Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     14 // Third party copyrights are property of their respective owners.
     15 //
     16 // Redistribution and use in source and binary forms, with or without modification,
     17 // are permitted provided that the following conditions are met:
     18 //
     19 //   * Redistribution's of source code must retain the above copyright notice,
     20 //     this list of conditions and the following disclaimer.
     21 //
     22 //   * Redistribution's in binary form must reproduce the above copyright notice,
     23 //     this list of conditions and the following disclaimer in the documentation
     24 //     and/or other materials provided with the distribution.
     25 //
     26 //   * The name of Intel Corporation may not be used to endorse or promote products
     27 //     derived from this software without specific prior written permission.
     28 //
     29 // This software is provided by the copyright holders and contributors "as is" and
     30 // any express or implied warranties, including, but not limited to, the implied
     31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     32 // In no event shall the Intel Corporation or contributors be liable for any direct,
     33 // indirect, incidental, special, exemplary, or consequential damages
     34 // (including, but not limited to, procurement of substitute goods or services;
     35 // loss of use, data, or profits; or business interruption) however caused
     36 // and on any theory of liability, whether in contract, strict liability,
     37 // or tort (including negligence or otherwise) arising in any way out of
     38 // the use of this software, even if advised of the possibility of such damage.
     39 //
     40 //M*/
     41 
     42 /* Haar features calculation */
     43 
     44 #include "_cv.h"
     45 #include <stdio.h>
     46 
     47 /* these settings affect the quality of detection: change with care */
     48 #define CV_ADJUST_FEATURES 1
     49 #define CV_ADJUST_WEIGHTS  1
     50 
     51 typedef int sumtype;
     52 typedef double sqsumtype;
     53 
     54 typedef struct MyCvHidHaarFeature
     55 	{
     56 		struct
     57 		{
     58 			sumtype *p0, *p1, *p2, *p3;
     59 			int weight;
     60 		}
     61 		rect[CV_HAAR_FEATURE_MAX];
     62 	}
     63 	MyCvHidHaarFeature;
     64 
     65 
     66 typedef struct MyCvHidHaarTreeNode
     67 	{
     68 		MyCvHidHaarFeature feature;
     69 		int threshold;
     70 		int left;
     71 		int right;
     72 	}
     73 	MyCvHidHaarTreeNode;
     74 
     75 
     76 typedef struct MyCvHidHaarClassifier
     77 	{
     78 		int count;
     79 		//CvHaarFeature* orig_feature;
     80 		MyCvHidHaarTreeNode* node;
     81 		float* alpha;
     82 	}
     83 	MyCvHidHaarClassifier;
     84 
     85 
     86 typedef struct MyCvHidHaarStageClassifier
     87 	{
     88 		int  count;
     89 		float threshold;
     90 		MyCvHidHaarClassifier* classifier;
     91 		int two_rects;
     92 
     93 		struct MyCvHidHaarStageClassifier* next;
     94 		struct MyCvHidHaarStageClassifier* child;
     95 		struct MyCvHidHaarStageClassifier* parent;
     96 	}
     97 	MyCvHidHaarStageClassifier;
     98 
     99 
    100 struct MyCvHidHaarClassifierCascade
    101 {
    102     int  count;
    103     int  is_stump_based;
    104     int  has_tilted_features;
    105     int  is_tree;
    106     double inv_window_area;
    107     CvMat sum, sqsum, tilted;
    108     MyCvHidHaarStageClassifier* stage_classifier;
    109     sqsumtype *pq0, *pq1, *pq2, *pq3;
    110     sumtype *p0, *p1, *p2, *p3;
    111 
    112     void** ipp_stages;
    113 };
    114 
    115 
    116 const int icv_object_win_border = 1;
    117 const float icv_stage_threshold_bias = 0.0001f;
    118 
    119 static int myis_equal( const void* _r1, const void* _r2, void* )
    120 {
    121     const CvRect* r1 = (const CvRect*)_r1;
    122     const CvRect* r2 = (const CvRect*)_r2;
    123     int distance = cvRound(r1->width*0.2);
    124 
    125     return r2->x <= r1->x + distance &&
    126 	r2->x >= r1->x - distance &&
    127 	r2->y <= r1->y + distance &&
    128 	r2->y >= r1->y - distance &&
    129 	r2->width <= cvRound( r1->width * 1.2 ) &&
    130 	cvRound( r2->width * 1.2 ) >= r1->width;
    131 }
    132 
    133 static void
    134 myicvReleaseHidHaarClassifierCascade( MyCvHidHaarClassifierCascade** _cascade )
    135 {
    136     if( _cascade && *_cascade )
    137     {
    138         /*CvHidHaarClassifierCascade* cascade = *_cascade;
    139 		 if( cascade->ipp_stages && icvHaarClassifierFree_32f_p )
    140 		 {
    141 		 int i;
    142 		 for( i = 0; i < cascade->count; i++ )
    143 		 {
    144 		 if( cascade->ipp_stages[i] )
    145 		 icvHaarClassifierFree_32f_p( cascade->ipp_stages[i] );
    146 		 }
    147 		 }
    148 		 cvFree( &cascade->ipp_stages );*/
    149         cvFree( _cascade );
    150     }
    151 }
    152 
    153 /* create more efficient internal representation of haar classifier cascade */
    154 static MyCvHidHaarClassifierCascade*
    155 myicvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
    156 {
    157     CvRect* ipp_features = 0;
    158     float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;
    159     int* ipp_counts = 0;
    160 
    161     MyCvHidHaarClassifierCascade* out = 0;
    162 
    163     CV_FUNCNAME( "icvCreateHidHaarClassifierCascade" );
    164 
    165     __BEGIN__;
    166 
    167     int i, j, k, l;
    168     int datasize;
    169     int total_classifiers = 0;
    170     int total_nodes = 0;
    171     char errorstr[100];
    172     MyCvHidHaarClassifier* haar_classifier_ptr;
    173     MyCvHidHaarTreeNode* haar_node_ptr;
    174     CvSize orig_window_size;
    175     int has_tilted_features = 0;
    176     int max_count = 0;
    177 
    178     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
    179         CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
    180 
    181     if( cascade->hid_cascade )
    182         CV_ERROR( CV_StsError, "hid_cascade has been already created" );
    183 
    184     if( !cascade->stage_classifier )
    185         CV_ERROR( CV_StsNullPtr, "" );
    186 
    187     if( cascade->count <= 0 )
    188         CV_ERROR( CV_StsOutOfRange, "Negative number of cascade stages" );
    189 
    190     orig_window_size = cascade->orig_window_size;
    191 
    192     /* check input structure correctness and calculate total memory size needed for
    193 	 internal representation of the classifier cascade */
    194     for( i = 0; i < cascade->count; i++ )
    195     {
    196         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
    197 
    198         if( !stage_classifier->classifier ||
    199 		   stage_classifier->count <= 0 )
    200         {
    201             sprintf( errorstr, "header of the stage classifier #%d is invalid "
    202 					"(has null pointers or non-positive classfier count)", i );
    203             CV_ERROR( CV_StsError, errorstr );
    204         }
    205 
    206         max_count = MAX( max_count, stage_classifier->count );
    207         total_classifiers += stage_classifier->count;
    208 
    209         for( j = 0; j < stage_classifier->count; j++ )
    210         {
    211             CvHaarClassifier* classifier = stage_classifier->classifier + j;
    212 
    213             total_nodes += classifier->count;
    214             for( l = 0; l < classifier->count; l++ )
    215             {
    216                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
    217                 {
    218                     if( classifier->haar_feature[l].rect[k].r.width )
    219                     {
    220                         CvRect r = classifier->haar_feature[l].rect[k].r;
    221                         int tilted = classifier->haar_feature[l].tilted;
    222                         has_tilted_features |= tilted != 0;
    223                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
    224 						   r.x + r.width > orig_window_size.width
    225 						   ||
    226 						   (!tilted &&
    227                             (r.x < 0 || r.y + r.height > orig_window_size.height))
    228 						   ||
    229 						   (tilted && (r.x - r.height < 0 ||
    230 									   r.y + r.width + r.height > orig_window_size.height)))
    231                         {
    232                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
