<X,Y> >.
   3829   ///
   3830   /// It is always unqualified, always a template specialization type,
   3831   /// and always dependent.
   3832   QualType InjectedType;
   3833 
   3834   friend class ASTContext; // ASTContext creates these.
   3835   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   3836                           // currently suitable for AST reading, too much
   3837                           // interdependencies.
   3838   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   3839     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   3840            /*InstantiationDependent=*/true,
   3841            /*VariablyModified=*/false,
   3842            /*ContainsUnexpandedParameterPack=*/false),
   3843       Decl(D), InjectedType(TST) {
   3844     assert(isa<TemplateSpecializationType>(TST));
   3845     assert(!TST.hasQualifiers());
   3846     assert(TST->isDependentType());
   3847   }
   3848 
   3849 public:
   3850   QualType getInjectedSpecializationType() const { return InjectedType; }
   3851   const TemplateSpecializationType *getInjectedTST() const {
   3852     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   3853   }
   3854 
   3855   CXXRecordDecl *getDecl() const;
   3856 
   3857   bool isSugared() const { return false; }
   3858   QualType desugar() const { return QualType(this, 0); }
   3859 
   3860   static bool classof(const Type *T) {
   3861     return T->getTypeClass() == InjectedClassName;
   3862   }
   3863 };
   3864 
   3865 /// \brief The kind of a tag type.
   3866 enum TagTypeKind {
   3867   /// \brief The "struct" keyword.
   3868   TTK_Struct,
   3869   /// \brief The "__interface" keyword.
   3870   TTK_Interface,
   3871   /// \brief The "union" keyword.
   3872   TTK_Union,
   3873   /// \brief The "class" keyword.
   3874   TTK_Class,
   3875   /// \brief The "enum" keyword.
   3876   TTK_Enum
   3877 };
   3878 
   3879 /// \brief The elaboration keyword that precedes a qualified type name or
   3880 /// introduces an elaborated-type-specifier.
   3881 enum ElaboratedTypeKeyword {
   3882   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   3883   ETK_Struct,
   3884   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
   3885   ETK_Interface,
   3886   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   3887   ETK_Union,
   3888   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   3889   ETK_Class,
   3890   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   3891   ETK_Enum,
   3892   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   3893   /// \c typename T::type.
   3894   ETK_Typename,
   3895   /// \brief No keyword precedes the qualified type name.
   3896   ETK_None
   3897 };
   3898 
   3899 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   3900 /// The keyword in stored in the free bits of the base class.
   3901 /// Also provides a few static helpers for converting and printing
   3902 /// elaborated type keyword and tag type kind enumerations.
   3903 class TypeWithKeyword : public Type {
   3904 protected:
   3905   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   3906                   QualType Canonical, bool Dependent,
   3907                   bool InstantiationDependent, bool VariablyModified,
   3908                   bool ContainsUnexpandedParameterPack)
   3909   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3910          ContainsUnexpandedParameterPack) {
   3911     TypeWithKeywordBits.Keyword = Keyword;
   3912   }
   3913 
   3914 public:
   3915   ElaboratedTypeKeyword getKeyword() const {
   3916     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   3917   }
   3918 
   3919   /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3920   /// into an elaborated type keyword.
   3921   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   3922 
   3923   /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3924   /// into a tag type kind.  It is an error to provide a type specifier
   3925   /// which *isn't* a tag kind here.
   3926   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   3927 
   3928   /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
   3929   /// elaborated type keyword.
   3930   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   3931 
   3932   /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
   3933   // a TagTypeKind. It is an error to provide an elaborated type keyword
   3934   /// which *isn't* a tag kind here.
   3935   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   3936 
   3937   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   3938 
   3939   static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
   3940 
   3941   static const char *getTagTypeKindName(TagTypeKind Kind) {
   3942     return getKeywordName(getKeywordForTagTypeKind(Kind));
   3943   }
   3944 
   3945   class CannotCastToThisType {};
   3946   static CannotCastToThisType classof(const Type *);
   3947 };
   3948 
   3949 /// \brief Represents a type that was referred to using an elaborated type
   3950 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   3951 /// or both.
   3952 ///
   3953 /// This type is used to keep track of a type name as written in the
   3954 /// source code, including tag keywords and any nested-name-specifiers.
   3955 /// The type itself is always "sugar", used to express what was written
   3956 /// in the source code but containing no additional semantic information.
   3957 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3958 
   3959   /// \brief The nested name specifier containing the qualifier.
   3960   NestedNameSpecifier *NNS;
   3961 
   3962   /// \brief The type that this qualified name refers to.
   3963   QualType NamedType;
   3964 
   3965   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3966                  QualType NamedType, QualType CanonType)
   3967     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   3968                       NamedType->isDependentType(),
   3969                       NamedType->isInstantiationDependentType(),
   3970                       NamedType->isVariablyModifiedType(),
   3971                       NamedType->containsUnexpandedParameterPack()),
   3972       NNS(NNS), NamedType(NamedType) {
   3973     assert(!(Keyword == ETK_None && NNS == 0) &&
   3974            "ElaboratedType cannot have elaborated type keyword "
   3975            "and name qualifier both null.");
   3976   }
   3977 
   3978   friend class ASTContext;  // ASTContext creates these
   3979 
   3980 public:
   3981   ~ElaboratedType();
   3982 
   3983   /// \brief Retrieve the qualification on this type.
   3984   NestedNameSpecifier *getQualifier() const { return NNS; }
   3985 
   3986   /// \brief Retrieve the type named by the qualified-id.
   3987   QualType getNamedType() const { return NamedType; }
   3988 
   3989   /// \brief Remove a single level of sugar.
   3990   QualType desugar() const { return getNamedType(); }
   3991 
   3992   /// \brief Returns whether this type directly provides sugar.
   3993   bool isSugared() const { return true; }
   3994 
   3995   void Profile(llvm::FoldingSetNodeID &ID) {
   3996     Profile(ID, getKeyword(), NNS, NamedType);
   3997   }
   3998 
   3999   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4000                       NestedNameSpecifier *NNS, QualType NamedType) {
   4001     ID.AddInteger(Keyword);
   4002     ID.AddPointer(NNS);
   4003     NamedType.Profile(ID);
   4004   }
   4005 
   4006   static bool classof(const Type *T) {
   4007     return T->getTypeClass() == Elaborated;
   4008   }
   4009 };
   4010 
   4011 /// \brief Represents a qualified type name for which the type name is
   4012 /// dependent.
