Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // MSVC++ requires this to be set before any other includes to get M_PI.
      6 #define _USE_MATH_DEFINES
      7 
      8 #include <cmath>
      9 
     10 #include "base/bind.h"
     11 #include "base/bind_helpers.h"
     12 #include "base/cpu.h"
     13 #include "base/strings/string_number_conversions.h"
     14 #include "base/time/time.h"
     15 #include "build/build_config.h"
     16 #include "media/base/sinc_resampler.h"
     17 #include "testing/gmock/include/gmock/gmock.h"
     18 #include "testing/gtest/include/gtest/gtest.h"
     19 
     20 using testing::_;
     21 
     22 namespace media {
     23 
     24 static const double kSampleRateRatio = 192000.0 / 44100.0;
     25 
     26 // Helper class to ensure ChunkedResample() functions properly.
     27 class MockSource {
     28  public:
     29   MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
     30 };
     31 
     32 ACTION(ClearBuffer) {
     33   memset(arg1, 0, arg0 * sizeof(float));
     34 }
     35 
     36 ACTION(FillBuffer) {
     37   // Value chosen arbitrarily such that SincResampler resamples it to something
     38   // easily representable on all platforms; e.g., using kSampleRateRatio this
     39   // becomes 1.81219.
     40   memset(arg1, 64, arg0 * sizeof(float));
     41 }
     42 
     43 // Test requesting multiples of ChunkSize() frames results in the proper number
     44 // of callbacks.
     45 TEST(SincResamplerTest, ChunkedResample) {
     46   MockSource mock_source;
     47 
     48   // Choose a high ratio of input to output samples which will result in quick
     49   // exhaustion of SincResampler's internal buffers.
     50   SincResampler resampler(
     51       kSampleRateRatio, SincResampler::kDefaultRequestSize,
     52       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
     53 
     54   static const int kChunks = 2;
     55   int max_chunk_size = resampler.ChunkSize() * kChunks;
     56   scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);
     57 
     58   // Verify requesting ChunkSize() frames causes a single callback.
     59   EXPECT_CALL(mock_source, ProvideInput(_, _))
     60       .Times(1).WillOnce(ClearBuffer());
     61   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
     62 
     63   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
     64   testing::Mock::VerifyAndClear(&mock_source);
     65   EXPECT_CALL(mock_source, ProvideInput(_, _))
     66       .Times(kChunks).WillRepeatedly(ClearBuffer());
     67   resampler.Resample(max_chunk_size, resampled_destination.get());
     68 }
     69 
     70 // Test flush resets the internal state properly.
     71 TEST(SincResamplerTest, Flush) {
     72   MockSource mock_source;
     73   SincResampler resampler(
     74       kSampleRateRatio, SincResampler::kDefaultRequestSize,
     75       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
     76   scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]);
     77 
     78   // Fill the resampler with junk data.
     79   EXPECT_CALL(mock_source, ProvideInput(_, _))
     80       .Times(1).WillOnce(FillBuffer());
     81   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     82   ASSERT_NE(resampled_destination[0], 0);
     83 
     84   // Flush and request more data, which should all be zeros now.
     85   resampler.Flush();
     86   testing::Mock::VerifyAndClear(&mock_source);
     87   EXPECT_CALL(mock_source, ProvideInput(_, _))
     88       .Times(1).WillOnce(ClearBuffer());
     89   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     90   for (int i = 0; i < resampler.ChunkSize() / 2; ++i)
     91     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
     92 }
     93 
     94 // Test flush resets the internal state properly.
     95 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
     96   MockSource mock_source;
     97   SincResampler resampler(
     98       kSampleRateRatio, SincResampler::kDefaultRequestSize,
     99       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
    100 
    101   base::TimeTicks start = base::TimeTicks::HighResNow();
    102   for (int i = 1; i < 10000; ++i)
    103     resampler.SetRatio(1.0 / i);
    104   double total_time_c_ms =
    105       (base::TimeTicks::HighResNow() - start).InMillisecondsF();
    106   printf("SetRatio() took %.2fms.\n", total_time_c_ms);
    107 }
    108 
    109 
    110 // Define platform independent function name for Convolve* tests.
    111 #if defined(ARCH_CPU_X86_FAMILY)
    112 #define CONVOLVE_FUNC Convolve_SSE
    113 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    114 #define CONVOLVE_FUNC Convolve_NEON
    115 #endif
    116 
    117 // Ensure various optimized Convolve() methods return the same value.  Only run
    118 // this test if other optimized methods exist, otherwise the default Convolve()
    119 // will be tested by the parameterized SincResampler tests below.