    233 									"the stage classifier #%d is not inside "
    234 									"the reference (original) cascade window", k, j, i );
    235                             CV_ERROR( CV_StsNullPtr, errorstr );
    236                         }
    237                     }
    238                 }
    239             }
    240         }
    241     }
    242 
    243     // this is an upper boundary for the whole hidden cascade size
    244     datasize = sizeof(MyCvHidHaarClassifierCascade) +
    245 	sizeof(MyCvHidHaarStageClassifier)*cascade->count +
    246 	sizeof(MyCvHidHaarClassifier) * total_classifiers +
    247 	sizeof(MyCvHidHaarTreeNode) * total_nodes +
    248 	sizeof(void*)*(total_nodes + total_classifiers);
    249 
    250     CV_CALL( out = (MyCvHidHaarClassifierCascade*)cvAlloc( datasize ));
    251     memset( out, 0, sizeof(*out) );
    252 
    253     /* init header */
    254     out->count = cascade->count;
    255     out->stage_classifier = (MyCvHidHaarStageClassifier*)(out + 1);
    256     haar_classifier_ptr = (MyCvHidHaarClassifier*)(out->stage_classifier + cascade->count);
    257     haar_node_ptr = (MyCvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
    258 
    259     out->is_stump_based = 1;
    260     out->has_tilted_features = has_tilted_features;
    261     out->is_tree = 0;
    262 
    263     /* initialize internal representation */
    264     for( i = 0; i < cascade->count; i++ )
    265     {
    266         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
    267         MyCvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
    268 
    269         hid_stage_classifier->count = stage_classifier->count;
    270         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
    271         hid_stage_classifier->classifier = haar_classifier_ptr;
    272         hid_stage_classifier->two_rects = 1;
    273         haar_classifier_ptr += stage_classifier->count;
    274 
    275         hid_stage_classifier->parent = (stage_classifier->parent == -1)
    276 		? NULL : out->stage_classifier + stage_classifier->parent;
    277         hid_stage_classifier->next = (stage_classifier->next == -1)
    278 		? NULL : out->stage_classifier + stage_classifier->next;
    279         hid_stage_classifier->child = (stage_classifier->child == -1)
    280 		? NULL : out->stage_classifier + stage_classifier->child;
    281 
    282         out->is_tree |= hid_stage_classifier->next != NULL;
    283 
    284         for( j = 0; j < stage_classifier->count; j++ )
    285         {
    286             CvHaarClassifier* classifier = stage_classifier->classifier + j;
    287             MyCvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
    288             int node_count = classifier->count;
    289             float* alpha_ptr = (float*)(haar_node_ptr + node_count);
    290 
    291             hid_classifier->count = node_count;
    292             hid_classifier->node = haar_node_ptr;
    293             hid_classifier->alpha = alpha_ptr;
    294 
    295             for( l = 0; l < node_count; l++ )
    296             {
    297                 MyCvHidHaarTreeNode* node = hid_classifier->node + l;
    298                 CvHaarFeature* feature = classifier->haar_feature + l;
    299                 memset( node, -1, sizeof(*node) );
    300                 node->threshold = (int)((classifier->threshold[l]) * 65536.0);
    301                 node->left = classifier->left[l];
    302                 node->right = classifier->right[l];
    303 
    304                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
    305 				   feature->rect[2].r.width == 0 ||
    306 				   feature->rect[2].r.height == 0 )
    307                     memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
    308                 else
    309                     hid_stage_classifier->two_rects = 0;
    310             }
    311 
    312             memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
    313             haar_node_ptr =
    314 			(MyCvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
    315 
    316             out->is_stump_based &= node_count == 1;
    317         }
    318     }
    319 
    320     /*{
    321 	 int can_use_ipp = icvHaarClassifierInitAlloc_32f_p != 0 &&
    322 	 icvHaarClassifierFree_32f_p != 0 &&
    323 	 icvApplyHaarClassifier_32f_C1R_p != 0 &&
    324 	 icvRectStdDev_32f_C1R_p != 0 &&
    325 	 !out->has_tilted_features && !out->is_tree && out->is_stump_based;
    326 
    327 	 if( can_use_ipp )
    328 	 {
    329 	 int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
    330 	 float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
    331 	 (orig_window_size.height-icv_object_win_border*2)));
    332 
    333 	 CV_CALL( out->ipp_stages = (void**)cvAlloc( ipp_datasize ));
    334 	 memset( out->ipp_stages, 0, ipp_datasize );
    335 
    336 	 CV_CALL( ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ));
    337 	 CV_CALL( ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ));
    338 	 CV_CALL( ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ));
    339 	 CV_CALL( ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ));
    340 	 CV_CALL( ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ));
    341 	 CV_CALL( ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ));
    342 
    343 	 for( i = 0; i < cascade->count; i++ )
    344 	 {
    345 	 CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
    346 	 for( j = 0, k = 0; j < stage_classifier->count; j++ )
    347 	 {
    348 	 CvHaarClassifier* classifier = stage_classifier->classifier + j;
    349 	 int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
    350 
    351 	 ipp_thresholds[j] = classifier->threshold[0];
    352 	 ipp_val1[j] = classifier->alpha[0];
    353 	 ipp_val2[j] = classifier->alpha[1];
    354 	 ipp_counts[j] = rect_count;
    355 
    356 	 for( l = 0; l < rect_count; l++, k++ )
    357 	 {
    358 	 ipp_features[k] = classifier->haar_feature->rect[l].r;
    359 	 //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
    360 	 ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
    361 	 }
    362 	 }
    363 
    364 	 if( icvHaarClassifierInitAlloc_32f_p( &out->ipp_stages[i],
    365 	 ipp_features, ipp_weights, ipp_thresholds,
    366 	 ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
    367 	 break;
    368 	 }
    369 
    370 	 if( i < cascade->count )
    371 	 {
    372 	 for( j = 0; j < i; j++ )
    373 	 if( icvHaarClassifierFree_32f_p && out->ipp_stages[i] )
    374 	 icvHaarClassifierFree_32f_p( out->ipp_stages[i] );
    375 	 cvFree( &out->ipp_stages );
    376 	 }
    377 	 }
    378 	 }*/
    379 
    380     cascade->hid_cascade = (CvHidHaarClassifierCascade*)out;
    381     assert( (char*)haar_node_ptr - (char*)out <= datasize );
    382 
    383     __END__;
    384 
    385     if( cvGetErrStatus() < 0 )
    386         myicvReleaseHidHaarClassifierCascade( &out );
    387 
    388     cvFree( &ipp_features );
    389     cvFree( &ipp_weights );
    390     cvFree( &ipp_thresholds );
    391     cvFree( &ipp_val1 );
    392     cvFree( &ipp_val2 );
    393     cvFree( &ipp_counts );
    394 
    395     return out;
    396 }
    397 
    398 #define calc_sum(rect,offset) \
    399 ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
    400 
    401 
    402 CV_INLINE
    403 double myicvEvalHidHaarClassifier( MyCvHidHaarClassifier* classifier,
    404 								double variance_norm_factor,
    405 								size_t p_offset )
    406 {
    407     int idx = 0;
    408     do
    409     {
    410         MyCvHidHaarTreeNode* node = classifier->node + idx;
    411         double t = node->threshold * variance_norm_factor;
    412 
    413         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
    414         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
    415 
    416         if( node->feature.rect[2].p0 )
    417             sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
    418 
    419         idx = sum < t ? node->left : node->right;
    420     }
    421     while( idx > 0 );
    422     return classifier->alpha[-idx];
    423 }
    424 
    425 /*********************** Special integer sqrt **************************/
    426 
    427 int
    428 isqrt(int x)
    429 {
    430 	/*
    431 	 *	Logically, these are unsigned. We need the sign bit to test
    432 	 *	whether (op - res - one) underflowed.
