Home | History | Annotate | Download | only in IR
      1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library implements the functionality defined in llvm/Assembly/Writer.h
     11 //
     12 // Note that these routines must be extremely tolerant of various errors in the
     13 // LLVM code, because it can be used for debugging transformations.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "AsmWriter.h"
     18 
     19 #include "llvm/Assembly/Writer.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
     25 #include "llvm/Assembly/PrintModulePass.h"
     26 #include "llvm/DebugInfo.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/InlineAsm.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/IR/TypeFinder.h"
     36 #include "llvm/IR/ValueSymbolTable.h"
     37 #include "llvm/Support/CFG.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Dwarf.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/FormattedStream.h"
     42 #include "llvm/Support/MathExtras.h"
     43 
     44 #include <algorithm>
     45 #include <cctype>
     46 using namespace llvm;
     47 
     48 // Make virtual table appear in this compilation unit.
     49 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
     50 
     51 //===----------------------------------------------------------------------===//
     52 // Helper Functions
     53 //===----------------------------------------------------------------------===//
     54 
     55 static const Module *getModuleFromVal(const Value *V) {
     56   if (const Argument *MA = dyn_cast<Argument>(V))
     57     return MA->getParent() ? MA->getParent()->getParent() : 0;
     58 
     59   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
     60     return BB->getParent() ? BB->getParent()->getParent() : 0;
     61 
     62   if (const Instruction *I = dyn_cast<Instruction>(V)) {
     63     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
     64     return M ? M->getParent() : 0;
     65   }
     66 
     67   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
     68     return GV->getParent();
     69   return 0;
     70 }
     71 
     72 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
     73   switch (cc) {
     74   default:                         Out << "cc" << cc; break;
     75   case CallingConv::Fast:          Out << "fastcc"; break;
     76   case CallingConv::Cold:          Out << "coldcc"; break;
     77   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
     78   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
     79   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
     80   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
     81   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
     82   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
     83   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
     84   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
     85   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
     86   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
     87   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
     88   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
     89   }
     90 }
     91 
     92 // PrintEscapedString - Print each character of the specified string, escaping
     93 // it if it is not printable or if it is an escape char.
     94 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
     95   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
     96     unsigned char C = Name[i];
     97     if (isprint(C) && C != '\\' && C != '"')
     98       Out << C;
     99     else
    100       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
    101   }
    102 }
    103 
    104 enum PrefixType {
    105   GlobalPrefix,
    106   LabelPrefix,
    107   LocalPrefix,
    108   NoPrefix
    109 };
    110 
    111 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
    112 /// prefixed with % (if the string only contains simple characters) or is
    113 /// surrounded with ""'s (if it has special chars in it).  Print it out.
    114 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
    115   assert(!Name.empty() && "Cannot get empty name!");
    116   switch (Prefix) {
    117   case NoPrefix: break;
    118   case GlobalPrefix: OS << '@'; break;
    119   case LabelPrefix:  break;
    120   case LocalPrefix:  OS << '%'; break;
    121   }
    122 
    123   // Scan the name to see if it needs quotes first.
    124   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
    125   if (!NeedsQuotes) {
    126     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    127       // By making this unsigned, the value passed in to isalnum will always be
    128       // in the range 0-255.  This is important when building with MSVC because
    129       // its implementation will assert.  This situation can arise when dealing
    130       // with UTF-8 multibyte characters.
    131       unsigned char C = Name[i];
    132       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
    133           C != '_') {
    134         NeedsQuotes = true;
    135         break;
    136       }
    137     }
    138   }
    139 
    140   // If we didn't need any quotes, just write out the name in one blast.
    141   if (!NeedsQuotes) {
    142     OS << Name;
    143     return;
    144   }
    145 
    146   // Okay, we need quotes.  Output the quotes and escape any scary characters as
    147   // needed.
    148   OS << '"';
    149   PrintEscapedString(Name, OS);
    150   OS << '"';
    151 }
    152 
    153 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
    154 /// prefixed with % (if the string only contains simple characters) or is
    155 /// surrounded with ""'s (if it has special chars in it).  Print it out.
    156 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
    157   PrintLLVMName(OS, V->getName(),
    158                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
    159 }
    160 
    161 
    162 namespace llvm {
    163 
    164 void TypePrinting::incorporateTypes(const Module &M) {
    165   NamedTypes.run(M, false);
    166 
    167   // The list of struct types we got back includes all the struct types, split
    168   // the unnamed ones out to a numbering and remove the anonymous structs.
    169   unsigned NextNumber = 0;
    170 
    171   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
    172   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
    173     StructType *STy = *I;
    174 
    175     // Ignore anonymous types.
    176     if (STy->isLiteral())
    177       continue;
    178 
    179     if (STy->getName().empty())
    180       NumberedTypes[STy] = NextNumber++;
    181     else
    182       *NextToUse++ = STy;
    183   }
    184 
    185   NamedTypes.erase(NextToUse, NamedTypes.end());
    186 }
    187 
    188 
    189 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
    190 /// use of type names or up references to shorten the type name where possible.
    191 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
    192   switch (Ty->getTypeID()) {
    193   case Type::VoidTyID:      OS << "void"; break;
    194   case Type::HalfTyID:      OS << "half"; break;
    195   case Type::FloatTyID:     OS << "float"; break;
    196   case Type::DoubleTyID:    OS << "double"; break;
    197   case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
    198   case Type::FP128TyID:     OS << "fp128"; break;
    199   case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
    200   case Type::LabelTyID:     OS << "label"; break;
    201   case Type::MetadataTyID:  OS << "metadata"; break;
    202   case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
    203   case Type::IntegerTyID:
    204     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
    205     return;
    206 
    207   case Type::FunctionTyID: {
    208     FunctionType *FTy = cast<FunctionType>(Ty);
    209     print(FTy->getReturnType(), OS);
    210     OS << " (";
    211     for (FunctionType::param_iterator I = FTy->param_begin(),
    212          E = FTy->param_end(); I != E; ++I) {
    213       if (I != FTy->param_begin())
    214         OS << ", ";
    215       print(*I, OS);
    216     }
    217     if (FTy->isVarArg()) {
    218       if (FTy->getNumParams()) OS << ", ";
    219       OS << "...";
    220     }
    221     OS << ')';
    222     return;
    223   }
    224   case Type::StructTyID: {
    225     StructType *STy = cast<StructType>(Ty);
    226 
    227     if (STy->isLiteral())
    228       return printStructBody(STy, OS);
    229 
    230     if (!STy->getName().empty())
    231       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
    232 
    233     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
    234     if (I != NumberedTypes.end())
    235       OS << '%' << I->second;
    236     else  // Not enumerated, print the hex address.
    237       OS << "%\"type " << STy << '\"';
    238     return;
    239   }
    240   case Type::PointerTyID: {
    241     PointerType *PTy = cast<PointerType>(Ty);
    242     print(PTy->getElementType(), OS);
    243     if (unsigned AddressSpace = PTy->getAddressSpace())
    244       OS << " addrspace(" << AddressSpace << ')';
    245     OS << '*';
    246     return;
    247   }
    248   case Type::ArrayTyID: {
    249     ArrayType *ATy = cast<ArrayType>(Ty);
    250     OS << '[' << ATy->getNumElements() << " x ";
    251     print(ATy->getElementType(), OS);
    252     OS << ']';
    253     return;
    254   }
    255   case Type::VectorTyID: {
    256     VectorType *PTy = cast<VectorType>(Ty);
    257     OS << "<" << PTy->getNumElements() << " x ";
    258     print(PTy->getElementType(), OS);
    259     OS << '>';
    260     return;
    261   }
    262   default:
    263     OS << "<unrecognized-type>";
    264     return;
    265   }
    266 }
    267 
    268 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
    269   if (STy->isOpaque()) {
    270     OS << "opaque";
    271     return;
    272   }
    273 
    274   if (STy->isPacked())
    275     OS << '<';
    276 
    277   if (STy->getNumElements() == 0) {
    278     OS << "{}";
    279   } else {
    280     StructType::element_iterator I = STy->element_begin();
    281     OS << "{ ";
    282     print(*I++, OS);
    283     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
    284       OS << ", ";
    285       print(*I, OS);
    286     }
    287 
    288     OS << " }";
    289   }
    290   if (STy->isPacked())
    291     OS << '>';
    292 }
    293 
    294 //===----------------------------------------------------------------------===//
    295 // SlotTracker Class: Enumerate slot numbers for unnamed values
    296 //===----------------------------------------------------------------------===//
    297 /// This class provides computation of slot numbers for LLVM Assembly writing.
    298 ///
    299 class SlotTracker {
    300 public:
    301   /// ValueMap - A mapping of Values to slot numbers.
    302   typedef DenseMap<const Value*, unsigned> ValueMap;
    303 
    304 private:
    305   /// TheModule - The module for which we are holding slot numbers.
    306   const Module* TheModule;
    307 
    308   /// TheFunction - The function for which we are holding slot numbers.
    309   const Function* TheFunction;
    310   bool FunctionProcessed;
    311 
    312   /// mMap - The slot map for the module level data.
