Home | History | Annotate | Download | only in math
      1 /*
      2  *  Licensed to the Apache Software Foundation (ASF) under one or more
      3  *  contributor license agreements.  See the NOTICE file distributed with
      4  *  this work for additional information regarding copyright ownership.
      5  *  The ASF licenses this file to You under the Apache License, Version 2.0
      6  *  (the "License"); you may not use this file except in compliance with
      7  *  the License.  You may obtain a copy of the License at
      8  *
      9  *     http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  *  Unless required by applicable law or agreed to in writing, software
     12  *  distributed under the License is distributed on an "AS IS" BASIS,
     13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  *  See the License for the specific language governing permissions and
     15  *  limitations under the License.
     16  */
     17 
     18 package java.math;
     19 
     20 import java.io.IOException;
     21 import java.io.ObjectInputStream;
     22 import java.io.ObjectOutputStream;
     23 import java.io.Serializable;
     24 import java.util.Random;
     25 
     26 /**
     27  * An immutable arbitrary-precision signed integer.
     28  *
     29  * <h3>Fast Cryptography</h3>
     30  * This implementation is efficient for operations traditionally used in
     31  * cryptography, such as the generation of large prime numbers and computation
     32  * of the modular inverse.
     33  *
     34  * <h3>Slow Two's Complement Bitwise Operations</h3>
     35  * This API includes operations for bitwise operations in two's complement
     36  * representation. Two's complement is not the internal representation used by
     37  * this implementation, so such methods may be inefficient. Use {@link
     38  * java.util.BitSet} for high-performance bitwise operations on
     39  * arbitrarily-large sequences of bits.
     40  */
     41 public class BigInteger extends Number
     42         implements Comparable<BigInteger>, Serializable {
     43 
     44     /** This is the serialVersionUID used by the sun implementation. */
     45     private static final long serialVersionUID = -8287574255936472291L;
     46 
     47     private transient BigInt bigInt;
     48 
     49     private transient boolean nativeIsValid = false;
     50 
     51     private transient boolean javaIsValid = false;
     52 
     53     /** The magnitude of this in the little-endian representation. */
     54     transient int[] digits;
     55 
     56     /**
     57      * The length of this in measured in ints. Can be less than
     58      * digits.length().
     59      */
     60     transient int numberLength;
     61 
     62     /** The sign of this. */
     63     transient int sign;
     64 
     65     /** The {@code BigInteger} constant 0. */
     66     public static final BigInteger ZERO = new BigInteger(0, 0);
     67 
     68     /** The {@code BigInteger} constant 1. */
     69     public static final BigInteger ONE = new BigInteger(1, 1);
     70 
     71     /** The {@code BigInteger} constant 10. */
     72     public static final BigInteger TEN = new BigInteger(1, 10);
     73 
     74     /** The {@code BigInteger} constant -1. */
     75     static final BigInteger MINUS_ONE = new BigInteger(-1, 1);
     76 
     77     /** All the {@code BigInteger} numbers in the range [0,10] are cached. */
     78     static final BigInteger[] SMALL_VALUES = { ZERO, ONE, new BigInteger(1, 2),
     79             new BigInteger(1, 3), new BigInteger(1, 4), new BigInteger(1, 5),
     80             new BigInteger(1, 6), new BigInteger(1, 7), new BigInteger(1, 8),
     81             new BigInteger(1, 9), TEN };
     82 
     83     private transient int firstNonzeroDigit = -2;
     84 
     85     /** sign field, used for serialization. */
     86     private int signum;
     87 
     88     /** absolute value field, used for serialization */
     89     private byte[] magnitude;
     90 
     91     /** Cache for the hash code. */
     92     private transient int hashCode = 0;
     93 
     94     BigInteger(BigInt bigInt) {
     95         if (bigInt == null || bigInt.getNativeBIGNUM() == 0) {
     96             throw new AssertionError();
     97         }
     98         setBigInt(bigInt);
     99     }
    100 
    101     BigInteger(int sign, long value) {
    102         BigInt bigInt = new BigInt();
    103         bigInt.putULongInt(value, (sign < 0));
    104         setBigInt(bigInt);
    105     }
    106 
    107     /**
    108      * Constructs a number without creating new space. This construct should be
    109      * used only if the three fields of representation are known.