    433 	 */
    434 
    435 	register int op, res, one;
    436 
    437 	op = x;
    438 	res = 0;
    439 
    440 	/* "one" starts at the highest power of four <= than the argument. */
    441 
    442 	one = 1 << 30;	/* second-to-top bit set */
    443 	while (one > op) one >>= 2;
    444 
    445 		while (one != 0) {
    446 			if (op >= res + one) {
    447 				op = op - (res + one);
    448 				res = res +  2 * one;
    449 			}
    450 			res /= 2;
    451 			one /= 4;
    452 		}
    453 	return(res);
    454 }
    455 
    456 #define NEXT(n, i)  (((n) + (i)/(n)) >> 1)
    457 
    458 unsigned int isqrt1(int number) {
    459 	unsigned int n  = 1;
    460 	unsigned int n1 = NEXT(n, number);
    461 
    462 	while(abs(n1 - n) > 1) {
    463 		n  = n1;
    464 		n1 = NEXT(n, number);
    465 	}
    466 	while((n1*n1) > number) {
    467 		n1 -= 1;
    468 	}
    469 	return n1;
    470 }
    471 /***********************************************************************/
    472 
    473 CV_IMPL int
    474 mycvRunHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
    475 						   CvPoint pt, int start_stage )
    476 {
    477     int result = -1;
    478     CV_FUNCNAME("mycvRunHaarClassifierCascade");
    479 
    480     __BEGIN__;
    481 
    482     int p_offset, pq_offset;
    483 	int pq0, pq1, pq2, pq3;
    484     int i, j;
    485     double mean;
    486 	int variance_norm_factor;
    487     MyCvHidHaarClassifierCascade* cascade;
    488 
    489     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
    490         CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
    491 
    492     cascade = (MyCvHidHaarClassifierCascade*)_cascade->hid_cascade;
    493     if( !cascade )
    494         CV_ERROR( CV_StsNullPtr, "Hidden cascade has not been created.\n"
    495 				 "Use cvSetImagesForHaarClassifierCascade" );
    496 
    497     if( pt.x < 0 || pt.y < 0 ||
    498 	   pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 ||
    499 	   pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 )
    500         EXIT;
    501 
    502     p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
    503     pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
    504     mean = calc_sum(*cascade,p_offset) * cascade->inv_window_area;
    505 	pq0 = cascade->pq0[pq_offset];
    506 	pq1 = cascade->pq1[pq_offset];
    507 	pq2 = cascade->pq2[pq_offset];
    508 	pq3 = cascade->pq3[pq_offset];
    509     variance_norm_factor = pq0 - pq1 - pq2 + pq3;
    510     variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
    511     if( variance_norm_factor >= 0. )
    512         variance_norm_factor = sqrt(variance_norm_factor);
    513     else
    514         variance_norm_factor = 1.;
    515 
    516 //    if( cascade->is_tree )
    517 //    {
    518 //        MyCvHidHaarStageClassifier* ptr;
    519 //        assert( start_stage == 0 );
    520 //
    521 //        result = 1;
    522 //        ptr = cascade->stage_classifier;
    523 //
    524 //        while( ptr )
    525 //        {
    526 //            double stage_sum = 0;
    527 //
    528 //            for( j = 0; j < ptr->count; j++ )
    529 //            {
    530 //                stage_sum += myicvEvalHidHaarClassifier( ptr->classifier + j,
    531 //													  variance_norm_factor, p_offset );
    532 //            }
    533 //
    534 //            if( stage_sum >= ptr->threshold )
    535 //            {
    536 //                ptr = ptr->child;
    537 //            }
    538 //            else
    539 //            {
    540 //                while( ptr && ptr->next == NULL ) ptr = ptr->parent;
    541 //                if( ptr == NULL )
    542 //                {
    543 //                    result = 0;
    544 //                    EXIT;
    545 //                }
    546 //                ptr = ptr->next;
    547 //            }
    548 //        }
    549 //    }
    550 //    else if( cascade->is_stump_based )
    551     {
    552         for( i = start_stage; i < cascade->count; i++ )
    553         {
    554             double stage_sum = 0;
    555 
    556             if( cascade->stage_classifier[i].two_rects )
    557             {
    558                 for( j = 0; j < cascade->stage_classifier[i].count; j++ )
    559                 {
    560                     MyCvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
    561                     MyCvHidHaarTreeNode* node = classifier->node;
    562                     int t = node->threshold * variance_norm_factor;
    563                     int sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
    564                     sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
    565                     stage_sum += classifier->alpha[sum >= t];
    566                 }
    567             }
    568             else
    569             {
    570                 for( j = 0; j < cascade->stage_classifier[i].count; j++ )
    571                 {
    572                     MyCvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
    573                     MyCvHidHaarTreeNode* node = classifier->node;
    574                     int t = node->threshold * variance_norm_factor;
    575                     int sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
    576                     sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
    577                     if( node->feature.rect[2].p0 )
    578                         sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
    579 
    580                     stage_sum += classifier->alpha[sum >= t];
    581                 }
    582             }
    583 
    584             if( stage_sum < cascade->stage_classifier[i].threshold )
    585             {
    586                 result = -i;
    587                 EXIT;
    588             }
    589         }
    590     }
    591 //    else
    592 //    {
    593 //        for( i = start_stage; i < cascade->count; i++ )
    594 //        {
    595 //            double stage_sum = 0;
    596 //
    597 //            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
    598 //            {
    599 //                stage_sum += myicvEvalHidHaarClassifier(
    600 //													  cascade->stage_classifier[i].classifier + j,
    601 //													  variance_norm_factor, p_offset );
    602 //            }
    603 //
    604 //            if( stage_sum < cascade->stage_classifier[i].threshold )
    605 //            {
    606 //                result = -i;
    607 //                EXIT;
    608 //            }
    609 //        }
    610 //    }
    611 
    612     result = 1;
    613 
    614     __END__;
    615 
    616     return result;
    617 }
    618 
    619 #define sum_elem_ptr(sum,row,col)  \
    620 ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
    621 
    622 #define sqsum_elem_ptr(sqsum,row,col)  \
    623 ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
    624 
    625 
    626 CV_IMPL void
    627 mycvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
    628 									const CvArr* _sum,
    629 									const CvArr* _sqsum,
    630 									const CvArr* _tilted_sum,
    631 									double scale )
    632 {
    633     CV_FUNCNAME("cvSetImagesForHaarClassifierCascade");
    634 
    635     __BEGIN__;
    636 
    637     CvMat sum_stub, *sum = (CvMat*)_sum;
    638     CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
    639     CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
    640     MyCvHidHaarClassifierCascade* cascade;
    641     int coi0 = 0, coi1 = 0;
    642     int i;
    643     CvRect equ_rect;
    644     double weight_scale;
    645 
    646     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
    647         CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
    648 
    649     if( scale <= 0 )
    650         CV_ERROR( CV_StsOutOfRange, "Scale must be positive" );
    651 
    652     CV_CALL( sum = cvGetMat( sum, &sum_stub, &coi0 ));
    653     CV_CALL( sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ));
    654 
    655     if( coi0 || coi1 )
    656         CV_ERROR( CV_BadCOI, "COI is not supported" );