    120 #if defined(CONVOLVE_FUNC)
    121 static const double kKernelInterpolationFactor = 0.5;
    122 
    123 TEST(SincResamplerTest, Convolve) {
    124 #if defined(ARCH_CPU_X86_FAMILY)
    125   ASSERT_TRUE(base::CPU().has_sse());
    126 #endif
    127 
    128   // Initialize a dummy resampler.
    129   MockSource mock_source;
    130   SincResampler resampler(
    131       kSampleRateRatio, SincResampler::kDefaultRequestSize,
    132       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
    133 
    134   // The optimized Convolve methods are slightly more precise than Convolve_C(),
    135   // so comparison must be done using an epsilon.
    136   static const double kEpsilon = 0.00000005;
    137 
    138   // Use a kernel from SincResampler as input and kernel data, this has the
    139   // benefit of already being properly sized and aligned for Convolve_SSE().
    140   double result = resampler.Convolve_C(
    141       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    142       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    143   double result2 = resampler.CONVOLVE_FUNC(
    144       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    145       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    146   EXPECT_NEAR(result2, result, kEpsilon);
    147 
    148   // Test Convolve() w/ unaligned input pointer.
    149   result = resampler.Convolve_C(
    150       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    151       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    152   result2 = resampler.CONVOLVE_FUNC(
    153       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    154       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    155   EXPECT_NEAR(result2, result, kEpsilon);
    156 }
    157 #endif
    158 
    159 // Fake audio source for testing the resampler.  Generates a sinusoidal linear
    160 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
    161 // resampler for the specific sample rate conversion being used.
    162 class SinusoidalLinearChirpSource {
    163  public:
    164   SinusoidalLinearChirpSource(int sample_rate,
    165                               int samples,
    166                               double max_frequency)
    167       : sample_rate_(sample_rate),
    168         total_samples_(samples),
    169         max_frequency_(max_frequency),
    170         current_index_(0) {
    171     // Chirp rate.
    172     double duration = static_cast<double>(total_samples_) / sample_rate_;
    173     k_ = (max_frequency_ - kMinFrequency) / duration;
    174   }
    175 
    176   virtual ~SinusoidalLinearChirpSource() {}
    177 
    178   void ProvideInput(int frames, float* destination) {
    179     for (int i = 0; i < frames; ++i, ++current_index_) {
    180       // Filter out frequencies higher than Nyquist.
    181       if (Frequency(current_index_) > 0.5 * sample_rate_) {
    182         destination[i] = 0;
    183       } else {
    184         // Calculate time in seconds.
    185         double t = static_cast<double>(current_index_) / sample_rate_;
    186 
    187         // Sinusoidal linear chirp.
    188         destination[i] = sin(2 * M_PI * (kMinFrequency * t + (k_ / 2) * t * t));
    189       }
    190     }
    191   }
    192 
    193   double Frequency(int position) {
    194     return kMinFrequency + position * (max_frequency_ - kMinFrequency)
    195         / total_samples_;
    196   }
    197 
    198  private:
    199   enum {
    200     kMinFrequency = 5
    201   };
    202 
    203   double sample_rate_;
    204   int total_samples_;
    205   double max_frequency_;
    206   double k_;
    207   int current_index_;
    208 
    209   DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource);
    210 };
    211 
    212 typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
    213 class SincResamplerTest
    214     : public testing::TestWithParam<SincResamplerTestData> {
    215  public:
    216   SincResamplerTest()
    217       : input_rate_(std::tr1::get<0>(GetParam())),
    218         output_rate_(std::tr1::get<1>(GetParam())),
    219         rms_error_(std::tr1::get<2>(GetParam())),
    220         low_freq_error_(std::tr1::get<3>(GetParam())) {
    221   }
    222 
    223   virtual ~SincResamplerTest() {}
    224 
    225  protected:
    226   int input_rate_;
    227   int output_rate_;
    228   double rms_error_;
    229   double low_freq_error_;
    230 };
    231 
    232 // Tests resampling using a given input and output sample rate.
    233 TEST_P(SincResamplerTest, Resample) {
    234   // Make comparisons using one second of data.