    313   ValueMap mMap;
    314   unsigned mNext;
    315 
    316   /// fMap - The slot map for the function level data.
    317   ValueMap fMap;
    318   unsigned fNext;
    319 
    320   /// mdnMap - Map for MDNodes.
    321   DenseMap<const MDNode*, unsigned> mdnMap;
    322   unsigned mdnNext;
    323 
    324   /// asMap - The slot map for attribute sets.
    325   DenseMap<AttributeSet, unsigned> asMap;
    326   unsigned asNext;
    327 public:
    328   /// Construct from a module
    329   explicit SlotTracker(const Module *M);
    330   /// Construct from a function, starting out in incorp state.
    331   explicit SlotTracker(const Function *F);
    332 
    333   /// Return the slot number of the specified value in it's type
    334   /// plane.  If something is not in the SlotTracker, return -1.
    335   int getLocalSlot(const Value *V);
    336   int getGlobalSlot(const GlobalValue *V);
    337   int getMetadataSlot(const MDNode *N);
    338   int getAttributeGroupSlot(AttributeSet AS);
    339 
    340   /// If you'd like to deal with a function instead of just a module, use
    341   /// this method to get its data into the SlotTracker.
    342   void incorporateFunction(const Function *F) {
    343     TheFunction = F;
    344     FunctionProcessed = false;
    345   }
    346 
    347   /// After calling incorporateFunction, use this method to remove the
    348   /// most recently incorporated function from the SlotTracker. This
    349   /// will reset the state of the machine back to just the module contents.
    350   void purgeFunction();
    351 
    352   /// MDNode map iterators.
    353   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
    354   mdn_iterator mdn_begin() { return mdnMap.begin(); }
    355   mdn_iterator mdn_end() { return mdnMap.end(); }
    356   unsigned mdn_size() const { return mdnMap.size(); }
    357   bool mdn_empty() const { return mdnMap.empty(); }
    358 
    359   /// AttributeSet map iterators.
    360   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
    361   as_iterator as_begin()   { return asMap.begin(); }
    362   as_iterator as_end()     { return asMap.end(); }
    363   unsigned as_size() const { return asMap.size(); }
    364   bool as_empty() const    { return asMap.empty(); }
    365 
    366   /// This function does the actual initialization.
    367   inline void initialize();
    368 
    369   // Implementation Details
    370 private:
    371   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    372   void CreateModuleSlot(const GlobalValue *V);
    373 
    374   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
    375   void CreateMetadataSlot(const MDNode *N);
    376 
    377   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
    378   void CreateFunctionSlot(const Value *V);
    379 
    380   /// \brief Insert the specified AttributeSet into the slot table.
    381   void CreateAttributeSetSlot(AttributeSet AS);
    382 
    383   /// Add all of the module level global variables (and their initializers)
    384   /// and function declarations, but not the contents of those functions.
    385   void processModule();
    386 
    387   /// Add all of the functions arguments, basic blocks, and instructions.
    388   void processFunction();
    389 
    390   SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
    391   void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
    392 };
    393 
    394 SlotTracker *createSlotTracker(const Module *M) {
    395   return new SlotTracker(M);
    396 }
    397 
    398 static SlotTracker *createSlotTracker(const Value *V) {
    399   if (const Argument *FA = dyn_cast<Argument>(V))
    400     return new SlotTracker(FA->getParent());
    401 
    402   if (const Instruction *I = dyn_cast<Instruction>(V))
    403     if (I->getParent())
    404       return new SlotTracker(I->getParent()->getParent());
    405 
    406   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    407     return new SlotTracker(BB->getParent());
    408 
    409   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    410     return new SlotTracker(GV->getParent());
    411 
    412   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    413     return new SlotTracker(GA->getParent());
    414 
    415   if (const Function *Func = dyn_cast<Function>(V))
    416     return new SlotTracker(Func);
    417 
    418   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
    419     if (!MD->isFunctionLocal())
    420       return new SlotTracker(MD->getFunction());
    421 
    422     return new SlotTracker((Function *)0);
    423   }
    424 
    425   return 0;
    426 }
    427 
    428 #if 0
    429 #define ST_DEBUG(X) dbgs() << X
    430 #else
    431 #define ST_DEBUG(X)
    432 #endif
    433 
    434 // Module level constructor. Causes the contents of the Module (sans functions)
    435 // to be added to the slot table.
    436 SlotTracker::SlotTracker(const Module *M)
    437   : TheModule(M), TheFunction(0), FunctionProcessed(false),
    438     mNext(0), fNext(0),  mdnNext(0), asNext(0) {
    439 }
    440 
    441 // Function level constructor. Causes the contents of the Module and the one
    442 // function provided to be added to the slot table.
    443 SlotTracker::SlotTracker(const Function *F)
    444   : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
    445     mNext(0), fNext(0), mdnNext(0), asNext(0) {
    446 }
    447 
    448 inline void SlotTracker::initialize() {
    449   if (TheModule) {
    450     processModule();
    451     TheModule = 0; ///< Prevent re-processing next time we're called.
    452   }
    453 
    454   if (TheFunction && !FunctionProcessed)
    455     processFunction();
    456 }
    457 
    458 // Iterate through all the global variables, functions, and global
    459 // variable initializers and create slots for them.
    460 void SlotTracker::processModule() {
    461   ST_DEBUG("begin processModule!\n");
    462 
    463   // Add all of the unnamed global variables to the value table.
    464   for (Module::const_global_iterator I = TheModule->global_begin(),
    465          E = TheModule->global_end(); I != E; ++I) {
    466     if (!I->hasName())
    467       CreateModuleSlot(I);
    468   }
    469 
    470   // Add metadata used by named metadata.
    471   for (Module::const_named_metadata_iterator
    472          I = TheModule->named_metadata_begin(),
    473          E = TheModule->named_metadata_end(); I != E; ++I) {
    474     const NamedMDNode *NMD = I;
    475     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    476       CreateMetadataSlot(NMD->getOperand(i));
    477   }
    478 
    479   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
    480        I != E; ++I) {
    481     if (!I->hasName())
    482       // Add all the unnamed functions to the table.
    483       CreateModuleSlot(I);
    484 
    485     // Add all the function attributes to the table.
    486     // FIXME: Add attributes of other objects?
    487     AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
    488     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
    489       CreateAttributeSetSlot(FnAttrs);
    490   }
    491 
    492   ST_DEBUG("end processModule!\n");
    493 }
    494 
    495 // Process the arguments, basic blocks, and instructions  of a function.
    496 void SlotTracker::processFunction() {
    497   ST_DEBUG("begin processFunction!\n");
    498   fNext = 0;
    499 
    500   // Add all the function arguments with no names.
    501   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
    502       AE = TheFunction->arg_end(); AI != AE; ++AI)
    503     if (!AI->hasName())
    504       CreateFunctionSlot(AI);
    505 
    506   ST_DEBUG("Inserting Instructions:\n");
    507 
    508   SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
    509 
    510   // Add all of the basic blocks and instructions with no names.
    511   for (Function::const_iterator BB = TheFunction->begin(),
    512        E = TheFunction->end(); BB != E; ++BB) {
    513     if (!BB->hasName())
    514       CreateFunctionSlot(BB);
    515 
    516     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
    517          ++I) {
    518       if (!I->getType()->isVoidTy() && !I->hasName())
    519         CreateFunctionSlot(I);
    520 
    521       // Intrinsics can directly use metadata.  We allow direct calls to any
    522       // llvm.foo function here, because the target may not be linked into the
    523       // optimizer.
    524       if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    525         if (Function *F = CI->getCalledFunction())
    526           if (F->getName().startswith("llvm."))
    527             for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    528               if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
    529                 CreateMetadataSlot(N);
    530 
    531         // Add all the call attributes to the table.
    532         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
    533         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    534           CreateAttributeSetSlot(Attrs);
    535       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
    536         // Add all the call attributes to the table.
    537         AttributeSet Attrs = II->getAttributes().getFnAttributes();
    538         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    539           CreateAttributeSetSlot(Attrs);
    540       }
    541 
    542       // Process metadata attached with this instruction.
    543       I->getAllMetadata(MDForInst);
    544       for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
    545         CreateMetadataSlot(MDForInst[i].second);
    546       MDForInst.clear();
    547     }
    548   }
    549 
    550   FunctionProcessed = true;
    551 
    552   ST_DEBUG("end processFunction!\n");
    553 }
    554 
    555 /// Clean up after incorporating a function. This is the only way to get out of
    556 /// the function incorporation state that affects get*Slot/Create*Slot. Function
    557 /// incorporation state is indicated by TheFunction != 0.
    558 void SlotTracker::purgeFunction() {
    559   ST_DEBUG("begin purgeFunction!\n");
    560   fMap.clear(); // Simply discard the function level map
    561   TheFunction = 0;
    562   FunctionProcessed = false;
    563   ST_DEBUG("end purgeFunction!\n");
    564 }
    565 
    566 /// getGlobalSlot - Get the slot number of a global value.
    567 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
    568   // Check for uninitialized state and do lazy initialization.