   4013 ///
   4014 /// DependentNameType represents a class of dependent types that involve a
   4015 /// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
   4016 /// name of a type. The DependentNameType may start with a "typename" (for a
   4017 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   4018 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   4019 /// know that we must be referring to a type, e.g., in a base class specifier).
   4020 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4021 
   4022   /// \brief The nested name specifier containing the qualifier.
   4023   NestedNameSpecifier *NNS;
   4024 
   4025   /// \brief The type that this typename specifier refers to.
   4026   const IdentifierInfo *Name;
   4027 
   4028   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4029                     const IdentifierInfo *Name, QualType CanonType)
   4030     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   4031                       /*InstantiationDependent=*/true,
   4032                       /*VariablyModified=*/false,
   4033                       NNS->containsUnexpandedParameterPack()),
   4034       NNS(NNS), Name(Name) {
   4035     assert(NNS->isDependent() &&
   4036            "DependentNameType requires a dependent nested-name-specifier");
   4037   }
   4038 
   4039   friend class ASTContext;  // ASTContext creates these
   4040 
   4041 public:
   4042   /// \brief Retrieve the qualification on this type.
   4043   NestedNameSpecifier *getQualifier() const { return NNS; }
   4044 
   4045   /// \brief Retrieve the type named by the typename specifier as an
   4046   /// identifier.
   4047   ///
   4048   /// This routine will return a non-NULL identifier pointer when the
   4049   /// form of the original typename was terminated by an identifier,
   4050   /// e.g., "typename T::type".
   4051   const IdentifierInfo *getIdentifier() const {
   4052     return Name;
   4053   }
   4054 
   4055   bool isSugared() const { return false; }
   4056   QualType desugar() const { return QualType(this, 0); }
   4057 
   4058   void Profile(llvm::FoldingSetNodeID &ID) {
   4059     Profile(ID, getKeyword(), NNS, Name);
   4060   }
   4061 
   4062   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4063                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   4064     ID.AddInteger(Keyword);
   4065     ID.AddPointer(NNS);
   4066     ID.AddPointer(Name);
   4067   }
   4068 
   4069   static bool classof(const Type *T) {
   4070     return T->getTypeClass() == DependentName;
   4071   }
   4072 };
   4073 
   4074 /// DependentTemplateSpecializationType - Represents a template
   4075 /// specialization type whose template cannot be resolved, e.g.
   4076 ///   A<T>::template B<T>
   4077 class DependentTemplateSpecializationType :
   4078   public TypeWithKeyword, public llvm::FoldingSetNode {
   4079 
   4080   /// \brief The nested name specifier containing the qualifier.
   4081   NestedNameSpecifier *NNS;
   4082 
   4083   /// \brief The identifier of the template.
   4084   const IdentifierInfo *Name;
   4085 
   4086   /// \brief - The number of template arguments named in this class
   4087   /// template specialization.
   4088   unsigned NumArgs;
   4089 
   4090   const TemplateArgument *getArgBuffer() const {
   4091     return reinterpret_cast<const TemplateArgument*>(this+1);
   4092   }
   4093   TemplateArgument *getArgBuffer() {
   4094     return reinterpret_cast<TemplateArgument*>(this+1);
   4095   }
   4096 
   4097   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   4098                                       NestedNameSpecifier *NNS,
   4099                                       const IdentifierInfo *Name,
   4100                                       unsigned NumArgs,
   4101                                       const TemplateArgument *Args,
   4102                                       QualType Canon);
   4103 
   4104   friend class ASTContext;  // ASTContext creates these
   4105 
   4106 public:
   4107   NestedNameSpecifier *getQualifier() const { return NNS; }
   4108   const IdentifierInfo *getIdentifier() const { return Name; }
   4109 
   4110   /// \brief Retrieve the template arguments.
   4111   const TemplateArgument *getArgs() const {
   4112     return getArgBuffer();
   4113   }
   4114 
   4115   /// \brief Retrieve the number of template arguments.
   4116   unsigned getNumArgs() const { return NumArgs; }
   4117 
   4118   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4119 
   4120   typedef const TemplateArgument * iterator;
   4121   iterator begin() const { return getArgs(); }
   4122   iterator end() const; // inline in TemplateBase.h
   4123 
   4124   bool isSugared() const { return false; }
   4125   QualType desugar() const { return QualType(this, 0); }
   4126 
   4127   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   4128     Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
   4129   }
   4130 
   4131   static void Profile(llvm::FoldingSetNodeID &ID,
   4132                       const ASTContext &Context,
   4133                       ElaboratedTypeKeyword Keyword,
   4134                       NestedNameSpecifier *Qualifier,
   4135                       const IdentifierInfo *Name,
   4136                       unsigned NumArgs,
   4137                       const TemplateArgument *Args);
   4138 
   4139   static bool classof(const Type *T) {
   4140     return T->getTypeClass() == DependentTemplateSpecialization;
   4141   }
   4142 };
   4143 
   4144 /// \brief Represents a pack expansion of types.
   4145 ///
   4146 /// Pack expansions are part of C++0x variadic templates. A pack
   4147 /// expansion contains a pattern, which itself contains one or more
   4148 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4149 /// produces a series of types, each instantiated from the pattern of
   4150 /// the expansion, where the Ith instantiation of the pattern uses the
   4151 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4152 /// pack expansion is considered to "expand" these unexpanded
   4153 /// parameter packs.
   4154 ///
   4155 /// \code
   4156 /// template<typename ...Types> struct tuple;
   4157 ///
   4158 /// template<typename ...Types>
   4159 /// struct tuple_of_references {
   4160 ///   typedef tuple<Types&...> type;
   4161 /// };
   4162 /// \endcode
   4163 ///
   4164 /// Here, the pack expansion \c Types&... is represented via a
   4165 /// PackExpansionType whose pattern is Types&.
   4166 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4167   /// \brief The pattern of the pack expansion.
   4168   QualType Pattern;
   4169 
   4170   /// \brief The number of expansions that this pack expansion will
   4171   /// generate when substituted (+1), or indicates that
   4172   ///
   4173   /// This field will only have a non-zero value when some of the parameter
   4174   /// packs that occur within the pattern have been substituted but others have
   4175   /// not.