    110      *
    111      * @param sign the sign of the number.
    112      * @param numberLength the length of the internal array.
    113      * @param digits a reference of some array created before.
    114      */
    115     BigInteger(int sign, int numberLength, int[] digits) {
    116         setJavaRepresentation(sign, numberLength, digits);
    117     }
    118 
    119     /**
    120      * Constructs a random non-negative {@code BigInteger} instance in the range
    121      * {@code [0, pow(2, numBits)-1]}.
    122      *
    123      * @param numBits maximum length of the new {@code BigInteger} in bits.
    124      * @param random is the random number generator to be used.
    125      * @throws IllegalArgumentException if {@code numBits} < 0.
    126      */
    127     public BigInteger(int numBits, Random random) {
    128         if (numBits < 0) {
    129             throw new IllegalArgumentException("numBits < 0: " + numBits);
    130         }
    131         if (numBits == 0) {
    132             setJavaRepresentation(0, 1, new int[] { 0 });
    133         } else {
    134             int sign = 1;
    135             int numberLength = (numBits + 31) >> 5;
    136             int[] digits = new int[numberLength];
    137             for (int i = 0; i < numberLength; i++) {
    138                 digits[i] = random.nextInt();
    139             }
    140             // Clear any extra bits.
    141             digits[numberLength - 1] >>>= (-numBits) & 31;
    142             setJavaRepresentation(sign, numberLength, digits);
    143         }
    144         javaIsValid = true;
    145     }
    146 
    147     /**
    148      * Constructs a random {@code BigInteger} instance in the range {@code [0,
    149      * pow(2, bitLength)-1]} which is probably prime. The probability that the
    150      * returned {@code BigInteger} is prime is greater than
    151      * {@code 1 - 1/2<sup>certainty</sup>)}.
    152      *
    153      * <p><b>Note:</b> the {@code Random} argument is ignored if
    154      * {@code bitLength >= 16}, where this implementation will use OpenSSL's
    155      * {@code BN_generate_prime_ex} as a source of cryptographically strong pseudo-random numbers.
    156      *
    157      * @param bitLength length of the new {@code BigInteger} in bits.
    158      * @param certainty tolerated primality uncertainty.
    159      * @throws ArithmeticException if {@code bitLength < 2}.
    160      * @see <a href="http://www.openssl.org/docs/crypto/BN_rand.html">
    161      *      Specification of random generator used from OpenSSL library</a>
    162      */
    163     public BigInteger(int bitLength, int certainty, Random random) {
    164         if (bitLength < 2) {
    165             throw new ArithmeticException("bitLength < 2: " + bitLength);
    166         }
    167         if (bitLength < 16) {
    168             // We have to generate short primes ourselves, because OpenSSL bottoms out at 16 bits.
    169             int candidate;
    170             do {
    171                 candidate = random.nextInt() & ((1 << bitLength) - 1);
    172                 candidate |= (1 << (bitLength - 1)); // Set top bit.
    173                 if (bitLength > 2) {
    174                     candidate |= 1; // Any prime longer than 2 bits must have the bottom bit set.
    175                 }
    176             } while (!isSmallPrime(candidate));
    177             BigInt prime = new BigInt();
    178             prime.putULongInt(candidate, false);
    179             setBigInt(prime);
    180         } else {
    181             // We need a loop here to work around an OpenSSL bug; http://b/8588028.
    182             do {
    183                 setBigInt(BigInt.generatePrimeDefault(bitLength));
    184             } while (bitLength() != bitLength);
    185         }
    186     }
    187 
    188     private static boolean isSmallPrime(int x) {
    189         if (x == 2) {
    190             return true;
    191         }
    192         if ((x % 2) == 0) {
    193             return false;
    194         }
    195         final int max = (int) Math.sqrt(x);
    196         for (int i = 3; i <= max; i += 2) {
    197             if ((x % i) == 0) {
    198                 return false;
    199             }
    200         }
    201         return true;
    202     }
    203 
    204     /**
    205      * Constructs a new {@code BigInteger} by parsing {@code value}. The string
    206      * representation consists of an optional plus or minus sign followed by a
    207      * non-empty sequence of decimal digits. Digits are interpreted as if by
    208      * {@code Character.digit(char,10)}.