    569   initialize();
    570 
    571   // Find the value in the module map
    572   ValueMap::iterator MI = mMap.find(V);
    573   return MI == mMap.end() ? -1 : (int)MI->second;
    574 }
    575 
    576 /// getMetadataSlot - Get the slot number of a MDNode.
    577 int SlotTracker::getMetadataSlot(const MDNode *N) {
    578   // Check for uninitialized state and do lazy initialization.
    579   initialize();
    580 
    581   // Find the MDNode in the module map
    582   mdn_iterator MI = mdnMap.find(N);
    583   return MI == mdnMap.end() ? -1 : (int)MI->second;
    584 }
    585 
    586 
    587 /// getLocalSlot - Get the slot number for a value that is local to a function.
    588 int SlotTracker::getLocalSlot(const Value *V) {
    589   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
    590 
    591   // Check for uninitialized state and do lazy initialization.
    592   initialize();
    593 
    594   ValueMap::iterator FI = fMap.find(V);
    595   return FI == fMap.end() ? -1 : (int)FI->second;
    596 }
    597 
    598 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
    599   // Check for uninitialized state and do lazy initialization.
    600   initialize();
    601 
    602   // Find the AttributeSet in the module map.
    603   as_iterator AI = asMap.find(AS);
    604   return AI == asMap.end() ? -1 : (int)AI->second;
    605 }
    606 
    607 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    608 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
    609   assert(V && "Can't insert a null Value into SlotTracker!");
    610   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
    611   assert(!V->hasName() && "Doesn't need a slot!");
    612 
    613   unsigned DestSlot = mNext++;
    614   mMap[V] = DestSlot;
    615 
    616   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    617            DestSlot << " [");
    618   // G = Global, F = Function, A = Alias, o = other
    619   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
    620             (isa<Function>(V) ? 'F' :
    621              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
    622 }
    623 
    624 /// CreateSlot - Create a new slot for the specified value if it has no name.
    625 void SlotTracker::CreateFunctionSlot(const Value *V) {
    626   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
    627 
    628   unsigned DestSlot = fNext++;
    629   fMap[V] = DestSlot;
    630 
    631   // G = Global, F = Function, o = other
    632   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    633            DestSlot << " [o]\n");
    634 }
    635 
    636 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
    637 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
    638   assert(N && "Can't insert a null Value into SlotTracker!");
    639 
    640   // Don't insert if N is a function-local metadata, these are always printed
    641   // inline.
    642   if (!N->isFunctionLocal()) {
    643     mdn_iterator I = mdnMap.find(N);
    644     if (I != mdnMap.end())
    645       return;
    646 
    647     unsigned DestSlot = mdnNext++;
    648     mdnMap[N] = DestSlot;
    649   }
    650 
    651   // Recursively add any MDNodes referenced by operands.
    652   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    653     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
    654       CreateMetadataSlot(Op);
    655 }
    656 
    657 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
    658   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
    659          "Doesn't need a slot!");
    660 
    661   as_iterator I = asMap.find(AS);
    662   if (I != asMap.end())
    663     return;
    664 
    665   unsigned DestSlot = asNext++;
    666   asMap[AS] = DestSlot;
    667 }
    668 
    669 //===----------------------------------------------------------------------===//
    670 // AsmWriter Implementation
    671 //===----------------------------------------------------------------------===//
    672 
    673 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
    674                                    TypePrinting *TypePrinter,
    675                                    SlotTracker *Machine,
    676                                    const Module *Context);
    677 
    678 
    679 
    680 static const char *getPredicateText(unsigned predicate) {
    681   const char * pred = "unknown";
    682   switch (predicate) {
    683   case FCmpInst::FCMP_FALSE: pred = "false"; break;
    684   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
    685   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
    686   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
    687   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
    688   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
    689   case FCmpInst::FCMP_ONE:   pred = "one"; break;
    690   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
    691   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
    692   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
    693   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
    694   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
    695   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
    696   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
    697   case FCmpInst::FCMP_UNE:   pred = "une"; break;
    698   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
    699   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
    700   case ICmpInst::ICMP_NE:    pred = "ne"; break;
    701   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
    702   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
    703   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
    704   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
    705   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
    706   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
    707   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
    708   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
    709   }
    710   return pred;
    711 }
    712 
    713 static void writeAtomicRMWOperation(raw_ostream &Out,
    714                                     AtomicRMWInst::BinOp Op) {
    715   switch (Op) {
    716   default: Out << " <unknown operation " << Op << ">"; break;
    717   case AtomicRMWInst::Xchg: Out << " xchg"; break;
    718   case AtomicRMWInst::Add:  Out << " add"; break;
    719   case AtomicRMWInst::Sub:  Out << " sub"; break;
    720   case AtomicRMWInst::And:  Out << " and"; break;
    721   case AtomicRMWInst::Nand: Out << " nand"; break;
    722   case AtomicRMWInst::Or:   Out << " or"; break;
    723   case AtomicRMWInst::Xor:  Out << " xor"; break;
    724   case AtomicRMWInst::Max:  Out << " max"; break;
    725   case AtomicRMWInst::Min:  Out << " min"; break;
    726   case AtomicRMWInst::UMax: Out << " umax"; break;
    727   case AtomicRMWInst::UMin: Out << " umin"; break;
    728   }
    729 }
    730 
    731 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
    732   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
    733     // Unsafe algebra implies all the others, no need to write them all out
    734     if (FPO->hasUnsafeAlgebra())
    735       Out << " fast";
    736     else {
    737       if (FPO->hasNoNaNs())
    738         Out << " nnan";
    739       if (FPO->hasNoInfs())
    740         Out << " ninf";
    741       if (FPO->hasNoSignedZeros())
    742         Out << " nsz";
    743       if (FPO->hasAllowReciprocal())
    744         Out << " arcp";
    745     }
    746   }
    747 
    748   if (const OverflowingBinaryOperator *OBO =
    749         dyn_cast<OverflowingBinaryOperator>(U)) {
    750     if (OBO->hasNoUnsignedWrap())
    751       Out << " nuw";
    752     if (OBO->hasNoSignedWrap())
    753       Out << " nsw";
    754   } else if (const PossiblyExactOperator *Div =
    755                dyn_cast<PossiblyExactOperator>(U)) {
    756     if (Div->isExact())
    757       Out << " exact";
    758   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    759     if (GEP->isInBounds())
    760       Out << " inbounds";
    761   }
    762 }
    763 
    764 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
    765                                   TypePrinting &TypePrinter,
    766                                   SlotTracker *Machine,
    767                                   const Module *Context) {
    768   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    769     if (CI->getType()->isIntegerTy(1)) {
    770       Out << (CI->getZExtValue() ? "true" : "false");
    771       return;
    772     }
    773     Out << CI->getValue();
    774     return;
    775   }
    776 
    777   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    778     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
    779         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
    780       // We would like to output the FP constant value in exponential notation,
    781       // but we cannot do this if doing so will lose precision.  Check here to
    782       // make sure that we only output it in exponential format if we can parse
    783       // the value back and get the same value.
    784       //
    785       bool ignored;
    786       bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
    787       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
    788       bool isInf = CFP->getValueAPF().isInfinity();
    789       bool isNaN = CFP->getValueAPF().isNaN();
    790       if (!isHalf && !isInf && !isNaN) {
    791         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
    792                                 CFP->getValueAPF().convertToFloat();
    793         SmallString<128> StrVal;
    794         raw_svector_ostream(StrVal) << Val;
    795 
    796         // Check to make sure that the stringized number is not some string like
    797         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
    798         // that the string matches the "[-+]?[0-9]" regex.
    799         //
    800         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    801             ((StrVal[0] == '-' || StrVal[0] == '+') &&
    802              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
    803           // Reparse stringized version!
    804           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
    805             Out << StrVal.str();
    806             return;
    807           }
    808         }
    809       }
    810       // Otherwise we could not reparse it to exactly the same value, so we must
    811       // output the string in hexadecimal format!  Note that loading and storing
    812       // floating point types changes the bits of NaNs on some hosts, notably
    813       // x86, so we must not use these types.
    814       assert(sizeof(double) == sizeof(uint64_t) &&
    815              "assuming that double is 64 bits!");
    816       char Buffer[40];
    817       APFloat apf = CFP->getValueAPF();
    818       // Halves and floats are represented in ASCII IR as double, convert.
    819       if (!isDouble)
    820         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    821                           &ignored);
    822       Out << "0x" <<
    823               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
    824                             Buffer+40);
    825       return;
    826     }
    827 
    828     // Either half, or some form of long double.
    829     // These appear as a magic letter identifying the type, then a
    830     // fixed number of hex digits.
    831     Out << "0x";
    832     // Bit position, in the current word, of the next nibble to print.