   4176   unsigned NumExpansions;
   4177 
   4178   PackExpansionType(QualType Pattern, QualType Canon,
   4179                     Optional<unsigned> NumExpansions)
   4180     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
   4181            /*InstantiationDependent=*/true,
   4182            /*VariableModified=*/Pattern->isVariablyModifiedType(),
   4183            /*ContainsUnexpandedParameterPack=*/false),
   4184       Pattern(Pattern),
   4185       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4186 
   4187   friend class ASTContext;  // ASTContext creates these
   4188 
   4189 public:
   4190   /// \brief Retrieve the pattern of this pack expansion, which is the
   4191   /// type that will be repeatedly instantiated when instantiating the
   4192   /// pack expansion itself.
   4193   QualType getPattern() const { return Pattern; }
   4194 
   4195   /// \brief Retrieve the number of expansions that this pack expansion will
   4196   /// generate, if known.
   4197   Optional<unsigned> getNumExpansions() const {
   4198     if (NumExpansions)
   4199       return NumExpansions - 1;
   4200 
   4201     return None;
   4202   }
   4203 
   4204   bool isSugared() const { return !Pattern->isDependentType(); }
   4205   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
   4206 
   4207   void Profile(llvm::FoldingSetNodeID &ID) {
   4208     Profile(ID, getPattern(), getNumExpansions());
   4209   }
   4210 
   4211   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4212                       Optional<unsigned> NumExpansions) {
   4213     ID.AddPointer(Pattern.getAsOpaquePtr());
   4214     ID.AddBoolean(NumExpansions.hasValue());
   4215     if (NumExpansions)
   4216       ID.AddInteger(*NumExpansions);
   4217   }
   4218 
   4219   static bool classof(const Type *T) {
   4220     return T->getTypeClass() == PackExpansion;
   4221   }
   4222 };
   4223 
   4224 /// ObjCObjectType - Represents a class type in Objective C.
   4225 /// Every Objective C type is a combination of a base type and a
   4226 /// list of protocols.
   4227 ///
   4228 /// Given the following declarations:
   4229 /// \code
   4230 ///   \@class C;
   4231 ///   \@protocol P;
   4232 /// \endcode
   4233 ///
   4234 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4235 /// with base C and no protocols.
   4236 ///
   4237 /// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
   4238 ///
   4239 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
   4240 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4241 /// and no protocols.
   4242 ///
   4243 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
   4244 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4245 /// this should get its own sugar class to better represent the source.
   4246 class ObjCObjectType : public Type {
   4247   // ObjCObjectType.NumProtocols - the number of protocols stored
   4248   // after the ObjCObjectPointerType node.
   4249   //
   4250   // These protocols are those written directly on the type.  If
   4251   // protocol qualifiers ever become additive, the iterators will need
   4252   // to get kindof complicated.
   4253   //
   4254   // In the canonical object type, these are sorted alphabetically
   4255   // and uniqued.
   4256 
   4257   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4258   QualType BaseType;
   4259 
   4260   ObjCProtocolDecl * const *getProtocolStorage() const {
   4261     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
   4262   }
   4263 
   4264   ObjCProtocolDecl **getProtocolStorage();
   4265 
   4266 protected:
   4267   ObjCObjectType(QualType Canonical, QualType Base,
   4268                  ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
   4269 
   4270   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4271   ObjCObjectType(enum Nonce_ObjCInterface)
   4272         : Type(ObjCInterface, QualType(), false, false, false, false),
   4273       BaseType(QualType(this_(), 0)) {
   4274     ObjCObjectTypeBits.NumProtocols = 0;
   4275   }
   4276 
   4277 public:
   4278   /// getBaseType - Gets the base type of this object type.  This is
   4279   /// always (possibly sugar for) one of:
   4280   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   4281   ///    user, which is a typedef for an ObjCObjectPointerType)
   4282   ///  - the 'Class' builtin type (same caveat)
   4283   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   4284   QualType getBaseType() const { return BaseType; }
   4285 
   4286   bool isObjCId() const {
   4287     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   4288   }
   4289   bool isObjCClass() const {
   4290     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   4291   }
   4292   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   4293   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   4294   bool isObjCUnqualifiedIdOrClass() const {
   4295     if (!qual_empty()) return false;
   4296     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   4297       return T->getKind() == BuiltinType::ObjCId ||
   4298              T->getKind() == BuiltinType::ObjCClass;
   4299     return false;
   4300   }
   4301   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   4302   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   4303 
   4304   /// Gets the interface declaration for this object type, if the base type
   4305   /// really is an interface.
   4306   ObjCInterfaceDecl *getInterface() const;
   4307 
   4308   typedef ObjCProtocolDecl * const *qual_iterator;
   4309 
   4310   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4311   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4312 
   4313   bool qual_empty() const { return getNumProtocols() == 0; }
   4314 
   4315   /// getNumProtocols - Return the number of qualifying protocols in this
   4316   /// interface type, or 0 if there are none.
   4317   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
   4318 
   4319   /// \brief Fetch a protocol by index.
   4320   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4321     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4322     return qual_begin()[I];
   4323   }
   4324 
   4325   bool isSugared() const { return false; }
   4326   QualType desugar() const { return QualType(this, 0); }
   4327 
   4328   static bool classof(const Type *T) {
   4329     return T->getTypeClass() == ObjCObject ||
   4330            T->getTypeClass() == ObjCInterface;
   4331   }
   4332 };
   4333 
   4334 /// ObjCObjectTypeImpl - A class providing a concrete implementation
   4335 /// of ObjCObjectType, so as to not increase the footprint of
   4336 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   4337 /// system should not reference this type.
   4338 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   4339   friend class ASTContext;
   4340 
   4341   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   4342   // will need to be modified.
   4343 
   4344   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   4345                      ObjCProtocolDecl * const *Protocols,
   4346                      unsigned NumProtocols)
   4347     : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
   4348 
   4349 public:
   4350   void Profile(llvm::FoldingSetNodeID &ID);
   4351   static void Profile(llvm::FoldingSetNodeID &ID,
   4352                       QualType Base,
   4353                       ObjCProtocolDecl *const *protocols,
   4354                       unsigned NumProtocols);
   4355 };
   4356 
   4357 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
   4358   return reinterpret_cast<ObjCProtocolDecl**>(
   4359             static_cast<ObjCObjectTypeImpl*>(this) + 1);
   4360 }
   4361 
   4362 /// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
   4363 /// object oriented design.  They basically correspond to C++ classes.  There
   4364 /// are two kinds of interface types, normal interfaces like "NSString" and
   4365 /// qualified interfaces, which are qualified with a protocol list like
   4366 /// "NSString<NSCopyable, NSAmazing>".