    235   static const double kTestDurationSecs = 1;
    236   int input_samples = kTestDurationSecs * input_rate_;
    237   int output_samples = kTestDurationSecs * output_rate_;
    238 
    239   // Nyquist frequency for the input sampling rate.
    240   double input_nyquist_freq = 0.5 * input_rate_;
    241 
    242   // Source for data to be resampled.
    243   SinusoidalLinearChirpSource resampler_source(
    244       input_rate_, input_samples, input_nyquist_freq);
    245 
    246   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
    247   SincResampler resampler(
    248       io_ratio, SincResampler::kDefaultRequestSize,
    249       base::Bind(&SinusoidalLinearChirpSource::ProvideInput,
    250                  base::Unretained(&resampler_source)));
    251 
    252   // Force an update to the sample rate ratio to ensure dyanmic sample rate
    253   // changes are working correctly.
    254   scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
    255   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
    256          SincResampler::kKernelStorageSize);
    257   resampler.SetRatio(M_PI);
    258   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    259                       SincResampler::kKernelStorageSize));
    260   resampler.SetRatio(io_ratio);
    261   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    262                       SincResampler::kKernelStorageSize));
    263 
    264   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
    265   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
    266   scoped_ptr<float[]> resampled_destination(new float[output_samples]);
    267   scoped_ptr<float[]> pure_destination(new float[output_samples]);
    268 
    269   // Generate resampled signal.
    270   resampler.Resample(output_samples, resampled_destination.get());
    271 
    272   // Generate pure signal.
    273   SinusoidalLinearChirpSource pure_source(
    274       output_rate_, output_samples, input_nyquist_freq);
    275   pure_source.ProvideInput(output_samples, pure_destination.get());
    276 
    277   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
    278   // we refer to as low and high.
    279   static const double kLowFrequencyNyquistRange = 0.7;
    280   static const double kHighFrequencyNyquistRange = 0.9;
    281 
    282   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
    283   double sum_of_squares = 0;
    284   double low_freq_max_error = 0;
    285   double high_freq_max_error = 0;
    286   int minimum_rate = std::min(input_rate_, output_rate_);
    287   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
    288   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
    289   for (int i = 0; i < output_samples; ++i) {
    290     double error = fabs(resampled_destination[i] - pure_destination[i]);
    291 
    292     if (pure_source.Frequency(i) < low_frequency_range) {
    293       if (error > low_freq_max_error)
    294         low_freq_max_error = error;
    295     } else if (pure_source.Frequency(i) < high_frequency_range) {
    296       if (error > high_freq_max_error)
    297         high_freq_max_error = error;
    298     }
    299     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
    300 
    301     sum_of_squares += error * error;
    302   }
    303 
    304   double rms_error = sqrt(sum_of_squares / output_samples);
    305 
    306   // Convert each error to dbFS.
    307   #define DBFS(x) 20 * log10(x)
    308   rms_error = DBFS(rms_error);
    309   low_freq_max_error = DBFS(low_freq_max_error);
    310   high_freq_max_error = DBFS(high_freq_max_error);
    311 
    312   EXPECT_LE(rms_error, rms_error_);
    313   EXPECT_LE(low_freq_max_error, low_freq_error_);
    314 
    315   // All conversions currently have a high frequency error around -6 dbFS.
    316   static const double kHighFrequencyMaxError = -6.02;
    317   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
    318 }
    319 
    320 // Almost all conversions have an RMS error of around -14 dbFS.
    321 static const double kResamplingRMSError = -14.58;
    322 
    323 // Thresholds chosen arbitrarily based on what each resampling reported during
    324 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
    325 INSTANTIATE_TEST_CASE_P(
    326     SincResamplerTest, SincResamplerTest, testing::Values(
    327         // To 44.1kHz
    328         std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
    329         std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
    330         std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
    331         std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
    332         std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
    333         std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
    334         std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
    335         std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
    336         std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
    337 
    338         // To 48kHz
    339         std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
    340         std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
    341         std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
    342         std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
    343         std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
    344         std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
    345         std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
    346         std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
    347         std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
    348 
    349         // To 96kHz
    350         std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
    351         std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
    352         std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
    353         std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
    354         std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
    355         std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
    356         std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
    357         std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
    358         std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
    359 
    360         // To 192kHz
    361         std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
    362         std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
    363         std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
    364         std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
    365         std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
    366         std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
    367         std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
    368         std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
    369         std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
    370 
    371 }  // namespace media
    372