    657 
    658     if( !CV_ARE_SIZES_EQ( sum, sqsum ))
    659         CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
    660 
    661     if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
    662 	   CV_MAT_TYPE(sum->type) != CV_32SC1 )
    663         CV_ERROR( CV_StsUnsupportedFormat,
    664 				 "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
    665 
    666     if( !_cascade->hid_cascade )
    667         CV_CALL( myicvCreateHidHaarClassifierCascade(_cascade) );
    668 
    669     cascade = (MyCvHidHaarClassifierCascade*)_cascade->hid_cascade;
    670 
    671     if( cascade->has_tilted_features )
    672     {
    673         CV_CALL( tilted = cvGetMat( tilted, &tilted_stub, &coi1 ));
    674 
    675         if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
    676             CV_ERROR( CV_StsUnsupportedFormat,
    677 					 "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
    678 
    679         if( sum->step != tilted->step )
    680             CV_ERROR( CV_StsUnmatchedSizes,
    681 					 "Sum and tilted_sum must have the same stride (step, widthStep)" );
    682 
    683         if( !CV_ARE_SIZES_EQ( sum, tilted ))
    684             CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
    685         cascade->tilted = *tilted;
    686     }
    687 
    688     _cascade->scale = scale;
    689     _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
    690     _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
    691 
    692     cascade->sum = *sum;
    693     cascade->sqsum = *sqsum;
    694 
    695     equ_rect.x = equ_rect.y = cvRound(scale);
    696     equ_rect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
    697     equ_rect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
    698     weight_scale = 1./(equ_rect.width*equ_rect.height);
    699     cascade->inv_window_area = weight_scale;
    700 
    701     cascade->p0 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x);
    702     cascade->p1 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x + equ_rect.width );
    703     cascade->p2 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height, equ_rect.x );
    704     cascade->p3 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height,
    705 							   equ_rect.x + equ_rect.width );
    706 
    707     cascade->pq0 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x);
    708     cascade->pq1 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x + equ_rect.width );
    709     cascade->pq2 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height, equ_rect.x );
    710     cascade->pq3 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height,
    711 								  equ_rect.x + equ_rect.width );
    712 
    713     /* init pointers in haar features according to real window size and
    714 	 given image pointers */
    715     {
    716 #ifdef _OPENMP
    717 		int max_threads = cvGetNumThreads();
    718 #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
    719 #endif // _OPENMP
    720 		for( i = 0; i < _cascade->count; i++ )
    721 		{
    722 			int j, k, l;
    723 			for( j = 0; j < cascade->stage_classifier[i].count; j++ )
    724 			{
    725 				for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
    726 				{
    727 					CvHaarFeature* feature =
    728                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
    729 					/* CvHidHaarClassifier* classifier =
    730 					 cascade->stage_classifier[i].classifier + j; */
    731 					MyCvHidHaarFeature* hidfeature =
    732                     &cascade->stage_classifier[i].classifier[j].node[l].feature;
    733 					double sum0 = 0, area0 = 0;
    734 					CvRect r[3];
    735 #if CV_ADJUST_FEATURES
    736 					int base_w = -1, base_h = -1;
    737 					int new_base_w = 0, new_base_h = 0;
    738 					int kx, ky;
    739 					int flagx = 0, flagy = 0;
    740 					int x0 = 0, y0 = 0;
    741 #endif
    742 					int nr;
    743 
    744 					/* align blocks */
    745 					for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
    746 					{
    747 						if( !hidfeature->rect[k].p0 )
    748 							break;
    749 #if CV_ADJUST_FEATURES
    750 						r[k] = feature->rect[k].r;
    751 						base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
    752 						base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
    753 						base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
    754 						base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
    755 #endif
    756 					}
    757 
    758 					nr = k;
    759 
    760 #if CV_ADJUST_FEATURES
    761 					base_w += 1;
    762 					base_h += 1;
    763 					kx = r[0].width / base_w;
    764 					ky = r[0].height / base_h;
    765 
    766 					if( kx <= 0 )
    767 					{
    768 						flagx = 1;
    769 						new_base_w = cvRound( r[0].width * scale ) / kx;
    770 						x0 = cvRound( r[0].x * scale );
    771 					}
    772 
    773 					if( ky <= 0 )
    774 					{
    775 						flagy = 1;
    776 						new_base_h = cvRound( r[0].height * scale ) / ky;
    777 						y0 = cvRound( r[0].y * scale );
    778 					}
    779 #endif
    780 
    781 					float tmpweight[3] = {0};
    782 
    783 					for( k = 0; k < nr; k++ )
    784 					{
    785 						CvRect tr;
    786 						double correction_ratio;
    787 
    788 #if CV_ADJUST_FEATURES
    789 						if( flagx )
    790 						{
    791 							tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
    792 							tr.width = r[k].width * new_base_w / base_w;
    793 						}
    794 						else
    795 #endif
    796 						{
    797 							tr.x = cvRound( r[k].x * scale );
    798 							tr.width = cvRound( r[k].width * scale );
    799 						}
    800 
    801 #if CV_ADJUST_FEATURES
    802 						if( flagy )
    803 						{
    804 							tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
    805 							tr.height = r[k].height * new_base_h / base_h;
    806 						}
    807 						else
    808 #endif
    809 						{
    810 							tr.y = cvRound( r[k].y * scale );
    811 							tr.height = cvRound( r[k].height * scale );
    812 						}
    813 
    814 #if CV_ADJUST_WEIGHTS
    815 						{
    816 							// RAINER START
    817 							const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
    818 							const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
    819 							const float feature_size = float(tr.width*tr.height);
    820 							//const float normSize    = float(equ_rect.width*equ_rect.height);
    821 							float target_ratio = orig_feature_size / orig_norm_size;
    822 							//float isRatio = featureSize / normSize;
    823 							//correctionRatio = targetRatio / isRatio / normSize;
    824 							correction_ratio = target_ratio / feature_size;
    825 							// RAINER END
    826 						}
    827 #else
    828 						correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
    829 #endif
    830 
    831 						if( !feature->tilted )
    832 						{
    833 							hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);
    834 							hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);
    835 							hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);
    836 							hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);
    837 						}
    838 						else
    839 						{
    840 							hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);
    841 							hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,
    842 																  tr.x + tr.width - tr.height);
    843 							hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);
    844 							hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);
    845 						}
    846 
    847 //						hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
    848 						tmpweight[k] = (float)(feature->rect[k].weight * correction_ratio);
    849 
    850 						if( k == 0 )
    851 							area0 = tr.width * tr.height;
    852 						else
    853 //							sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
    854 							sum0 += tmpweight[k] * tr.width * tr.height;
    855 					}
    856 
    857 					tmpweight[0] = (float)(-sum0/area0);
    858 
    859 					for(int ii = 0; ii < nr; hidfeature->rect[ii].weight = (int)(tmpweight[ii] * 65536.0), ii++);