   4367 ///
   4368 /// ObjCInterfaceType guarantees the following properties when considered
   4369 /// as a subtype of its superclass, ObjCObjectType:
   4370 ///   - There are no protocol qualifiers.  To reinforce this, code which
   4371 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   4372 ///     fail to compile.
   4373 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   4374 ///     T->getBaseType() == QualType(T, 0).
   4375 class ObjCInterfaceType : public ObjCObjectType {
   4376   mutable ObjCInterfaceDecl *Decl;
   4377 
   4378   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   4379     : ObjCObjectType(Nonce_ObjCInterface),
   4380       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   4381   friend class ASTContext;  // ASTContext creates these.
   4382   friend class ASTReader;
   4383   friend class ObjCInterfaceDecl;
   4384 
   4385 public:
   4386   /// getDecl - Get the declaration of this interface.
   4387   ObjCInterfaceDecl *getDecl() const { return Decl; }
   4388 
   4389   bool isSugared() const { return false; }
   4390   QualType desugar() const { return QualType(this, 0); }
   4391 
   4392   static bool classof(const Type *T) {
   4393     return T->getTypeClass() == ObjCInterface;
   4394   }
   4395 
   4396   // Nonsense to "hide" certain members of ObjCObjectType within this
   4397   // class.  People asking for protocols on an ObjCInterfaceType are
   4398   // not going to get what they want: ObjCInterfaceTypes are
   4399   // guaranteed to have no protocols.
   4400   enum {
   4401     qual_iterator,
   4402     qual_begin,
   4403     qual_end,
   4404     getNumProtocols,
   4405     getProtocol
   4406   };
   4407 };
   4408 
   4409 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   4410   if (const ObjCInterfaceType *T =
   4411         getBaseType()->getAs<ObjCInterfaceType>())
   4412     return T->getDecl();
   4413   return 0;
   4414 }
   4415 
   4416 /// ObjCObjectPointerType - Used to represent a pointer to an
   4417 /// Objective C object.  These are constructed from pointer
   4418 /// declarators when the pointee type is an ObjCObjectType (or sugar
   4419 /// for one).  In addition, the 'id' and 'Class' types are typedefs
   4420 /// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
   4421 /// are translated into these.
   4422 ///
   4423 /// Pointers to pointers to Objective C objects are still PointerTypes;
   4424 /// only the first level of pointer gets it own type implementation.
   4425 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   4426   QualType PointeeType;
   4427 
   4428   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   4429     : Type(ObjCObjectPointer, Canonical, false, false, false, false),
   4430       PointeeType(Pointee) {}
   4431   friend class ASTContext;  // ASTContext creates these.
   4432 
   4433 public:
   4434   /// getPointeeType - Gets the type pointed to by this ObjC pointer.
   4435   /// The result will always be an ObjCObjectType or sugar thereof.
   4436   QualType getPointeeType() const { return PointeeType; }
   4437 
   4438   /// getObjCObjectType - Gets the type pointed to by this ObjC
   4439   /// pointer.  This method always returns non-null.
   4440   ///
   4441   /// This method is equivalent to getPointeeType() except that
   4442   /// it discards any typedefs (or other sugar) between this
   4443   /// type and the "outermost" object type.  So for:
   4444   /// \code
   4445   ///   \@class A; \@protocol P; \@protocol Q;
   4446   ///   typedef A<P> AP;
   4447   ///   typedef A A1;
   4448   ///   typedef A1<P> A1P;
   4449   ///   typedef A1P<Q> A1PQ;
   4450   /// \endcode
   4451   /// For 'A*', getObjectType() will return 'A'.
   4452   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   4453   /// For 'AP*', getObjectType() will return 'A<P>'.
   4454   /// For 'A1*', getObjectType() will return 'A'.
   4455   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   4456   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   4457   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   4458   ///   adding protocols to a protocol-qualified base discards the
   4459   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   4460   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   4461   ///   qualifiers more complicated).
   4462   const ObjCObjectType *getObjectType() const {
   4463     return PointeeType->castAs<ObjCObjectType>();
   4464   }
   4465 
   4466   /// getInterfaceType - If this pointer points to an Objective C
   4467   /// \@interface type, gets the type for that interface.  Any protocol
   4468   /// qualifiers on the interface are ignored.
   4469   ///
   4470   /// \return null if the base type for this pointer is 'id' or 'Class'
   4471   const ObjCInterfaceType *getInterfaceType() const {
   4472     return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
   4473   }
   4474 
   4475   /// getInterfaceDecl - If this pointer points to an Objective \@interface
   4476   /// type, gets the declaration for that interface.
   4477   ///
   4478   /// \return null if the base type for this pointer is 'id' or 'Class'
   4479   ObjCInterfaceDecl *getInterfaceDecl() const {
   4480     return getObjectType()->getInterface();
   4481   }
   4482 
   4483   /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
   4484   /// its object type is the primitive 'id' type with no protocols.
   4485   bool isObjCIdType() const {
   4486     return getObjectType()->isObjCUnqualifiedId();
   4487   }
   4488 
   4489   /// isObjCClassType - True if this is equivalent to the 'Class' type,
   4490   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   4491   bool isObjCClassType() const {
   4492     return getObjectType()->isObjCUnqualifiedClass();
   4493   }
   4494 
   4495   /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
   4496   /// non-empty set of protocols.
   4497   bool isObjCQualifiedIdType() const {
   4498     return getObjectType()->isObjCQualifiedId();
   4499   }
   4500 
   4501   /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
   4502   /// some non-empty set of protocols.
   4503   bool isObjCQualifiedClassType() const {
   4504     return getObjectType()->isObjCQualifiedClass();
   4505   }
   4506 
   4507   /// An iterator over the qualifiers on the object type.  Provided
   4508   /// for convenience.  This will always iterate over the full set of
   4509   /// protocols on a type, not just those provided directly.