    833     int shiftcount;
    834 
    835     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
    836       Out << 'K';
    837       // api needed to prevent premature destruction
    838       APInt api = CFP->getValueAPF().bitcastToAPInt();
    839       const uint64_t* p = api.getRawData();
    840       uint64_t word = p[1];
    841       shiftcount = 12;
    842       int width = api.getBitWidth();
    843       for (int j=0; j<width; j+=4, shiftcount-=4) {
    844         unsigned int nibble = (word>>shiftcount) & 15;
    845         if (nibble < 10)
    846           Out << (unsigned char)(nibble + '0');
    847         else
    848           Out << (unsigned char)(nibble - 10 + 'A');
    849         if (shiftcount == 0 && j+4 < width) {
    850           word = *p;
    851           shiftcount = 64;
    852           if (width-j-4 < 64)
    853             shiftcount = width-j-4;
    854         }
    855       }
    856       return;
    857     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
    858       shiftcount = 60;
    859       Out << 'L';
    860     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
    861       shiftcount = 60;
    862       Out << 'M';
    863     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
    864       shiftcount = 12;
    865       Out << 'H';
    866     } else
    867       llvm_unreachable("Unsupported floating point type");
    868     // api needed to prevent premature destruction
    869     APInt api = CFP->getValueAPF().bitcastToAPInt();
    870     const uint64_t* p = api.getRawData();
    871     uint64_t word = *p;
    872     int width = api.getBitWidth();
    873     for (int j=0; j<width; j+=4, shiftcount-=4) {
    874       unsigned int nibble = (word>>shiftcount) & 15;
    875       if (nibble < 10)
    876         Out << (unsigned char)(nibble + '0');
    877       else
    878         Out << (unsigned char)(nibble - 10 + 'A');
    879       if (shiftcount == 0 && j+4 < width) {
    880         word = *(++p);
    881         shiftcount = 64;
    882         if (width-j-4 < 64)
    883           shiftcount = width-j-4;
    884       }
    885     }
    886     return;
    887   }
    888 
    889   if (isa<ConstantAggregateZero>(CV)) {
    890     Out << "zeroinitializer";
    891     return;
    892   }
    893 
    894   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    895     Out << "blockaddress(";
    896     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
    897                            Context);
    898     Out << ", ";
    899     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
    900                            Context);
    901     Out << ")";
    902     return;
    903   }
    904 
    905   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    906     Type *ETy = CA->getType()->getElementType();
    907     Out << '[';
    908     TypePrinter.print(ETy, Out);
    909     Out << ' ';
    910     WriteAsOperandInternal(Out, CA->getOperand(0),
    911                            &TypePrinter, Machine,
    912                            Context);
    913     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
    914       Out << ", ";
    915       TypePrinter.print(ETy, Out);
    916       Out << ' ';
    917       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
    918                              Context);
    919     }
    920     Out << ']';
    921     return;
    922   }
    923 
    924   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
    925     // As a special case, print the array as a string if it is an array of
    926     // i8 with ConstantInt values.
    927     if (CA->isString()) {
    928       Out << "c\"";
    929       PrintEscapedString(CA->getAsString(), Out);
    930       Out << '"';
    931       return;
    932     }
    933 
    934     Type *ETy = CA->getType()->getElementType();
    935     Out << '[';
    936     TypePrinter.print(ETy, Out);
    937     Out << ' ';
    938     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
    939                            &TypePrinter, Machine,
    940                            Context);
    941     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
    942       Out << ", ";
    943       TypePrinter.print(ETy, Out);
    944       Out << ' ';
    945       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
    946                              Machine, Context);
    947     }
    948     Out << ']';
    949     return;
    950   }
    951 
    952 
    953   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    954     if (CS->getType()->isPacked())
    955       Out << '<';
    956     Out << '{';
    957     unsigned N = CS->getNumOperands();
    958     if (N) {
    959       Out << ' ';
    960       TypePrinter.print(CS->getOperand(0)->getType(), Out);
    961       Out << ' ';
    962 
    963       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
    964                              Context);
    965 
    966       for (unsigned i = 1; i < N; i++) {
    967         Out << ", ";
    968         TypePrinter.print(CS->getOperand(i)->getType(), Out);
    969         Out << ' ';
    970 
    971         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
    972                                Context);
    973       }
    974       Out << ' ';
    975     }
    976 
    977     Out << '}';
    978     if (CS->getType()->isPacked())
    979       Out << '>';
    980     return;
    981   }
    982 
    983   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
    984     Type *ETy = CV->getType()->getVectorElementType();
    985     Out << '<';
    986     TypePrinter.print(ETy, Out);
    987     Out << ' ';
    988     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
    989                            Machine, Context);
    990     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
    991       Out << ", ";
    992       TypePrinter.print(ETy, Out);
    993       Out << ' ';
    994       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
    995                              Machine, Context);
    996     }
    997     Out << '>';
    998     return;
    999   }
   1000 
   1001   if (isa<ConstantPointerNull>(CV)) {
   1002     Out << "null";
   1003     return;
   1004   }
   1005 
   1006   if (isa<UndefValue>(CV)) {
   1007     Out << "undef";
   1008     return;
   1009   }
   1010 
   1011   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1012     Out << CE->getOpcodeName();
   1013     WriteOptimizationInfo(Out, CE);
   1014     if (CE->isCompare())
   1015       Out << ' ' << getPredicateText(CE->getPredicate());
   1016     Out << " (";
   1017 
   1018     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
   1019       TypePrinter.print((*OI)->getType(), Out);
   1020       Out << ' ';
   1021       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
   1022       if (OI+1 != CE->op_end())
   1023         Out << ", ";
   1024     }
   1025 
   1026     if (CE->hasIndices()) {
   1027       ArrayRef<unsigned> Indices = CE->getIndices();
   1028       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   1029         Out << ", " << Indices[i];
   1030     }
   1031 
   1032     if (CE->isCast()) {
   1033       Out << " to ";
   1034       TypePrinter.print(CE->getType(), Out);
   1035     }
   1036 
   1037     Out << ')';
   1038     return;
   1039   }
   1040 
   1041   Out << "<placeholder or erroneous Constant>";
   1042 }
   1043 
   1044 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
   1045                                     TypePrinting *TypePrinter,
   1046                                     SlotTracker *Machine,
   1047                                     const Module *Context) {
   1048   Out << "!{";
   1049   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
   1050     const Value *V = Node->getOperand(mi);
   1051     if (V == 0)
   1052       Out << "null";
   1053     else {
   1054       TypePrinter->print(V->getType(), Out);
   1055       Out << ' ';
   1056       WriteAsOperandInternal(Out, Node->getOperand(mi),
   1057                              TypePrinter, Machine, Context);
   1058     }
   1059     if (mi + 1 != me)
   1060       Out << ", ";
   1061   }
   1062 
   1063   Out << "}";
   1064 }
   1065 
   1066 
   1067 /// WriteAsOperand - Write the name of the specified value out to the specified
   1068 /// ostream.  This can be useful when you just want to print int %reg126, not
   1069 /// the whole instruction that generated it.
   1070 ///
   1071 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
   1072                                    TypePrinting *TypePrinter,
   1073                                    SlotTracker *Machine,
   1074                                    const Module *Context) {
   1075   if (V->hasName()) {
   1076     PrintLLVMName(Out, V);
   1077     return;
   1078   }
   1079 
   1080   const Constant *CV = dyn_cast<Constant>(V);
   1081   if (CV && !isa<GlobalValue>(CV)) {
   1082     assert(TypePrinter && "Constants require TypePrinting!");
   1083     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
   1084     return;
   1085   }
   1086 
   1087   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
   1088     Out << "asm ";
   1089     if (IA->hasSideEffects())
   1090       Out << "sideeffect ";
   1091     if (IA->isAlignStack())
   1092       Out << "alignstack ";
   1093     // We don't emit the AD_ATT dialect as it's the assumed default.
   1094     if (IA->getDialect() == InlineAsm::AD_Intel)
   1095       Out << "inteldialect ";
   1096     Out << '"';
   1097     PrintEscapedString(IA->getAsmString(), Out);
   1098     Out << "\", \"";
   1099     PrintEscapedString(IA->getConstraintString(), Out);
   1100     Out << '"';
   1101     return;
   1102   }
   1103 
   1104   if (const MDNode *N = dyn_cast<MDNode>(V)) {
   1105     if (N->isFunctionLocal()) {
   1106       // Print metadata inline, not via slot reference number.
   1107       WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
   1108       return;
   1109     }
   1110 
   1111     if (!Machine) {
   1112       if (N->isFunctionLocal())
   1113         Machine = new SlotTracker(N->getFunction());
   1114       else
   1115         Machine = new SlotTracker(Context);
   1116     }
   1117     int Slot = Machine->getMetadataSlot(N);
   1118     if (Slot == -1)
   1119       Out << "<badref>";
   1120     else
   1121       Out << '!' << Slot;
   1122     return;
   1123   }
   1124 
   1125   if (const MDString *MDS = dyn_cast<MDString>(V)) {
   1126     Out << "!\"";
   1127     PrintEscapedString(MDS->getString(), Out);
   1128     Out << '"';
   1129     return;
   1130   }
   1131 
   1132   if (V->getValueID() == Value::PseudoSourceValueVal ||
   1133       V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
   1134     V->print(Out);
   1135     return;
   1136   }
   1137 
   1138   char Prefix = '%';
   1139   int Slot;
   1140   // If we have a SlotTracker, use it.