    860 				} /* l */
    861 			} /* j */
    862 		}
    863     }
    864 
    865     __END__;
    866 }
    867 
    868 CvMat *temp = 0, *sum = 0, *sqsum = 0;
    869 double tickFreqTimes1000 = ((double)cvGetTickFrequency()*1000.);
    870 
    871 CV_IMPL CvSeq*
    872 mycvHaarDetectObjects( const CvArr* _img,
    873 					CvHaarClassifierCascade* cascade,
    874 					CvMemStorage* storage, double scale_factor,
    875 					int min_neighbors, int flags, CvSize min_size )
    876 {
    877     int split_stage = 2;
    878 
    879     CvMat stub, *img = (CvMat*)_img;
    880     CvMat  *tilted = 0, *norm_img = 0, *sumcanny = 0, *img_small = 0;
    881     CvSeq* result_seq = 0;
    882     CvMemStorage* temp_storage = 0;
    883     CvAvgComp* comps = 0;
    884     CvSeq* seq_thread[CV_MAX_THREADS] = {0};
    885     int i, max_threads = 0;
    886 	double t1;
    887 
    888     CV_FUNCNAME( "cvHaarDetectObjects" );
    889 
    890     __BEGIN__;
    891 
    892 	double t = (double)cvGetTickCount();
    893 
    894     CvSeq *seq = 0, *seq2 = 0, *idx_seq = 0, *big_seq = 0;
    895     CvAvgComp result_comp = {{0,0,0,0},0};
    896     double factor;
    897     int npass = 2, coi;
    898     bool do_canny_pruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
    899     bool find_biggest_object = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
    900     bool rough_search = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
    901 
    902     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
    903         CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
    904 
    905     if( !storage )
    906         CV_ERROR( CV_StsNullPtr, "Null storage pointer" );
    907 
    908     CV_CALL( img = cvGetMat( img, &stub, &coi ));
    909     if( coi )
    910         CV_ERROR( CV_BadCOI, "COI is not supported" );
    911 
    912     if( CV_MAT_DEPTH(img->type) != CV_8U )
    913         CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
    914 
    915     if( scale_factor <= 1 )
    916         CV_ERROR( CV_StsOutOfRange, "scale factor must be > 1" );
    917 
    918     if( find_biggest_object )
    919         flags &= ~CV_HAAR_SCALE_IMAGE;
    920 
    921 	if(!temp) {
    922 		CV_CALL( temp = cvCreateMat( img->rows, img->cols, CV_8UC1 ));
    923 	}
    924 	if(!sum) {
    925 		CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ));
    926 	}
    927 	if(!sqsum) {
    928 		CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 ));
    929 	}
    930     CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
    931 
    932     if( !cascade->hid_cascade )
    933         CV_CALL( myicvCreateHidHaarClassifierCascade(cascade) );
    934 
    935     if( ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->has_tilted_features )
    936         tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
    937 
    938     seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
    939     seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage );
    940     result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
    941 
    942     max_threads = cvGetNumThreads();
    943     if( max_threads > 1 )
    944         for( i = 0; i < max_threads; i++ )
    945         {
    946             CvMemStorage* temp_storage_thread;
    947             CV_CALL( temp_storage_thread = cvCreateMemStorage(0));
    948             CV_CALL( seq_thread[i] = cvCreateSeq( 0, sizeof(CvSeq),
    949 												 sizeof(CvRect), temp_storage_thread ));
    950         }
    951     else
    952         seq_thread[0] = seq;
    953 
    954     if( CV_MAT_CN(img->type) > 1 )
    955     {
    956         cvCvtColor( img, temp, CV_BGR2GRAY );
    957         img = temp;
    958     }
    959 
    960     if( flags & CV_HAAR_FIND_BIGGEST_OBJECT )
    961         flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);
    962 
    963 //    if( flags & CV_HAAR_SCALE_IMAGE )
    964 //    {
    965 //        CvSize win_size0 = cascade->orig_window_size;
    966 //        /*int use_ipp = cascade->hid_cascade->ipp_stages != 0 &&
    967 //		 icvApplyHaarClassifier_32f_C1R_p != 0;
    968 //
    969 //		 if( use_ipp )
    970 //		 CV_CALL( norm_img = cvCreateMat( img->rows, img->cols, CV_32FC1 ));*/
    971 //        CV_CALL( img_small = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 ));
    972 //
    973 //        for( factor = 1; ; factor *= scale_factor )
    974 //        {
    975 //            int strip_count, strip_size;
    976 //            int ystep = factor > 2. ? 1 : 2;
    977 //            CvSize win_size = { cvRound(win_size0.width*factor),
    978 //			cvRound(win_size0.height*factor) };
    979 //            CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };
    980 //            CvSize sz1 = { sz.width - win_size0.width, sz.height - win_size0.height };
    981 //            /*CvRect equ_rect = { icv_object_win_border, icv_object_win_border,
    982 //			 win_size0.width - icv_object_win_border*2,
    983 //			 win_size0.height - icv_object_win_border*2 };*/
    984 //            CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;
    985 //            CvMat* _tilted = 0;
    986 //
    987 //            if( sz1.width <= 0 || sz1.height <= 0 )
    988 //                break;
    989 //            if( win_size.width < min_size.width || win_size.height < min_size.height )
    990 //                continue;
    991 //
    992 //            img1 = cvMat( sz.height, sz.width, CV_8UC1, img_small->data.ptr );
    993 //            sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );
    994 //            sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );
    995 //            if( tilted )
    996 //            {
    997 //                tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );
    998 //                _tilted = &tilted1;
    999 //            }
   1000 //            norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, norm_img ? norm_img->data.ptr : 0 );
   1001 //            mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );
   1002 //
   1003 //            cvResize( img, &img1, CV_INTER_LINEAR );
   1004 //            cvIntegral( &img1, &sum1, &sqsum1, _tilted );
   1005 //
   1006 //            if( max_threads > 1 )
   1007 //            {
   1008 //                strip_count = MAX(MIN(sz1.height/ystep, max_threads*3), 1);
   1009 //                strip_size = (sz1.height + strip_count - 1)/strip_count;
   1010 //                strip_size = (strip_size / ystep)*ystep;
   1011 //            }
   1012 //            else
   1013 //            {
   1014 //                strip_count = 1;
   1015 //                strip_size = sz1.height;
   1016 //            }
   1017 //
   1018 //            //if( !use_ipp )
   1019 //			cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, 0, 1. );
   1020 //            /*else
   1021 //			 {
   1022 //			 for( i = 0; i <= sz.height; i++ )
   1023 //			 {
   1024 //			 const int* isum = (int*)(sum1.data.ptr + sum1.step*i);
   1025 //			 float* fsum = (float*)isum;
   1026 //			 const int FLT_DELTA = -(1 << 24);
   1027 //			 int j;
   1028 //			 for( j = 0; j <= sz.width; j++ )
   1029 //			 fsum[j] = (float)(isum[j] + FLT_DELTA);
   1030 //			 }
   1031 //			 }*/
   1032 //
   1033 //#ifdef _OPENMP
   1034 //#pragma omp parallel for num_threads(max_threads) schedule(dynamic)
   1035 //#endif
   1036 //            for( i = 0; i < strip_count; i++ )
   1037 //            {
   1038 //                int thread_id = cvGetThreadNum();
   1039 //                int positive = 0;
   1040 //                int y1 = i*strip_size, y2 = (i+1)*strip_size/* - ystep + 1*/;
   1041 //                CvSize ssz;
   1042 //                int x, y;
   1043 //                if( i == strip_count - 1 || y2 > sz1.height )
   1044 //                    y2 = sz1.height;
   1045 //                ssz = cvSize(sz1.width, y2 - y1);
   1046 //
   1047 //                /*if( use_ipp )
   1048 //				 {
   1049 //				 icvRectStdDev_32f_C1R_p(
   1050 //				 (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
   1051 //				 (double*)(sqsum1.data.ptr + y1*sqsum1.step), sqsum1.step,