   4510   typedef ObjCObjectType::qual_iterator qual_iterator;
   4511 
   4512   qual_iterator qual_begin() const {
   4513     return getObjectType()->qual_begin();
   4514   }
   4515   qual_iterator qual_end() const {
   4516     return getObjectType()->qual_end();
   4517   }
   4518   bool qual_empty() const { return getObjectType()->qual_empty(); }
   4519 
   4520   /// getNumProtocols - Return the number of qualifying protocols on
   4521   /// the object type.
   4522   unsigned getNumProtocols() const {
   4523     return getObjectType()->getNumProtocols();
   4524   }
   4525 
   4526   /// \brief Retrieve a qualifying protocol by index on the object
   4527   /// type.
   4528   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4529     return getObjectType()->getProtocol(I);
   4530   }
   4531 
   4532   bool isSugared() const { return false; }
   4533   QualType desugar() const { return QualType(this, 0); }
   4534 
   4535   void Profile(llvm::FoldingSetNodeID &ID) {
   4536     Profile(ID, getPointeeType());
   4537   }
   4538   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4539     ID.AddPointer(T.getAsOpaquePtr());
   4540   }
   4541   static bool classof(const Type *T) {
   4542     return T->getTypeClass() == ObjCObjectPointer;
   4543   }
   4544 };
   4545 
   4546 class AtomicType : public Type, public llvm::FoldingSetNode {
   4547   QualType ValueType;
   4548 
   4549   AtomicType(QualType ValTy, QualType Canonical)
   4550     : Type(Atomic, Canonical, ValTy->isDependentType(),
   4551            ValTy->isInstantiationDependentType(),
   4552            ValTy->isVariablyModifiedType(),
   4553            ValTy->containsUnexpandedParameterPack()),
   4554       ValueType(ValTy) {}
   4555   friend class ASTContext;  // ASTContext creates these.
   4556 
   4557   public:
   4558   /// getValueType - Gets the type contained by this atomic type, i.e.
   4559   /// the type returned by performing an atomic load of this atomic type.
   4560   QualType getValueType() const { return ValueType; }
   4561 
   4562   bool isSugared() const { return false; }
   4563   QualType desugar() const { return QualType(this, 0); }
   4564 
   4565   void Profile(llvm::FoldingSetNodeID &ID) {
   4566     Profile(ID, getValueType());
   4567   }
   4568   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4569     ID.AddPointer(T.getAsOpaquePtr());
   4570   }
   4571   static bool classof(const Type *T) {
   4572     return T->getTypeClass() == Atomic;
   4573   }
   4574 };
   4575 
   4576 /// A qualifier set is used to build a set of qualifiers.
   4577 class QualifierCollector : public Qualifiers {
   4578 public:
   4579   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   4580 
   4581   /// Collect any qualifiers on the given type and return an
   4582   /// unqualified type.  The qualifiers are assumed to be consistent
   4583   /// with those already in the type.
   4584   const Type *strip(QualType type) {
   4585     addFastQualifiers(type.getLocalFastQualifiers());
   4586     if (!type.hasLocalNonFastQualifiers())
   4587       return type.getTypePtrUnsafe();
   4588 
   4589     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   4590     addConsistentQualifiers(extQuals->getQualifiers());
   4591     return extQuals->getBaseType();
   4592   }
   4593 
   4594   /// Apply the collected qualifiers to the given type.
   4595   QualType apply(const ASTContext &Context, QualType QT) const;
   4596 
   4597   /// Apply the collected qualifiers to the given type.
   4598   QualType apply(const ASTContext &Context, const Type* T) const;
   4599 };
   4600 
   4601 
   4602 // Inline function definitions.
   4603 
   4604 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   4605   SplitQualType desugar =
   4606     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   4607   desugar.Quals.addConsistentQualifiers(Quals);
   4608   return desugar;
   4609 }
   4610 
   4611 inline const Type *QualType::getTypePtr() const {
   4612   return getCommonPtr()->BaseType;
   4613 }
   4614 
   4615 inline const Type *QualType::getTypePtrOrNull() const {
   4616   return (isNull() ? 0 : getCommonPtr()->BaseType);
   4617 }
   4618 
   4619 inline SplitQualType QualType::split() const {
   4620   if (!hasLocalNonFastQualifiers())
   4621     return SplitQualType(getTypePtrUnsafe(),
   4622                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   4623 
   4624   const ExtQuals *eq = getExtQualsUnsafe();
   4625   Qualifiers qs = eq->getQualifiers();
   4626   qs.addFastQualifiers(getLocalFastQualifiers());
   4627   return SplitQualType(eq->getBaseType(), qs);
   4628 }
   4629 
   4630 inline Qualifiers QualType::getLocalQualifiers() const {
   4631   Qualifiers Quals;
   4632   if (hasLocalNonFastQualifiers())
   4633     Quals = getExtQualsUnsafe()->getQualifiers();
   4634   Quals.addFastQualifiers(getLocalFastQualifiers());
   4635   return Quals;
   4636 }
   4637 
   4638 inline Qualifiers QualType::getQualifiers() const {
   4639   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   4640   quals.addFastQualifiers(getLocalFastQualifiers());
   4641   return quals;
   4642 }
   4643 
   4644 inline unsigned QualType::getCVRQualifiers() const {
   4645   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   4646   cvr |= getLocalCVRQualifiers();
   4647   return cvr;
   4648 }
   4649 
   4650 inline QualType QualType::getCanonicalType() const {
   4651   QualType canon = getCommonPtr()->CanonicalType;
   4652   return canon.withFastQualifiers(getLocalFastQualifiers());
   4653 }
   4654 
   4655 inline bool QualType::isCanonical() const {
   4656   return getTypePtr()->isCanonicalUnqualified();
   4657 }
   4658 
   4659 inline bool QualType::isCanonicalAsParam() const {
   4660   if (!isCanonical()) return false;
   4661   if (hasLocalQualifiers()) return false;
   4662 
   4663   const Type *T = getTypePtr();
   4664   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   4665     return false;
   4666 
   4667   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   4668 }
   4669 
   4670 inline bool QualType::isConstQualified() const {
   4671   return isLocalConstQualified() ||
   4672          getCommonPtr()->CanonicalType.isLocalConstQualified();
   4673 }
   4674 
   4675 inline bool QualType::isRestrictQualified() const {
   4676   return isLocalRestrictQualified() ||
   4677          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   4678 }
   4679 
   4680 
   4681 inline bool QualType::isVolatileQualified() const {
   4682   return isLocalVolatileQualified() ||
   4683          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   4684 }
   4685 
   4686 inline bool QualType::hasQualifiers() const {
   4687   return hasLocalQualifiers() ||
   4688          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   4689 }
   4690 
   4691 inline QualType QualType::getUnqualifiedType() const {
   4692   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4693     return QualType(getTypePtr(), 0);
   4694 
   4695   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   4696 }
   4697 
   4698 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   4699   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4700     return split();
   4701 
   4702   return getSplitUnqualifiedTypeImpl(*this);
   4703 }
   4704 
   4705 inline void QualType::removeLocalConst() {
   4706   removeLocalFastQualifiers(Qualifiers::Const);
   4707 }
   4708 
   4709 inline void QualType::removeLocalRestrict() {
   4710   removeLocalFastQualifiers(Qualifiers::Restrict);
   4711 }
   4712 
   4713 inline void QualType::removeLocalVolatile() {
   4714   removeLocalFastQualifiers(Qualifiers::Volatile);
   4715 }
   4716 
   4717 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   4718   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   4719   assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
   4720 
   4721   // Fast path: we don't need to touch the slow qualifiers.