   1141   if (Machine) {
   1142     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1143       Slot = Machine->getGlobalSlot(GV);
   1144       Prefix = '@';
   1145     } else {
   1146       Slot = Machine->getLocalSlot(V);
   1147 
   1148       // If the local value didn't succeed, then we may be referring to a value
   1149       // from a different function.  Translate it, as this can happen when using
   1150       // address of blocks.
   1151       if (Slot == -1)
   1152         if ((Machine = createSlotTracker(V))) {
   1153           Slot = Machine->getLocalSlot(V);
   1154           delete Machine;
   1155         }
   1156     }
   1157   } else if ((Machine = createSlotTracker(V))) {
   1158     // Otherwise, create one to get the # and then destroy it.
   1159     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1160       Slot = Machine->getGlobalSlot(GV);
   1161       Prefix = '@';
   1162     } else {
   1163       Slot = Machine->getLocalSlot(V);
   1164     }
   1165     delete Machine;
   1166     Machine = 0;
   1167   } else {
   1168     Slot = -1;
   1169   }
   1170 
   1171   if (Slot != -1)
   1172     Out << Prefix << Slot;
   1173   else
   1174     Out << "<badref>";
   1175 }
   1176 
   1177 void WriteAsOperand(raw_ostream &Out, const Value *V,
   1178                     bool PrintType, const Module *Context) {
   1179 
   1180   // Fast path: Don't construct and populate a TypePrinting object if we
   1181   // won't be needing any types printed.
   1182   if (!PrintType &&
   1183       ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
   1184        V->hasName() || isa<GlobalValue>(V))) {
   1185     WriteAsOperandInternal(Out, V, 0, 0, Context);
   1186     return;
   1187   }
   1188 
   1189   if (Context == 0) Context = getModuleFromVal(V);
   1190 
   1191   TypePrinting TypePrinter;
   1192   if (Context)
   1193     TypePrinter.incorporateTypes(*Context);
   1194   if (PrintType) {
   1195     TypePrinter.print(V->getType(), Out);
   1196     Out << ' ';
   1197   }
   1198 
   1199   WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
   1200 }
   1201 
   1202 void AssemblyWriter::init() {
   1203   if (TheModule)
   1204     TypePrinter.incorporateTypes(*TheModule);
   1205 }
   1206 
   1207 
   1208 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
   1209                                const Module *M,
   1210                                AssemblyAnnotationWriter *AAW)
   1211   : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
   1212   init();
   1213 }
   1214 
   1215 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
   1216                                AssemblyAnnotationWriter *AAW)
   1217   : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
   1218     Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
   1219   init();
   1220 }
   1221 
   1222 AssemblyWriter::~AssemblyWriter() { }
   1223 
   1224 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
   1225   if (Operand == 0) {
   1226     Out << "<null operand!>";
   1227     return;
   1228   }
   1229   if (PrintType) {
   1230     TypePrinter.print(Operand->getType(), Out);
   1231     Out << ' ';
   1232   }
   1233   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1234 }
   1235 
   1236 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
   1237                                  SynchronizationScope SynchScope) {
   1238   if (Ordering == NotAtomic)
   1239     return;
   1240 
   1241   switch (SynchScope) {
   1242   case SingleThread: Out << " singlethread"; break;
   1243   case CrossThread: break;
   1244   }
   1245 
   1246   switch (Ordering) {
   1247   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
   1248   case Unordered: Out << " unordered"; break;
   1249   case Monotonic: Out << " monotonic"; break;
   1250   case Acquire: Out << " acquire"; break;
   1251   case Release: Out << " release"; break;
   1252   case AcquireRelease: Out << " acq_rel"; break;
   1253   case SequentiallyConsistent: Out << " seq_cst"; break;
   1254   }
   1255 }
   1256 
   1257 void AssemblyWriter::writeParamOperand(const Value *Operand,
   1258                                        AttributeSet Attrs, unsigned Idx) {
   1259   if (Operand == 0) {
   1260     Out << "<null operand!>";
   1261     return;
   1262   }
   1263 
   1264   // Print the type
   1265   TypePrinter.print(Operand->getType(), Out);
   1266   // Print parameter attributes list
   1267   if (Attrs.hasAttributes(Idx))
   1268     Out << ' ' << Attrs.getAsString(Idx);
   1269   Out << ' ';
   1270   // Print the operand
   1271   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1272 }
   1273 
   1274 void AssemblyWriter::printModule(const Module *M) {
   1275   Machine.initialize();
   1276 
   1277   if (!M->getModuleIdentifier().empty() &&
   1278       // Don't print the ID if it will start a new line (which would
   1279       // require a comment char before it).
   1280       M->getModuleIdentifier().find('\n') == std::string::npos)
   1281     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
   1282 
   1283   if (!M->getDataLayout().empty())
   1284     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
   1285   if (!M->getTargetTriple().empty())
   1286     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
   1287 
   1288   if (!M->getModuleInlineAsm().empty()) {
   1289     // Split the string into lines, to make it easier to read the .ll file.
   1290     std::string Asm = M->getModuleInlineAsm();
   1291     size_t CurPos = 0;
   1292     size_t NewLine = Asm.find_first_of('\n', CurPos);
   1293     Out << '\n';
   1294     while (NewLine != std::string::npos) {
   1295       // We found a newline, print the portion of the asm string from the
   1296       // last newline up to this newline.
   1297       Out << "module asm \"";
   1298       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
   1299                          Out);
   1300       Out << "\"\n";
   1301       CurPos = NewLine+1;
   1302       NewLine = Asm.find_first_of('\n', CurPos);
   1303     }
   1304     std::string rest(Asm.begin()+CurPos, Asm.end());
   1305     if (!rest.empty()) {
   1306       Out << "module asm \"";
   1307       PrintEscapedString(rest, Out);
   1308       Out << "\"\n";
   1309     }
   1310   }
   1311 
   1312   printTypeIdentities();
   1313 
   1314   // Output all globals.
   1315   if (!M->global_empty()) Out << '\n';
   1316   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
   1317        I != E; ++I) {
   1318     printGlobal(I); Out << '\n';
   1319   }
   1320 
   1321   // Output all aliases.
   1322   if (!M->alias_empty()) Out << "\n";
   1323   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
   1324        I != E; ++I)
   1325     printAlias(I);
   1326 
   1327   // Output all of the functions.
   1328   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
   1329     printFunction(I);
   1330 
   1331   // Output all attribute groups.
   1332   if (!Machine.as_empty()) {
   1333     Out << '\n';
   1334     writeAllAttributeGroups();
   1335   }
   1336 
   1337   // Output named metadata.
   1338   if (!M->named_metadata_empty()) Out << '\n';
   1339 
   1340   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
   1341        E = M->named_metadata_end(); I != E; ++I)
   1342     printNamedMDNode(I);
   1343 
   1344   // Output metadata.