   1052 //				 (float*)(norm1.data.ptr + y1*norm1.step), norm1.step, ssz, equ_rect );
   1053 //
   1054 //				 positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);
   1055 //				 memset( mask1.data.ptr + y1*mask1.step, ystep == 1, mask1.height*mask1.step);
   1056 //
   1057 //				 if( ystep > 1 )
   1058 //				 {
   1059 //				 for( y = y1, positive = 0; y < y2; y += ystep )
   1060 //				 for( x = 0; x < ssz.width; x += ystep )
   1061 //				 mask1.data.ptr[mask1.step*y + x] = (uchar)1;
   1062 //				 }
   1063 //
   1064 //				 for( int j = 0; j < cascade->count; j++ )
   1065 //				 {
   1066 //				 if( icvApplyHaarClassifier_32f_C1R_p(
   1067 //				 (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
   1068 //				 (float*)(norm1.data.ptr + y1*norm1.step), norm1.step,
   1069 //				 mask1.data.ptr + y1*mask1.step, mask1.step, ssz, &positive,
   1070 //				 cascade->hid_cascade->stage_classifier[j].threshold,
   1071 //				 cascade->hid_cascade->ipp_stages[j]) < 0 )
   1072 //				 {
   1073 //				 positive = 0;
   1074 //				 break;
   1075 //				 }
   1076 //				 if( positive <= 0 )
   1077 //				 break;
   1078 //				 }
   1079 //				 }
   1080 //				 else*/
   1081 //                {
   1082 //                    for( y = y1, positive = 0; y < y2; y += ystep )
   1083 //                        for( x = 0; x < ssz.width; x += ystep )
   1084 //                        {
   1085 //                            mask1.data.ptr[mask1.step*y + x] =
   1086 //							mycvRunHaarClassifierCascade( cascade, cvPoint(x,y), 0 ) > 0;
   1087 //                            positive += mask1.data.ptr[mask1.step*y + x];
   1088 //                        }
   1089 //                }
   1090 //
   1091 //                if( positive > 0 )
   1092 //                {
   1093 //                    for( y = y1; y < y2; y += ystep )
   1094 //                        for( x = 0; x < ssz.width; x += ystep )
   1095 //                            if( mask1.data.ptr[mask1.step*y + x] != 0 )
   1096 //                            {
   1097 //                                CvRect obj_rect = { cvRound(x*factor), cvRound(y*factor),
   1098 //								win_size.width, win_size.height };
   1099 //                                cvSeqPush( seq_thread[thread_id], &obj_rect );
   1100 //                            }
   1101 //                }
   1102 //            }
   1103 //
   1104 //            // gather the results
   1105 //            if( max_threads > 1 )
   1106 //                for( i = 0; i < max_threads; i++ )
   1107 //                {
   1108 //                    CvSeq* s = seq_thread[i];
   1109 //                    int j, total = s->total;
   1110 //                    CvSeqBlock* b = s->first;
   1111 //                    for( j = 0; j < total; j += b->count, b = b->next )
   1112 //                        cvSeqPushMulti( seq, b->data, b->count );
   1113 //                }
   1114 //        }
   1115 //    }
   1116 //    else
   1117 	t1 = (double)cvGetTickCount();
   1118 //	printf( "init time = %gms\n", (t1 - t)/tickFreqTimes1000);
   1119 	t = t1;
   1120 
   1121     {
   1122         int n_factors = 0;
   1123         CvRect scan_roi_rect = {0,0,0,0};
   1124         bool is_found = false, scan_roi = false;
   1125 
   1126         cvIntegral( img, sum, sqsum, tilted );
   1127 
   1128 //        if( do_canny_pruning )
   1129 //        {
   1130 //            sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
   1131 //            cvCanny( img, temp, 0, 50, 3 );
   1132 //            cvIntegral( temp, sumcanny );
   1133 //        }
   1134 
   1135         if( (unsigned)split_stage >= (unsigned)cascade->count ||
   1136 		   ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->is_tree )
   1137         {
   1138             split_stage = cascade->count;
   1139             npass = 1;
   1140         }
   1141 
   1142         for( n_factors = 0, factor = 1;
   1143 			factor*cascade->orig_window_size.width < img->cols - 10 &&
   1144 			factor*cascade->orig_window_size.height < img->rows - 10;
   1145 			n_factors++, factor *= scale_factor )
   1146             ;
   1147 
   1148         if( find_biggest_object )
   1149         {
   1150             scale_factor = 1./scale_factor;
   1151             factor *= scale_factor;
   1152             big_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
   1153         }
   1154         else
   1155             factor = 1;
   1156 
   1157         for( ; n_factors-- > 0 && !is_found; factor *= scale_factor )
   1158         {
   1159             const double ystep = MAX( 2, factor );
   1160             CvSize win_size = { cvRound( cascade->orig_window_size.width * factor ),
   1161 			cvRound( cascade->orig_window_size.height * factor )};
   1162             CvRect equ_rect = { 0, 0, 0, 0 };
   1163             int *p0 = 0, *p1 = 0, *p2 = 0, *p3 = 0;
   1164             int *pq0 = 0, *pq1 = 0, *pq2 = 0, *pq3 = 0;
   1165             int pass, stage_offset = 0;
   1166             int start_x = 0, start_y = 0;
   1167             int end_x = cvRound((img->cols - win_size.width) / ystep);
   1168             int end_y = cvRound((img->rows - win_size.height) / ystep);
   1169 
   1170             if( win_size.width < min_size.width || win_size.height < min_size.height )
   1171             {
   1172                 if( find_biggest_object )
   1173                     break;
   1174                 continue;
   1175             }
   1176 
   1177             mycvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );
   1178             cvZero( temp );
   1179 
   1180 //            if( do_canny_pruning )
   1181 //            {
   1182 //                equ_rect.x = cvRound(win_size.width*0.15);
   1183 //                equ_rect.y = cvRound(win_size.height*0.15);
   1184 //                equ_rect.width = cvRound(win_size.width*0.7);
   1185 //                equ_rect.height = cvRound(win_size.height*0.7);
   1186 //
   1187 //                p0 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step) + equ_rect.x;
   1188 //                p1 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step)
   1189 //				+ equ_rect.x + equ_rect.width;
   1190 //                p2 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step) + equ_rect.x;
   1191 //                p3 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step)
   1192 //				+ equ_rect.x + equ_rect.width;
   1193 //
   1194 //                pq0 = (int*)(sum->data.ptr + equ_rect.y*sum->step) + equ_rect.x;
   1195 //                pq1 = (int*)(sum->data.ptr + equ_rect.y*sum->step)
   1196 //				+ equ_rect.x + equ_rect.width;
   1197 //                pq2 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step) + equ_rect.x;
   1198 //                pq3 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step)
   1199 //				+ equ_rect.x + equ_rect.width;
   1200 //            }
   1201 
   1202             if( scan_roi )
   1203             {
   1204                 //adjust start_height and stop_height
   1205                 start_y = cvRound(scan_roi_rect.y / ystep);
   1206                 end_y = cvRound((scan_roi_rect.y + scan_roi_rect.height - win_size.height) / ystep);
   1207 
   1208                 start_x = cvRound(scan_roi_rect.x / ystep);
   1209                 end_x = cvRound((scan_roi_rect.x + scan_roi_rect.width - win_size.width) / ystep);
   1210             }
   1211 
   1212             ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count = split_stage;
   1213 
   1214             for( pass = 0; pass < npass; pass++ )
   1215             {
   1216 #ifdef _OPENMP
   1217 #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
   1218 #endif
   1219                 for( int _iy = start_y; _iy < end_y; _iy++ )
   1220                 {
   1221                     int thread_id = cvGetThreadNum();
   1222                     int iy = cvRound(_iy*ystep);
   1223                     int _ix, _xstep = 1;
   1224                     uchar* mask_row = temp->data.ptr + temp->step * iy;
   1225 
   1226                     for( _ix = start_x; _ix < end_x; _ix += _xstep )
   1227                     {