   4722   removeLocalFastQualifiers(Mask);
   4723 }
   4724 
   4725 /// getAddressSpace - Return the address space of this type.
   4726 inline unsigned QualType::getAddressSpace() const {
   4727   return getQualifiers().getAddressSpace();
   4728 }
   4729 
   4730 /// getObjCGCAttr - Return the gc attribute of this type.
   4731 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   4732   return getQualifiers().getObjCGCAttr();
   4733 }
   4734 
   4735 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   4736   if (const PointerType *PT = t.getAs<PointerType>()) {
   4737     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   4738       return FT->getExtInfo();
   4739   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   4740     return FT->getExtInfo();
   4741 
   4742   return FunctionType::ExtInfo();
   4743 }
   4744 
   4745 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   4746   return getFunctionExtInfo(*t);
   4747 }
   4748 
   4749 /// isMoreQualifiedThan - Determine whether this type is more
   4750 /// qualified than the Other type. For example, "const volatile int"
   4751 /// is more qualified than "const int", "volatile int", and
   4752 /// "int". However, it is not more qualified than "const volatile
   4753 /// int".
   4754 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   4755   Qualifiers myQuals = getQualifiers();
   4756   Qualifiers otherQuals = other.getQualifiers();
   4757   return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
   4758 }
   4759 
   4760 /// isAtLeastAsQualifiedAs - Determine whether this type is at last
   4761 /// as qualified as the Other type. For example, "const volatile
   4762 /// int" is at least as qualified as "const int", "volatile int",
   4763 /// "int", and "const volatile int".
   4764 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   4765   return getQualifiers().compatiblyIncludes(other.getQualifiers());
   4766 }
   4767 
   4768 /// getNonReferenceType - If Type is a reference type (e.g., const
   4769 /// int&), returns the type that the reference refers to ("const
   4770 /// int"). Otherwise, returns the type itself. This routine is used
   4771 /// throughout Sema to implement C++ 5p6:
   4772 ///
   4773 ///   If an expression initially has the type "reference to T" (8.3.2,
   4774 ///   8.5.3), the type is adjusted to "T" prior to any further
   4775 ///   analysis, the expression designates the object or function
   4776 ///   denoted by the reference, and the expression is an lvalue.
   4777 inline QualType QualType::getNonReferenceType() const {
   4778   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   4779     return RefType->getPointeeType();
   4780   else
   4781     return *this;
   4782 }
   4783 
   4784 inline bool QualType::isCForbiddenLValueType() const {
   4785   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   4786           getTypePtr()->isFunctionType());
   4787 }
   4788 
   4789 /// \brief Tests whether the type is categorized as a fundamental type.
   4790 ///
   4791 /// \returns True for types specified in C++0x [basic.fundamental].
   4792 inline bool Type::isFundamentalType() const {
   4793   return isVoidType() ||
   4794          // FIXME: It's really annoying that we don't have an
   4795          // 'isArithmeticType()' which agrees with the standard definition.
   4796          (isArithmeticType() && !isEnumeralType());
   4797 }
   4798 
   4799 /// \brief Tests whether the type is categorized as a compound type.
   4800 ///
   4801 /// \returns True for types specified in C++0x [basic.compound].
   4802 inline bool Type::isCompoundType() const {
   4803   // C++0x [basic.compound]p1:
   4804   //   Compound types can be constructed in the following ways:
   4805   //    -- arrays of objects of a given type [...];
   4806   return isArrayType() ||
   4807   //    -- functions, which have parameters of given types [...];
   4808          isFunctionType() ||
   4809   //    -- pointers to void or objects or functions [...];
   4810          isPointerType() ||
   4811   //    -- references to objects or functions of a given type. [...]
   4812          isReferenceType() ||
   4813   //    -- classes containing a sequence of objects of various types, [...];
   4814          isRecordType() ||
   4815   //    -- unions, which are classes capable of containing objects of different
   4816   //               types at different times;
   4817          isUnionType() ||
   4818   //    -- enumerations, which comprise a set of named constant values. [...];
   4819          isEnumeralType() ||
   4820   //    -- pointers to non-static class members, [...].