   1345   if (!Machine.mdn_empty()) {
   1346     Out << '\n';
   1347     writeAllMDNodes();
   1348   }
   1349 }
   1350 
   1351 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
   1352   Out << '!';
   1353   StringRef Name = NMD->getName();
   1354   if (Name.empty()) {
   1355     Out << "<empty name> ";
   1356   } else {
   1357     if (isalpha(static_cast<unsigned char>(Name[0])) ||
   1358         Name[0] == '-' || Name[0] == '$' ||
   1359         Name[0] == '.' || Name[0] == '_')
   1360       Out << Name[0];
   1361     else
   1362       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
   1363     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
   1364       unsigned char C = Name[i];
   1365       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
   1366           C == '.' || C == '_')
   1367         Out << C;
   1368       else
   1369         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   1370     }
   1371   }
   1372   Out << " = !{";
   1373   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1374     if (i) Out << ", ";
   1375     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
   1376     if (Slot == -1)
   1377       Out << "<badref>";
   1378     else
   1379       Out << '!' << Slot;
   1380   }
   1381   Out << "}\n";
   1382 }
   1383 
   1384 
   1385 static void PrintLinkage(GlobalValue::LinkageTypes LT,
   1386                          formatted_raw_ostream &Out) {
   1387   switch (LT) {
   1388   case GlobalValue::ExternalLinkage: break;
   1389   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
   1390   case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
   1391   case GlobalValue::LinkerPrivateWeakLinkage:
   1392     Out << "linker_private_weak ";
   1393     break;
   1394   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
   1395   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
   1396   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
   1397   case GlobalValue::LinkOnceODRAutoHideLinkage:
   1398     Out << "linkonce_odr_auto_hide ";
   1399     break;
   1400   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
   1401   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
   1402   case GlobalValue::CommonLinkage:        Out << "common ";         break;
   1403   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
   1404   case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
   1405   case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
   1406   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
   1407   case GlobalValue::AvailableExternallyLinkage:
   1408     Out << "available_externally ";
   1409     break;
   1410   }
   1411 }
   1412 
   1413 
   1414 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
   1415                             formatted_raw_ostream &Out) {
   1416   switch (Vis) {
   1417   case GlobalValue::DefaultVisibility: break;
   1418   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
   1419   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
   1420   }
   1421 }
   1422 
   1423 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
   1424                                   formatted_raw_ostream &Out) {
   1425   switch (TLM) {
   1426     case GlobalVariable::NotThreadLocal:
   1427       break;
   1428     case GlobalVariable::GeneralDynamicTLSModel:
   1429       Out << "thread_local ";
   1430       break;
   1431     case GlobalVariable::LocalDynamicTLSModel:
   1432       Out << "thread_local(localdynamic) ";
   1433       break;
   1434     case GlobalVariable::InitialExecTLSModel:
   1435       Out << "thread_local(initialexec) ";
   1436       break;
   1437     case GlobalVariable::LocalExecTLSModel:
   1438       Out << "thread_local(localexec) ";
   1439       break;
   1440   }
   1441 }
   1442 
   1443 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
   1444   if (GV->isMaterializable())
   1445     Out << "; Materializable\n";
   1446 
   1447   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
   1448   Out << " = ";
   1449 
   1450   if (!GV->hasInitializer() && GV->hasExternalLinkage())
   1451     Out << "external ";
   1452 
   1453   PrintLinkage(GV->getLinkage(), Out);
   1454   PrintVisibility(GV->getVisibility(), Out);
   1455   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
   1456 
   1457   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
   1458     Out << "addrspace(" << AddressSpace << ") ";
   1459   if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
   1460   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
   1461   Out << (GV->isConstant() ? "constant " : "global ");
   1462   TypePrinter.print(GV->getType()->getElementType(), Out);
   1463 
   1464   if (GV->hasInitializer()) {
   1465     Out << ' ';
   1466     writeOperand(GV->getInitializer(), false);
   1467   }
   1468 
   1469   if (GV->hasSection()) {
   1470     Out << ", section \"";
   1471     PrintEscapedString(GV->getSection(), Out);
   1472     Out << '"';
   1473   }
   1474   if (GV->getAlignment())
   1475     Out << ", align " << GV->getAlignment();
   1476 
   1477   printInfoComment(*GV);
   1478 }
   1479 
   1480 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
   1481   if (GA->isMaterializable())
   1482     Out << "; Materializable\n";
   1483 
   1484   // Don't crash when dumping partially built GA
   1485   if (!GA->hasName())
   1486     Out << "<<nameless>> = ";
   1487   else {
   1488     PrintLLVMName(Out, GA);
   1489     Out << " = ";
   1490   }
   1491   PrintVisibility(GA->getVisibility(), Out);
   1492 
   1493   Out << "alias ";
   1494 
   1495   PrintLinkage(GA->getLinkage(), Out);
   1496 
   1497   const Constant *Aliasee = GA->getAliasee();
   1498 
   1499   if (Aliasee == 0) {
   1500     TypePrinter.print(GA->getType(), Out);
   1501     Out << " <<NULL ALIASEE>>";
   1502   } else {
   1503     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
   1504   }
   1505 
   1506   printInfoComment(*GA);
   1507   Out << '\n';
   1508 }
   1509 
   1510 void AssemblyWriter::printTypeIdentities() {
   1511   if (TypePrinter.NumberedTypes.empty() &&
   1512       TypePrinter.NamedTypes.empty())
   1513     return;
   1514 
   1515   Out << '\n';
   1516 
   1517   // We know all the numbers that each type is used and we know that it is a
   1518   // dense assignment.  Convert the map to an index table.
   1519   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
   1520   for (DenseMap<StructType*, unsigned>::iterator I =
   1521        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
   1522        I != E; ++I) {
   1523     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
   1524     NumberedTypes[I->second] = I->first;
   1525   }
   1526 
   1527   // Emit all numbered types.
   1528   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
   1529     Out << '%' << i << " = type ";
   1530 
   1531     // Make sure we print out at least one level of the type structure, so
   1532     // that we do not get %2 = type %2
   1533     TypePrinter.printStructBody(NumberedTypes[i], Out);
   1534     Out << '\n';
   1535   }
   1536 
   1537   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
   1538     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
   1539     Out << " = type ";
   1540 
   1541     // Make sure we print out at least one level of the type structure, so
   1542     // that we do not get %FILE = type %FILE
   1543     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
   1544     Out << '\n';
   1545   }
   1546 }
   1547 
   1548 /// printFunction - Print all aspects of a function.
   1549 ///
   1550 void AssemblyWriter::printFunction(const Function *F) {
   1551   // Print out the return type and name.
   1552   Out << '\n';
   1553 
   1554   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
   1555 
   1556   if (F->isMaterializable())
   1557     Out << "; Materializable\n";
   1558 
   1559   const AttributeSet &Attrs = F->getAttributes();
   1560   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
   1561     AttributeSet AS = Attrs.getFnAttributes();
   1562     std::string AttrStr;
   1563 
   1564     unsigned Idx = 0;
   1565     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
   1566       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
   1567         break;
   1568 
   1569     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
   1570          I != E; ++I) {
   1571       Attribute Attr = *I;
   1572       if (!Attr.isStringAttribute()) {
   1573         if (!AttrStr.empty()) AttrStr += ' ';
   1574         AttrStr += Attr.getAsString();
   1575       }
   1576     }
   1577 
   1578     if (!AttrStr.empty())
   1579       Out << "; Function Attrs: " << AttrStr << '\n';
   1580   }
   1581 
   1582   if (F->isDeclaration())
   1583     Out << "declare ";
   1584   else
   1585     Out << "define ";
   1586 
   1587   PrintLinkage(F->getLinkage(), Out);
   1588   PrintVisibility(F->getVisibility(), Out);
   1589 
   1590   // Print the calling convention.
   1591   if (F->getCallingConv() != CallingConv::C) {
   1592     PrintCallingConv(F->getCallingConv(), Out);
   1593     Out << " ";
   1594   }
   1595 
   1596   FunctionType *FT = F->getFunctionType();
   1597   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
   1598     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
   1599   TypePrinter.print(F->getReturnType(), Out);
   1600   Out << ' ';
   1601   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
   1602   Out << '(';
   1603   Machine.incorporateFunction(F);
   1604 
   1605   // Loop over the arguments, printing them...
   1606 
   1607   unsigned Idx = 1;
   1608   if (!F->isDeclaration()) {
   1609     // If this isn't a declaration, print the argument names as well.
   1610     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1611          I != E; ++I) {
   1612       // Insert commas as we go... the first arg doesn't get a comma
   1613       if (I != F->arg_begin()) Out << ", ";
   1614       printArgument(I, Attrs, Idx);
   1615       Idx++;
   1616     }
   1617   } else {
   1618     // Otherwise, print the types from the function type.
   1619     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1620       // Insert commas as we go... the first arg doesn't get a comma
   1621       if (i) Out << ", ";
   1622 
   1623       // Output type...
   1624       TypePrinter.print(FT->getParamType(i), Out);
   1625 
   1626       if (Attrs.hasAttributes(i+1))
   1627         Out << ' ' << Attrs.getAsString(i+1);
   1628     }
   1629   }
   1630 
   1631   // Finish printing arguments...
   1632   if (FT->isVarArg()) {
   1633     if (FT->getNumParams()) Out << ", ";
   1634     Out << "...";  // Output varargs portion of signature!
   1635   }
   1636   Out << ')';
   1637   if (F->hasUnnamedAddr())
   1638     Out << " unnamed_addr";
   1639   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
   1640     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
   1641   if (F->hasSection()) {
   1642     Out << " section \"";
   1643     PrintEscapedString(F->getSection(), Out);
   1644     Out << '"';
   1645   }
   1646   if (F->getAlignment())
   1647     Out << " align " << F->getAlignment();
   1648   if (F->hasGC())
   1649     Out << " gc \"" << F->getGC() << '"';
   1650   if (F->isDeclaration()) {
   1651     Out << '\n';
   1652   } else {
   1653     Out << " {";
   1654     // Output all of the function's basic blocks.
   1655     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
   1656       printBasicBlock(I);
   1657 
   1658     Out << "}\n";
   1659   }
   1660 
   1661   Machine.purgeFunction();
   1662 }
   1663 
   1664 /// printArgument - This member is called for every argument that is passed into
   1665 /// the function.  Simply print it out
   1666 ///
   1667 void AssemblyWriter::printArgument(const Argument *Arg,
   1668                                    AttributeSet Attrs, unsigned Idx) {
   1669   // Output type...
   1670   TypePrinter.print(Arg->getType(), Out);
   1671 
   1672   // Output parameter attributes list
   1673   if (Attrs.hasAttributes(Idx))
   1674     Out << ' ' << Attrs.getAsString(Idx);
   1675 
   1676   // Output name, if available...
   1677   if (Arg->hasName()) {
   1678     Out << ' ';
   1679     PrintLLVMName(Out, Arg);
   1680   }
   1681 }
   1682 
   1683 /// printBasicBlock - This member is called for each basic block in a method.
   1684 ///
   1685 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
   1686   if (BB->hasName()) {              // Print out the label if it exists...