    209      *
    210      * @param value string representation of the new {@code BigInteger}.
    211      * @throws NullPointerException if {@code value == null}.
    212      * @throws NumberFormatException if {@code value} is not a valid
    213      *     representation of a {@code BigInteger}.
    214      */
    215     public BigInteger(String value) {
    216         BigInt bigInt = new BigInt();
    217         bigInt.putDecString(value);
    218         setBigInt(bigInt);
    219     }
    220 
    221     /**
    222      * Constructs a new {@code BigInteger} instance by parsing {@code value}.
    223      * The string representation consists of an optional plus or minus sign
    224      * followed by a non-empty sequence of digits in the specified radix. Digits
    225      * are interpreted as if by {@code Character.digit(char, radix)}.
    226      *
    227      * @param value string representation of the new {@code BigInteger}.
    228      * @param radix the base to be used for the conversion.
    229      * @throws NullPointerException if {@code value == null}.
    230      * @throws NumberFormatException if {@code value} is not a valid
    231      *     representation of a {@code BigInteger} or if {@code radix <
    232      *     Character.MIN_RADIX} or {@code radix > Character.MAX_RADIX}.
    233      */
    234     public BigInteger(String value, int radix) {
    235         if (value == null) {
    236             throw new NullPointerException("value == null");
    237         }
    238         if (radix == 10) {
    239             BigInt bigInt = new BigInt();
    240             bigInt.putDecString(value);
    241             setBigInt(bigInt);
    242         } else if (radix == 16) {
    243             BigInt bigInt = new BigInt();
    244             bigInt.putHexString(value);
    245             setBigInt(bigInt);
    246         } else {
    247             if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
    248                 throw new NumberFormatException("Invalid radix: " + radix);
    249             }
    250             if (value.isEmpty()) {
    251                 throw new NumberFormatException("value.isEmpty()");
    252             }
    253             BigInteger.parseFromString(this, value, radix);
    254         }
    255     }
    256 
    257     /**
    258      * Constructs a new {@code BigInteger} instance with the given sign and
    259      * magnitude.
    260      *
    261      * @param signum sign of the new {@code BigInteger} (-1 for negative, 0 for
    262      *     zero, 1 for positive).
    263      * @param magnitude magnitude of the new {@code BigInteger} with the most
    264      *     significant byte first.
    265      * @throws NullPointerException if {@code magnitude == null}.
    266      * @throws NumberFormatException if the sign is not one of -1, 0, 1 or if
    267      *     the sign is zero and the magnitude contains non-zero entries.
    268      */
    269     public BigInteger(int signum, byte[] magnitude) {
    270         if (magnitude == null) {
    271             throw new NullPointerException("magnitude == null");
    272         }
    273         if (signum < -1 || signum > 1) {
    274             throw new NumberFormatException("Invalid signum: " + signum);
    275         }
    276         if (signum == 0) {
    277             for (byte element : magnitude) {
    278                 if (element != 0) {
    279                     throw new NumberFormatException("signum-magnitude mismatch");
    280                 }
    281             }
    282         }
    283         BigInt bigInt = new BigInt();
    284         bigInt.putBigEndian(magnitude, signum < 0);
    285         setBigInt(bigInt);
    286     }
    287 
    288     /**
    289      * Constructs a new {@code BigInteger} from the given two's complement
    290      * representation. The most significant byte is the entry at index 0. The
    291      * most significant bit of this entry determines the sign of the new {@code
    292      * BigInteger} instance. The array must be nonempty.
    293      *
    294      * @param value two's complement representation of the new {@code
    295      *     BigInteger}.
    296      * @throws NullPointerException if {@code value == null}.
    297      * @throws NumberFormatException if the length of {@code value} is zero.