   4821          isMemberPointerType();
   4822 }
   4823 
   4824 inline bool Type::isFunctionType() const {
   4825   return isa<FunctionType>(CanonicalType);
   4826 }
   4827 inline bool Type::isPointerType() const {
   4828   return isa<PointerType>(CanonicalType);
   4829 }
   4830 inline bool Type::isAnyPointerType() const {
   4831   return isPointerType() || isObjCObjectPointerType();
   4832 }
   4833 inline bool Type::isBlockPointerType() const {
   4834   return isa<BlockPointerType>(CanonicalType);
   4835 }
   4836 inline bool Type::isReferenceType() const {
   4837   return isa<ReferenceType>(CanonicalType);
   4838 }
   4839 inline bool Type::isLValueReferenceType() const {
   4840   return isa<LValueReferenceType>(CanonicalType);
   4841 }
   4842 inline bool Type::isRValueReferenceType() const {
   4843   return isa<RValueReferenceType>(CanonicalType);
   4844 }
   4845 inline bool Type::isFunctionPointerType() const {
   4846   if (const PointerType *T = getAs<PointerType>())
   4847     return T->getPointeeType()->isFunctionType();
   4848   else
   4849     return false;
   4850 }
   4851 inline bool Type::isMemberPointerType() const {
   4852   return isa<MemberPointerType>(CanonicalType);
   4853 }
   4854 inline bool Type::isMemberFunctionPointerType() const {
   4855   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4856     return T->isMemberFunctionPointer();
   4857   else
   4858     return false;
   4859 }
   4860 inline bool Type::isMemberDataPointerType() const {
   4861   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4862     return T->isMemberDataPointer();
   4863   else
   4864     return false;
   4865 }
   4866 inline bool Type::isArrayType() const {
   4867   return isa<ArrayType>(CanonicalType);
   4868 }
   4869 inline bool Type::isConstantArrayType() const {
   4870   return isa<ConstantArrayType>(CanonicalType);
   4871 }
   4872 inline bool Type::isIncompleteArrayType() const {
   4873   return isa<IncompleteArrayType>(CanonicalType);
   4874 }
   4875 inline bool Type::isVariableArrayType() const {
   4876   return isa<VariableArrayType>(CanonicalType);
   4877 }
   4878 inline bool Type::isDependentSizedArrayType() const {
   4879   return isa<DependentSizedArrayType>(CanonicalType);
   4880 }
   4881 inline bool Type::isBuiltinType() const {
   4882   return isa<BuiltinType>(CanonicalType);
   4883 }
   4884 inline bool Type::isRecordType() const {
   4885   return isa<RecordType>(CanonicalType);
   4886 }
   4887 inline bool Type::isEnumeralType() const {
   4888   return isa<EnumType>(CanonicalType);
   4889 }
   4890 inline bool Type::isAnyComplexType() const {
   4891   return isa<ComplexType>(CanonicalType);
   4892 }
   4893 inline bool Type::isVectorType() const {
   4894   return isa<VectorType>(CanonicalType);
   4895 }
   4896 inline bool Type::isExtVectorType() const {
   4897   return isa<ExtVectorType>(CanonicalType);
   4898 }
   4899 inline bool Type::isObjCObjectPointerType() const {
   4900   return isa<ObjCObjectPointerType>(CanonicalType);
   4901 }
   4902 inline bool Type::isObjCObjectType() const {
   4903   return isa<ObjCObjectType>(CanonicalType);
   4904 }
   4905 inline bool Type::isObjCObjectOrInterfaceType() const {
   4906   return isa<ObjCInterfaceType>(CanonicalType) ||
   4907     isa<ObjCObjectType>(CanonicalType);
   4908 }
   4909 inline bool Type::isAtomicType() const {
   4910   return isa<AtomicType>(CanonicalType);
   4911 }
   4912 
   4913 inline bool Type::isObjCQualifiedIdType() const {
   4914   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4915     return OPT->isObjCQualifiedIdType();
   4916   return false;
   4917 }
   4918 inline bool Type::isObjCQualifiedClassType() const {
   4919   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4920     return OPT->isObjCQualifiedClassType();
   4921   return false;
   4922 }
   4923 inline bool Type::isObjCIdType() const {
   4924   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4925     return OPT->isObjCIdType();
   4926   return false;
   4927 }
   4928 inline bool Type::isObjCClassType() const {
   4929   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4930     return OPT->isObjCClassType();
   4931   return false;
   4932 }
   4933 inline bool Type::isObjCSelType() const {
   4934   if (const PointerType *OPT = getAs<PointerType>())
   4935     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   4936   return false;
   4937 }
   4938 inline bool Type::isObjCBuiltinType() const {
   4939   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   4940 }
   4941 
   4942 inline bool Type::isImage1dT() const {
   4943   return isSpecificBuiltinType(BuiltinType::OCLImage1d);
   4944 }
   4945 
   4946 inline bool Type::isImage1dArrayT() const {
   4947   return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
   4948 }
   4949 
   4950 inline bool Type::isImage1dBufferT() const {
   4951   return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
   4952 }
   4953 
   4954 inline bool Type::isImage2dT() const {
   4955   return isSpecificBuiltinType(BuiltinType::OCLImage2d);
   4956 }
   4957 
   4958 inline bool Type::isImage2dArrayT() const {
   4959   return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
   4960 }
   4961 
   4962 inline bool Type::isImage3dT() const {
   4963   return isSpecificBuiltinType(BuiltinType::OCLImage3d);
   4964 }
   4965 
   4966 inline bool Type::isSamplerT() const {
   4967   return isSpecificBuiltinType(BuiltinType::OCLSampler);
   4968 }
   4969 
   4970 inline bool Type::isEventT() const {
   4971   return isSpecificBuiltinType(BuiltinType::OCLEvent);
   4972 }
   4973 
   4974 inline bool Type::isImageType() const {
   4975   return isImage3dT() ||
   4976          isImage2dT() || isImage2dArrayT() ||
   4977          isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
   4978 }
   4979 
   4980 inline bool Type::isOpenCLSpecificType() const {
   4981   return isSamplerT() || isEventT() || isImageType();
   4982 }
   4983 
   4984 inline bool Type::isTemplateTypeParmType() const {
   4985   return isa<TemplateTypeParmType>(CanonicalType);
   4986 }
   4987 
   4988 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   4989   if (const BuiltinType *BT = getAs<BuiltinType>())
   4990     if (BT->getKind() == (BuiltinType::Kind) K)
   4991       return true;
   4992   return false;
   4993 }
   4994 
   4995 inline bool Type::isPlaceholderType() const {
   4996   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4997     return BT->isPlaceholderType();
   4998   return false;
   4999 }
   5000 
   5001 inline const BuiltinType *Type::getAsPlaceholderType() const {
   5002   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5003     if (BT->isPlaceholderType())
   5004       return BT;
   5005   return 0;
   5006 }
   5007 
   5008 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   5009   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   5010   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5011     return (BT->getKind() == (BuiltinType::Kind) K);
   5012   return false;
   5013 }
   5014 
   5015 inline bool Type::isNonOverloadPlaceholderType() const {
   5016   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5017     return BT->isNonOverloadPlaceholderType();
   5018   return false;
   5019 }
   5020 
   5021 inline bool Type::isVoidType() const {
   5022   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5023     return BT->getKind() == BuiltinType::Void;
   5024   return false;
   5025 }
   5026 
   5027 inline bool Type::isHalfType() const {
   5028   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5029     return BT->getKind() == BuiltinType::Half;
   5030   // FIXME: Should we allow complex __fp16? Probably not.