   1687     Out << "\n";
   1688     PrintLLVMName(Out, BB->getName(), LabelPrefix);
   1689     Out << ':';
   1690   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
   1691     Out << "\n; <label>:";
   1692     int Slot = Machine.getLocalSlot(BB);
   1693     if (Slot != -1)
   1694       Out << Slot;
   1695     else
   1696       Out << "<badref>";
   1697   }
   1698 
   1699   if (BB->getParent() == 0) {
   1700     Out.PadToColumn(50);
   1701     Out << "; Error: Block without parent!";
   1702   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
   1703     // Output predecessors for the block.
   1704     Out.PadToColumn(50);
   1705     Out << ";";
   1706     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
   1707 
   1708     if (PI == PE) {
   1709       Out << " No predecessors!";
   1710     } else {
   1711       Out << " preds = ";
   1712       writeOperand(*PI, false);
   1713       for (++PI; PI != PE; ++PI) {
   1714         Out << ", ";
   1715         writeOperand(*PI, false);
   1716       }
   1717     }
   1718   }
   1719 
   1720   Out << "\n";
   1721 
   1722   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
   1723 
   1724   // Output all of the instructions in the basic block...
   1725   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1726     printInstructionLine(*I);
   1727   }
   1728 
   1729   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
   1730 }
   1731 
   1732 /// printInstructionLine - Print an instruction and a newline character.
   1733 void AssemblyWriter::printInstructionLine(const Instruction &I) {
   1734   printInstruction(I);
   1735   Out << '\n';
   1736 }
   1737 
   1738 /// printInfoComment - Print a little comment after the instruction indicating
   1739 /// which slot it occupies.
   1740 ///
   1741 void AssemblyWriter::printInfoComment(const Value &V) {
   1742   if (AnnotationWriter)
   1743     AnnotationWriter->printInfoComment(V, Out);
   1744 }
   1745 
   1746 // This member is called for each Instruction in a function..
   1747 void AssemblyWriter::printInstruction(const Instruction &I) {
   1748   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
   1749 
   1750   // Print out indentation for an instruction.
   1751   Out << "  ";
   1752 
   1753   // Print out name if it exists...
   1754   if (I.hasName()) {
   1755     PrintLLVMName(Out, &I);
   1756     Out << " = ";
   1757   } else if (!I.getType()->isVoidTy()) {
   1758     // Print out the def slot taken.
   1759     int SlotNum = Machine.getLocalSlot(&I);
   1760     if (SlotNum == -1)
   1761       Out << "<badref> = ";
   1762     else
   1763       Out << '%' << SlotNum << " = ";
   1764   }
   1765 
   1766   if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
   1767     Out << "tail ";
   1768 
   1769   // Print out the opcode...
   1770   Out << I.getOpcodeName();
   1771 
   1772   // If this is an atomic load or store, print out the atomic marker.
   1773   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
   1774       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
   1775     Out << " atomic";
   1776 
   1777   // If this is a volatile operation, print out the volatile marker.
   1778   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
   1779       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
   1780       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
   1781       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
   1782     Out << " volatile";
   1783 
   1784   // Print out optimization information.
   1785   WriteOptimizationInfo(Out, &I);
   1786 
   1787   // Print out the compare instruction predicates
   1788   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
   1789     Out << ' ' << getPredicateText(CI->getPredicate());
   1790 
   1791   // Print out the atomicrmw operation
   1792   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
   1793     writeAtomicRMWOperation(Out, RMWI->getOperation());
   1794 
   1795   // Print out the type of the operands...
   1796   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
   1797 
   1798   // Special case conditional branches to swizzle the condition out to the front
   1799   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
   1800     const BranchInst &BI(cast<BranchInst>(I));
   1801     Out << ' ';
   1802     writeOperand(BI.getCondition(), true);
   1803     Out << ", ";
   1804     writeOperand(BI.getSuccessor(0), true);
   1805     Out << ", ";
   1806     writeOperand(BI.getSuccessor(1), true);
   1807 
   1808   } else if (isa<SwitchInst>(I)) {
   1809     const SwitchInst& SI(cast<SwitchInst>(I));
   1810     // Special case switch instruction to get formatting nice and correct.
   1811     Out << ' ';
   1812     writeOperand(SI.getCondition(), true);
   1813     Out << ", ";
   1814     writeOperand(SI.getDefaultDest(), true);
   1815     Out << " [";
   1816     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1817          i != e; ++i) {
   1818       Out << "\n    ";
   1819       writeOperand(i.getCaseValue(), true);
   1820       Out << ", ";
   1821       writeOperand(i.getCaseSuccessor(), true);
   1822     }
   1823     Out << "\n  ]";
   1824   } else if (isa<IndirectBrInst>(I)) {
   1825     // Special case indirectbr instruction to get formatting nice and correct.
   1826     Out << ' ';
   1827     writeOperand(Operand, true);
   1828     Out << ", [";
   1829 
   1830     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
   1831       if (i != 1)
   1832         Out << ", ";
   1833       writeOperand(I.getOperand(i), true);
   1834     }
   1835     Out << ']';
   1836   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
   1837     Out << ' ';
   1838     TypePrinter.print(I.getType(), Out);
   1839     Out << ' ';
   1840 
   1841     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
   1842       if (op) Out << ", ";
   1843       Out << "[ ";
   1844       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
   1845       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
   1846     }
   1847   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
   1848     Out << ' ';
   1849     writeOperand(I.getOperand(0), true);
   1850     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1851       Out << ", " << *i;
   1852   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
   1853     Out << ' ';
   1854     writeOperand(I.getOperand(0), true); Out << ", ";
   1855     writeOperand(I.getOperand(1), true);
   1856     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1857       Out << ", " << *i;
   1858   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
   1859     Out << ' ';
   1860     TypePrinter.print(I.getType(), Out);
   1861     Out << " personality ";
   1862     writeOperand(I.getOperand(0), true); Out << '\n';
   1863 
   1864     if (LPI->isCleanup())
   1865       Out << "          cleanup";
   1866 
   1867     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
   1868       if (i != 0 || LPI->isCleanup()) Out << "\n";
   1869       if (LPI->isCatch(i))
   1870         Out << "          catch ";
   1871       else
   1872         Out << "          filter ";
   1873 
   1874       writeOperand(LPI->getClause(i), true);
   1875     }
   1876   } else if (isa<ReturnInst>(I) && !Operand) {
   1877     Out << " void";
   1878   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
   1879     // Print the calling convention being used.
   1880     if (CI->getCallingConv() != CallingConv::C) {
   1881       Out << " ";
   1882       PrintCallingConv(CI->getCallingConv(), Out);
   1883     }
   1884 
   1885     Operand = CI->getCalledValue();
   1886     PointerType *PTy = cast<PointerType>(Operand->getType());
   1887     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1888     Type *RetTy = FTy->getReturnType();
   1889     const AttributeSet &PAL = CI->getAttributes();
   1890 
   1891     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   1892       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   1893 
   1894     // If possible, print out the short form of the call instruction.  We can
   1895     // only do this if the first argument is a pointer to a nonvararg function,
   1896     // and if the return type is not a pointer to a function.
   1897     //
   1898     Out << ' ';
   1899     if (!FTy->isVarArg() &&
   1900         (!RetTy->isPointerTy() ||
   1901          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1902       TypePrinter.print(RetTy, Out);
   1903       Out << ' ';
   1904       writeOperand(Operand, false);
   1905     } else {
   1906       writeOperand(Operand, true);
   1907     }
   1908     Out << '(';
   1909     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
   1910       if (op > 0)
   1911         Out << ", ";
   1912       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
   1913     }
   1914     Out << ')';
   1915     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   1916       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   1917   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
   1918     Operand = II->getCalledValue();
   1919     PointerType *PTy = cast<PointerType>(Operand->getType());
   1920     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1921     Type *RetTy = FTy->getReturnType();
   1922     const AttributeSet &PAL = II->getAttributes();
   1923 
   1924     // Print the calling convention being used.
   1925     if (II->getCallingConv() != CallingConv::C) {
   1926       Out << " ";
   1927       PrintCallingConv(II->getCallingConv(), Out);
   1928     }
   1929 
   1930     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   1931       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   1932 
   1933     // If possible, print out the short form of the invoke instruction. We can
   1934     // only do this if the first argument is a pointer to a nonvararg function,
   1935     // and if the return type is not a pointer to a function.
   1936     //
   1937     Out << ' ';
   1938     if (!FTy->isVarArg() &&
   1939         (!RetTy->isPointerTy() ||
   1940          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1941       TypePrinter.print(RetTy, Out);
   1942       Out << ' ';
   1943       writeOperand(Operand, false);
   1944     } else {
   1945       writeOperand(Operand, true);
   1946     }
   1947     Out << '(';
   1948     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
   1949       if (op)
   1950         Out << ", ";
   1951       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
   1952     }
   1953 
   1954     Out << ')';
   1955     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   1956       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   1957 
   1958     Out << "\n          to ";
   1959     writeOperand(II->getNormalDest(), true);
   1960     Out << " unwind ";
   1961     writeOperand(II->getUnwindDest(), true);
   1962 
   1963   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
   1964     Out << ' ';
   1965     TypePrinter.print(AI->getAllocatedType(), Out);
   1966     if (!AI->getArraySize() || AI->isArrayAllocation()) {
   1967       Out << ", ";
   1968       writeOperand(AI->getArraySize(), true);
   1969     }
   1970     if (AI->getAlignment()) {
   1971       Out << ", align " << AI->getAlignment();
   1972     }
   1973   } else if (isa<CastInst>(I)) {
   1974     if (Operand) {
   1975       Out << ' ';
   1976       writeOperand(Operand, true);   // Work with broken code
   1977     }
   1978     Out << " to ";
   1979     TypePrinter.print(I.getType(), Out);
   1980   } else if (isa<VAArgInst>(I)) {
   1981     if (Operand) {
   1982       Out << ' ';
   1983       writeOperand(Operand, true);   // Work with broken code
   1984     }
   1985     Out << ", ";
   1986     TypePrinter.print(I.getType(), Out);
   1987   } else if (Operand) {   // Print the normal way.