   1228                         int ix = cvRound(_ix*ystep); // it really should be ystep
   1229 
   1230                         if( pass == 0 )
   1231                         {
   1232                             int result;
   1233                             _xstep = 2;
   1234 
   1235 //                            if( do_canny_pruning )
   1236 //                            {
   1237 //                                int offset;
   1238 //                                int s, sq;
   1239 //
   1240 //                                offset = iy*(sum->step/sizeof(p0[0])) + ix;
   1241 //                                s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
   1242 //                                sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
   1243 //                                if( s < 100 || sq < 20 )
   1244 //                                    continue;
   1245 //                            }
   1246 
   1247                             result = mycvRunHaarClassifierCascade( cascade, cvPoint(ix,iy), 0 );
   1248                             if( result > 0 )
   1249                             {
   1250                                 if( pass < npass - 1 )
   1251                                     mask_row[ix] = 1;
   1252                                 else
   1253                                 {
   1254                                     CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
   1255                                     cvSeqPush( seq_thread[thread_id], &rect );
   1256                                 }
   1257                             }
   1258                             if( result < 0 )
   1259                                 _xstep = 1;
   1260                         }
   1261                         else if( mask_row[ix] )
   1262                         {
   1263                             int result = mycvRunHaarClassifierCascade( cascade, cvPoint(ix,iy),
   1264 																	stage_offset );
   1265                             if( result > 0 )
   1266                             {
   1267                                 if( pass == npass - 1 )
   1268                                 {
   1269                                     CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
   1270                                     cvSeqPush( seq_thread[thread_id], &rect );
   1271                                 }
   1272                             }
   1273                             else
   1274                                 mask_row[ix] = 0;
   1275                         }
   1276                     }
   1277                 }
   1278                 stage_offset = ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count;
   1279                 ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count = cascade->count;
   1280             }
   1281 
   1282             // gather the results
   1283             if( max_threads > 1 )
   1284 	            for( i = 0; i < max_threads; i++ )
   1285 	            {
   1286 		            CvSeq* s = seq_thread[i];
   1287                     int j, total = s->total;
   1288                     CvSeqBlock* b = s->first;
   1289                     for( j = 0; j < total; j += b->count, b = b->next )
   1290                         cvSeqPushMulti( seq, b->data, b->count );
   1291 	            }
   1292 
   1293             if( find_biggest_object )
   1294             {
   1295                 CvSeq* bseq = min_neighbors > 0 ? big_seq : seq;
   1296 
   1297                 if( min_neighbors > 0 && !scan_roi )
   1298                 {
   1299                     // group retrieved rectangles in order to filter out noise
   1300                     int ncomp = cvSeqPartition( seq, 0, &idx_seq, myis_equal, 0 );
   1301                     CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
   1302                     memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
   1303 
   1304 #if VERY_ROUGH_SEARCH
   1305                     if( rough_search )
   1306                     {
   1307                         for( i = 0; i < seq->total; i++ )
   1308                         {
   1309                             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
   1310                             int idx = *(int*)cvGetSeqElem( idx_seq, i );
   1311                             assert( (unsigned)idx < (unsigned)ncomp );
   1312 
   1313                             comps[idx].neighbors++;
   1314                             comps[idx].rect.x += r1.x;
   1315                             comps[idx].rect.y += r1.y;
   1316                             comps[idx].rect.width += r1.width;
   1317                             comps[idx].rect.height += r1.height;
   1318                         }
   1319 
   1320                         // calculate average bounding box
   1321                         for( i = 0; i < ncomp; i++ )
   1322                         {
   1323                             int n = comps[i].neighbors;
   1324                             if( n >= min_neighbors )
   1325                             {
   1326                                 CvAvgComp comp;
   1327                                 comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
   1328                                 comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
   1329                                 comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
   1330                                 comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
   1331                                 comp.neighbors = n;
   1332                                 cvSeqPush( bseq, &comp );
   1333                             }
   1334                         }
   1335                     }
   1336                     else
   1337 #endif
   1338                     {
   1339                         for( i = 0 ; i <= ncomp; i++ )
   1340                             comps[i].rect.x = comps[i].rect.y = INT_MAX;
   1341 
   1342                         // count number of neighbors
   1343                         for( i = 0; i < seq->total; i++ )
   1344                         {
   1345                             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
   1346                             int idx = *(int*)cvGetSeqElem( idx_seq, i );
   1347                             assert( (unsigned)idx < (unsigned)ncomp );
   1348 
   1349                             comps[idx].neighbors++;
   1350 
   1351                             // rect.width and rect.height will store coordinate of right-bottom corner
   1352                             comps[idx].rect.x = MIN(comps[idx].rect.x, r1.x);
   1353                             comps[idx].rect.y = MIN(comps[idx].rect.y, r1.y);
   1354                             comps[idx].rect.width = MAX(comps[idx].rect.width, r1.x+r1.width-1);
   1355                             comps[idx].rect.height = MAX(comps[idx].rect.height, r1.y+r1.height-1);
   1356                         }
   1357 
   1358                         // calculate enclosing box
   1359                         for( i = 0; i < ncomp; i++ )
   1360                         {
   1361                             int n = comps[i].neighbors;
   1362                             if( n >= min_neighbors )
   1363                             {
   1364                                 CvAvgComp comp;
   1365                                 int t;
   1366                                 double min_scale = rough_search ? 0.6 : 0.4;
   1367                                 comp.rect.x = comps[i].rect.x;
   1368                                 comp.rect.y = comps[i].rect.y;
   1369                                 comp.rect.width = comps[i].rect.width - comps[i].rect.x + 1;
   1370                                 comp.rect.height = comps[i].rect.height - comps[i].rect.y + 1;
   1371 
   1372                                 // update min_size
   1373                                 t = cvRound( comp.rect.width*min_scale );
   1374                                 min_size.width = MAX( min_size.width, t );
   1375 
   1376                                 t = cvRound( comp.rect.height*min_scale );