   5031   return false;
   5032 }
   5033 
   5034 inline bool Type::isNullPtrType() const {
   5035   if (const BuiltinType *BT = getAs<BuiltinType>())
   5036     return BT->getKind() == BuiltinType::NullPtr;
   5037   return false;
   5038 }
   5039 
   5040 extern bool IsEnumDeclComplete(EnumDecl *);
   5041 extern bool IsEnumDeclScoped(EnumDecl *);
   5042 
   5043 inline bool Type::isIntegerType() const {
   5044   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5045     return BT->getKind() >= BuiltinType::Bool &&
   5046            BT->getKind() <= BuiltinType::Int128;
   5047   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   5048     // Incomplete enum types are not treated as integer types.
   5049     // FIXME: In C++, enum types are never integer types.
   5050     return IsEnumDeclComplete(ET->getDecl()) &&
   5051       !IsEnumDeclScoped(ET->getDecl());
   5052   }
   5053   return false;
   5054 }
   5055 
   5056 inline bool Type::isScalarType() const {
   5057   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5058     return BT->getKind() > BuiltinType::Void &&
   5059            BT->getKind() <= BuiltinType::NullPtr;
   5060   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5061     // Enums are scalar types, but only if they are defined.  Incomplete enums
   5062     // are not treated as scalar types.
   5063     return IsEnumDeclComplete(ET->getDecl());
   5064   return isa<PointerType>(CanonicalType) ||
   5065          isa<BlockPointerType>(CanonicalType) ||
   5066          isa<MemberPointerType>(CanonicalType) ||
   5067          isa<ComplexType>(CanonicalType) ||
   5068          isa<ObjCObjectPointerType>(CanonicalType);
   5069 }
   5070 
   5071 inline bool Type::isIntegralOrEnumerationType() const {
   5072   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5073     return BT->getKind() >= BuiltinType::Bool &&
   5074            BT->getKind() <= BuiltinType::Int128;
   5075 
   5076   // Check for a complete enum type; incomplete enum types are not properly an
   5077   // enumeration type in the sense required here.
   5078   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5079     return IsEnumDeclComplete(ET->getDecl());
   5080 
   5081   return false;
   5082 }
   5083 
   5084 inline bool Type::isBooleanType() const {
   5085   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5086     return BT->getKind() == BuiltinType::Bool;
   5087   return false;
   5088 }
   5089 
   5090 inline bool Type::isUndeducedType() const {
   5091   const AutoType *AT = getContainedAutoType();
   5092   return AT && !AT->isDeduced();
   5093 }
   5094 
   5095 /// \brief Determines whether this is a type for which one can define
   5096 /// an overloaded operator.
   5097 inline bool Type::isOverloadableType() const {
   5098   return isDependentType() || isRecordType() || isEnumeralType();
   5099 }
   5100 
   5101 /// \brief Determines whether this type can decay to a pointer type.
   5102 inline bool Type::canDecayToPointerType() const {
   5103   return isFunctionType() || isArrayType();
   5104 }
   5105 
   5106 inline bool Type::hasPointerRepresentation() const {
   5107   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   5108           isObjCObjectPointerType() || isNullPtrType());
   5109 }
   5110 
   5111 inline bool Type::hasObjCPointerRepresentation() const {
   5112   return isObjCObjectPointerType();
   5113 }
   5114 
   5115 inline const Type *Type::getBaseElementTypeUnsafe() const {
   5116   const Type *type = this;
   5117   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   5118     type = arrayType->getElementType().getTypePtr();
   5119   return type;
   5120 }
   5121 
   5122 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   5123 /// diagnostic with <<.
   5124 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   5125                                            QualType T) {
   5126   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   5127                   DiagnosticsEngine::ak_qualtype);
   5128   return DB;
   5129 }
   5130 
   5131 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   5132 /// into a diagnostic with <<.
   5133 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   5134                                            QualType T) {
   5135   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   5136                   DiagnosticsEngine::ak_qualtype);
   5137   return PD;
   5138 }
   5139 
   5140 // Helper class template that is used by Type::getAs to ensure that one does
   5141 // not try to look through a qualified type to get to an array type.
   5142 template<typename T,
   5143          bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
   5144                              llvm::is_base_of<ArrayType, T>::value)>
   5145 struct ArrayType_cannot_be_used_with_getAs { };
   5146 
   5147 template<typename T>
   5148 struct ArrayType_cannot_be_used_with_getAs<T, true>;
   5149 
   5150 // Member-template getAs<specific type>'.
   5151 template <typename T> const T *Type::getAs() const {
   5152   ArrayType_cannot_be_used_with_getAs<T> at;
   5153   (void)at;
   5154 
   5155   // If this is directly a T type, return it.
   5156   if (const T *Ty = dyn_cast<T>(this))
   5157     return Ty;
   5158 
   5159   // If the canonical form of this type isn't the right kind, reject it.
   5160   if (!isa<T>(CanonicalType))
   5161     return 0;
   5162 
   5163   // If this is a typedef for the type, strip the typedef off without
   5164   // losing all typedef information.
   5165   return cast<T>(getUnqualifiedDesugaredType());
   5166 }
   5167 
   5168 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   5169   // If this is directly an array type, return it.
   5170   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   5171     return arr;
   5172 
   5173   // If the canonical form of this type isn't the right kind, reject it.
   5174   if (!isa<ArrayType>(CanonicalType))
   5175     return 0;
   5176 
   5177   // If this is a typedef for the type, strip the typedef off without
   5178   // losing all typedef information.
   5179   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5180 }
   5181 
   5182 template <typename T> const T *Type::castAs() const {
   5183   ArrayType_cannot_be_used_with_getAs<T> at;
   5184   (void) at;
   5185 
   5186   assert(isa<T>(CanonicalType));
   5187   if (const T *ty = dyn_cast<T>(this)) return ty;
   5188   return cast<T>(getUnqualifiedDesugaredType());
   5189 }
   5190 
   5191 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   5192   assert(isa<ArrayType>(CanonicalType));
   5193   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   5194   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5195 }
   5196 
   5197 }  // end namespace clang
   5198 
   5199 #endif
   5200