   1988 
   1989     // PrintAllTypes - Instructions who have operands of all the same type
   1990     // omit the type from all but the first operand.  If the instruction has
   1991     // different type operands (for example br), then they are all printed.
   1992     bool PrintAllTypes = false;
   1993     Type *TheType = Operand->getType();
   1994 
   1995     // Select, Store and ShuffleVector always print all types.
   1996     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
   1997         || isa<ReturnInst>(I)) {
   1998       PrintAllTypes = true;
   1999     } else {
   2000       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
   2001         Operand = I.getOperand(i);
   2002         // note that Operand shouldn't be null, but the test helps make dump()
   2003         // more tolerant of malformed IR
   2004         if (Operand && Operand->getType() != TheType) {
   2005           PrintAllTypes = true;    // We have differing types!  Print them all!
   2006           break;
   2007         }
   2008       }
   2009     }
   2010 
   2011     if (!PrintAllTypes) {
   2012       Out << ' ';
   2013       TypePrinter.print(TheType, Out);
   2014     }
   2015 
   2016     Out << ' ';
   2017     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
   2018       if (i) Out << ", ";
   2019       writeOperand(I.getOperand(i), PrintAllTypes);
   2020     }
   2021   }
   2022 
   2023   // Print atomic ordering/alignment for memory operations
   2024   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
   2025     if (LI->isAtomic())
   2026       writeAtomic(LI->getOrdering(), LI->getSynchScope());
   2027     if (LI->getAlignment())
   2028       Out << ", align " << LI->getAlignment();
   2029   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
   2030     if (SI->isAtomic())
   2031       writeAtomic(SI->getOrdering(), SI->getSynchScope());
   2032     if (SI->getAlignment())
   2033       Out << ", align " << SI->getAlignment();
   2034   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
   2035     writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
   2036   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
   2037     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
   2038   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
   2039     writeAtomic(FI->getOrdering(), FI->getSynchScope());
   2040   }
   2041 
   2042   // Print Metadata info.
   2043   SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
   2044   I.getAllMetadata(InstMD);
   2045   if (!InstMD.empty()) {
   2046     SmallVector<StringRef, 8> MDNames;
   2047     I.getType()->getContext().getMDKindNames(MDNames);
   2048     for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
   2049       unsigned Kind = InstMD[i].first;
   2050        if (Kind < MDNames.size()) {
   2051          Out << ", !" << MDNames[Kind];
   2052        } else {
   2053          Out << ", !<unknown kind #" << Kind << ">";
   2054        }
   2055       Out << ' ';
   2056       WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
   2057                              TheModule);
   2058     }
   2059   }
   2060   printInfoComment(I);
   2061 }
   2062 
   2063 static void WriteMDNodeComment(const MDNode *Node,
   2064                                formatted_raw_ostream &Out) {
   2065   if (Node->getNumOperands() < 1)
   2066     return;
   2067 
   2068   Value *Op = Node->getOperand(0);
   2069   if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
   2070     return;
   2071 
   2072   DIDescriptor Desc(Node);
   2073   if (!Desc.Verify())
   2074     return;
   2075 
   2076   unsigned Tag = Desc.getTag();
   2077   Out.PadToColumn(50);
   2078   if (dwarf::TagString(Tag)) {
   2079     Out << "; ";
   2080     Desc.print(Out);
   2081   } else if (Tag == dwarf::DW_TAG_user_base) {
   2082     Out << "; [ DW_TAG_user_base ]";
   2083   }
   2084 }
   2085 
   2086 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
   2087   Out << '!' << Slot << " = metadata ";
   2088   printMDNodeBody(Node);
   2089 }
   2090 
   2091 void AssemblyWriter::writeAllMDNodes() {
   2092   SmallVector<const MDNode *, 16> Nodes;
   2093   Nodes.resize(Machine.mdn_size());
   2094   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
   2095        I != E; ++I)
   2096     Nodes[I->second] = cast<MDNode>(I->first);
   2097 
   2098   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   2099     writeMDNode(i, Nodes[i]);
   2100   }
   2101 }
   2102 
   2103 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
   2104   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
   2105   WriteMDNodeComment(Node, Out);
   2106   Out << "\n";
   2107 }
   2108 
   2109 void AssemblyWriter::writeAllAttributeGroups() {
   2110   std::vector<std::pair<AttributeSet, unsigned> > asVec;
   2111   asVec.resize(Machine.as_size());
   2112 
   2113   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
   2114        I != E; ++I)
   2115     asVec[I->second] = *I;
   2116 
   2117   for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
   2118          I = asVec.begin(), E = asVec.end(); I != E; ++I)
   2119     Out << "attributes #" << I->second << " = { "
   2120         << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
   2121 }
   2122 
   2123 } // namespace llvm
   2124 
   2125 //===----------------------------------------------------------------------===//
   2126 //                       External Interface declarations
   2127 //===----------------------------------------------------------------------===//
   2128 
   2129 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2130   SlotTracker SlotTable(this);
   2131   formatted_raw_ostream OS(ROS);
   2132   AssemblyWriter W(OS, SlotTable, this, AAW);
   2133   W.printModule(this);
   2134 }
   2135 
   2136 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2137   SlotTracker SlotTable(getParent());
   2138   formatted_raw_ostream OS(ROS);
   2139   AssemblyWriter W(OS, SlotTable, getParent(), AAW);
   2140   W.printNamedMDNode(this);
   2141 }
   2142 
   2143 void Type::print(raw_ostream &OS) const {
   2144   if (this == 0) {
   2145     OS << "<null Type>";
   2146     return;
   2147   }
   2148   TypePrinting TP;
   2149   TP.print(const_cast<Type*>(this), OS);
   2150 
   2151   // If the type is a named struct type, print the body as well.
   2152   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
   2153     if (!STy->isLiteral()) {
   2154       OS << " = type ";
   2155       TP.printStructBody(STy, OS);
   2156     }
   2157 }
   2158 
   2159 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2160   if (this == 0) {
   2161     ROS << "printing a <null> value\n";
   2162     return;
   2163   }
   2164   formatted_raw_ostream OS(ROS);
   2165   if (const Instruction *I = dyn_cast<Instruction>(this)) {
   2166     const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
   2167     SlotTracker SlotTable(F);
   2168     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
   2169     W.printInstruction(*I);
   2170   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
   2171     SlotTracker SlotTable(BB->getParent());
   2172     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
   2173     W.printBasicBlock(BB);
   2174   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
   2175     SlotTracker SlotTable(GV->getParent());
   2176     AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
   2177     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
   2178       W.printGlobal(V);
   2179     else if (const Function *F = dyn_cast<Function>(GV))
   2180       W.printFunction(F);
   2181     else
   2182       W.printAlias(cast<GlobalAlias>(GV));
   2183   } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
   2184     const Function *F = N->getFunction();
   2185     SlotTracker SlotTable(F);
   2186     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
   2187     W.printMDNodeBody(N);
   2188   } else if (const Constant *C = dyn_cast<Constant>(this)) {
   2189     TypePrinting TypePrinter;
   2190     TypePrinter.print(C->getType(), OS);
   2191     OS << ' ';
   2192     WriteConstantInternal(OS, C, TypePrinter, 0, 0);
   2193   } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
   2194              isa<Argument>(this)) {
   2195     WriteAsOperand(OS, this, true, 0);
   2196   } else {
   2197     // Otherwise we don't know what it is. Call the virtual function to
   2198     // allow a subclass to print itself.
   2199     printCustom(OS);
   2200   }
   2201 }
   2202 
   2203 // Value::printCustom - subclasses should override this to implement printing.
   2204 void Value::printCustom(raw_ostream &OS) const {
   2205   llvm_unreachable("Unknown value to print out!");
   2206 }
   2207 
   2208 // Value::dump - allow easy printing of Values from the debugger.
   2209 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
   2210 
   2211 // Type::dump - allow easy printing of Types from the debugger.
   2212 void Type::dump() const { print(dbgs()); }
   2213 
   2214 // Module::dump() - Allow printing of Modules from the debugger.
   2215 void Module::dump() const { print(dbgs(), 0); }
   2216 
   2217 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
   2218 void NamedMDNode::dump() const { print(dbgs(), 0); }
   2219