   1377                                 min_size.height = MAX( min_size.height, t );
   1378 
   1379                                 //expand the box by 20% because we could miss some neighbours
   1380                                 //see 'is_equal' function
   1381 #if 1
   1382                                 int offset = cvRound(comp.rect.width * 0.2);
   1383                                 int right = MIN( img->cols-1, comp.rect.x+comp.rect.width-1 + offset );
   1384                                 int bottom = MIN( img->rows-1, comp.rect.y+comp.rect.height-1 + offset);
   1385                                 comp.rect.x = MAX( comp.rect.x - offset, 0 );
   1386                                 comp.rect.y = MAX( comp.rect.y - offset, 0 );
   1387                                 comp.rect.width = right - comp.rect.x + 1;
   1388                                 comp.rect.height = bottom - comp.rect.y + 1;
   1389 #endif
   1390 
   1391                                 comp.neighbors = n;
   1392                                 cvSeqPush( bseq, &comp );
   1393                             }
   1394                         }
   1395                     }
   1396 
   1397                     cvFree( &comps );
   1398                 }
   1399 
   1400                 // extract the biggest rect
   1401                 if( bseq->total > 0 )
   1402                 {
   1403                     int max_area = 0;
   1404                     for( i = 0; i < bseq->total; i++ )
   1405                     {
   1406                         CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( bseq, i );
   1407                         int area = comp->rect.width * comp->rect.height;
   1408                         if( max_area < area )
   1409                         {
   1410                             max_area = area;
   1411                             result_comp.rect = comp->rect;
   1412                             result_comp.neighbors = bseq == seq ? 1 : comp->neighbors;
   1413                         }
   1414                     }
   1415 
   1416                     //Prepare information for further scanning inside the biggest rectangle
   1417 
   1418 #if VERY_ROUGH_SEARCH
   1419                     // change scan ranges to roi in case of required
   1420                     if( !rough_search && !scan_roi )
   1421                     {
   1422                         scan_roi = true;
   1423                         scan_roi_rect = result_comp.rect;
   1424                         cvClearSeq(bseq);
   1425                     }
   1426                     else if( rough_search )
   1427                         is_found = true;
   1428 #else
   1429                     if( !scan_roi )
   1430                     {
   1431                         scan_roi = true;
   1432                         scan_roi_rect = result_comp.rect;
   1433                         cvClearSeq(bseq);
   1434                     }
   1435 #endif
   1436                 }
   1437             }
   1438         }
   1439     }
   1440 
   1441 //	t1 = (double)cvGetTickCount();
   1442 //	printf( "factors time = %gms\n", (t1 - t)/tickFreqTimes1000);
   1443 //	t = t1;
   1444 
   1445     if( min_neighbors == 0 && !find_biggest_object )
   1446     {
   1447         for( i = 0; i < seq->total; i++ )
   1448         {
   1449             CvRect* rect = (CvRect*)cvGetSeqElem( seq, i );
   1450             CvAvgComp comp;
   1451             comp.rect = *rect;
   1452             comp.neighbors = 1;
   1453             cvSeqPush( result_seq, &comp );
   1454         }
   1455     }
   1456 
   1457     if( min_neighbors != 0
   1458 #if VERY_ROUGH_SEARCH
   1459 	   && (!find_biggest_object || !rough_search)
   1460 #endif
   1461 	   )
   1462     {
   1463         // group retrieved rectangles in order to filter out noise
   1464         int ncomp = cvSeqPartition( seq, 0, &idx_seq, myis_equal, 0 );
   1465         CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
   1466         memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
   1467 
   1468         // count number of neighbors
   1469         for( i = 0; i < seq->total; i++ )
   1470         {
   1471             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
   1472             int idx = *(int*)cvGetSeqElem( idx_seq, i );
   1473             assert( (unsigned)idx < (unsigned)ncomp );
   1474 
   1475             comps[idx].neighbors++;
   1476 
   1477             comps[idx].rect.x += r1.x;
   1478             comps[idx].rect.y += r1.y;
   1479             comps[idx].rect.width += r1.width;
   1480             comps[idx].rect.height += r1.height;
   1481         }
   1482 
   1483         // calculate average bounding box
   1484         for( i = 0; i < ncomp; i++ )
   1485         {
   1486             int n = comps[i].neighbors;
   1487             if( n >= min_neighbors )
   1488             {
   1489                 CvAvgComp comp;
   1490                 comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
   1491                 comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
   1492                 comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
   1493                 comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
   1494                 comp.neighbors = comps[i].neighbors;
   1495 
   1496                 cvSeqPush( seq2, &comp );
   1497             }
   1498         }
   1499 
   1500         if( !find_biggest_object )
   1501         {
   1502             // filter out small face rectangles inside large face rectangles
   1503             for( i = 0; i < seq2->total; i++ )
   1504             {
   1505                 CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i );
   1506                 int j, flag = 1;
   1507 
   1508                 for( j = 0; j < seq2->total; j++ )
   1509                 {
   1510                     CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
   1511                     int distance = cvRound( r2.rect.width * 0.2 );
   1512 
   1513                     if( i != j &&
   1514 					   r1.rect.x >= r2.rect.x - distance &&
   1515 					   r1.rect.y >= r2.rect.y - distance &&
   1516 					   r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
   1517 					   r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
   1518 					   (r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
   1519                     {
   1520                         flag = 0;
   1521                         break;
   1522                     }
   1523                 }
   1524 
   1525                 if( flag )
   1526                     cvSeqPush( result_seq, &r1 );
   1527             }
   1528         }
   1529         else
   1530         {
   1531             int max_area = 0;
   1532             for( i = 0; i < seq2->total; i++ )
   1533             {
   1534                 CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( seq2, i );
   1535                 int area = comp->rect.width * comp->rect.height;
   1536                 if( max_area < area )
   1537                 {
   1538                     max_area = area;
   1539                     result_comp = *comp;
   1540                 }
   1541             }
   1542         }
   1543     }
   1544 
   1545 	t1 = (double)cvGetTickCount();
   1546 //	printf( "results eval time = %gms\n", (t1 - t)/tickFreqTimes1000);
   1547 	t = t1;
   1548 
   1549     if( find_biggest_object && result_comp.rect.width > 0 )
   1550         cvSeqPush( result_seq, &result_comp );
   1551 
   1552     __END__;
   1553 
   1554     if( max_threads > 1 )
   1555 	    for( i = 0; i < max_threads; i++ )
   1556 	    {
   1557 		    if( seq_thread[i] )
   1558                 cvReleaseMemStorage( &seq_thread[i]->storage );
   1559 	    }
   1560 
   1561     cvReleaseMemStorage( &temp_storage );
   1562     cvReleaseMat( &sum );
   1563     cvReleaseMat( &sqsum );
   1564     cvReleaseMat( &tilted );
   1565     cvReleaseMat( &temp );
   1566     cvReleaseMat( &sumcanny );
   1567     cvReleaseMat( &norm_img );
   1568     cvReleaseMat( &img_small );
   1569     cvFree( &comps );
   1570 
   1571     return result_seq;
   1572 }
   1573