    298      */
    299     public BigInteger(byte[] value) {
    300         if (value.length == 0) {
    301             throw new NumberFormatException("value.length == 0");
    302         }
    303         BigInt bigInt = new BigInt();
    304         bigInt.putBigEndianTwosComplement(value);
    305         setBigInt(bigInt);
    306     }
    307 
    308     /**
    309      * Returns the internal native representation of this big integer, computing
    310      * it if necessary.
    311      */
    312     BigInt getBigInt() {
    313         if (nativeIsValid) {
    314             return bigInt;
    315         }
    316 
    317         synchronized (this) {
    318             if (nativeIsValid) {
    319                 return bigInt;
    320             }
    321             BigInt bigInt = new BigInt();
    322             bigInt.putLittleEndianInts(digits, (sign < 0));
    323             setBigInt(bigInt);
    324             return bigInt;
    325         }
    326     }
    327 
    328     private void setBigInt(BigInt bigInt) {
    329         this.bigInt = bigInt;
    330         this.nativeIsValid = true;
    331     }
    332 
    333     private void setJavaRepresentation(int sign, int numberLength, int[] digits) {
    334         // decrement numberLength to drop leading zeroes...
    335         while (numberLength > 0 && digits[--numberLength] == 0) {
    336             ;
    337         }
    338         // ... and then increment it back because we always drop one too many
    339         if (digits[numberLength++] == 0) {
    340             sign = 0;
    341         }
    342         this.sign = sign;
    343         this.digits = digits;
    344         this.numberLength = numberLength;
    345         this.javaIsValid = true;
    346     }
    347 
    348     void prepareJavaRepresentation() {
    349         if (javaIsValid) {
    350             return;
    351         }
    352 
    353         synchronized (this) {
    354             if (javaIsValid) {
    355                 return;
    356             }
    357             int sign = bigInt.sign();
    358             int[] digits = (sign != 0) ? bigInt.littleEndianIntsMagnitude() : new int[] { 0 };
    359             setJavaRepresentation(sign, digits.length, digits);
    360         }
    361     }
    362 
    363     /** Returns a {@code BigInteger} whose value is equal to {@code value}. */
    364     public static BigInteger valueOf(long value) {
    365         if (value < 0) {
    366             if (value != -1) {
    367                 return new BigInteger(-1, -value);
    368             }
    369             return MINUS_ONE;
    370         } else if (value < SMALL_VALUES.length) {
    371             return SMALL_VALUES[(int) value];
    372         } else {// (value > 10)
    373             return new BigInteger(1, value);
    374         }
    375     }
    376 
    377     /**
    378      * Returns the two's complement representation of this {@code BigInteger} in
    379      * a byte array.
    380      */
    381     public byte[] toByteArray() {
    382         return twosComplement();
    383     }
    384 
    385     /**
    386      * Returns a {@code BigInteger} whose value is the absolute value of {@code
    387      * this}.
    388      */
    389     public BigInteger abs() {
    390         BigInt bigInt = getBigInt();
    391         if (bigInt.sign() >= 0) {
    392             return this;
    393         }
    394         BigInt a = bigInt.copy();
    395         a.setSign(1);
    396         return new BigInteger(a);
    397     }
    398 
    399     /**
    400      * Returns a {@code BigInteger} whose value is the {@code -this}.
    401      */
    402     public BigInteger negate() {
    403         BigInt bigInt = getBigInt();
    404         int sign = bigInt.sign();
    405         if (sign == 0) {
    406             return this;
    407         }
    408         BigInt a = bigInt.copy();
    409         a.setSign(-sign);
    410         return new BigInteger(a);
    411     }
    412 
    413     /**
    414      * Returns a {@code BigInteger} whose value is {@code this + value}.
    415      */
    416     public BigInteger add(BigInteger value) {
    417         BigInt lhs = getBigInt();
    418         BigInt rhs = value.getBigInt();
    419         if (rhs.sign() == 0) {
    420             return this;
    421         }
    422         if (lhs.sign() == 0) {
    423             return value;
    424         }
    425         return new BigInteger(BigInt.addition(lhs, rhs));
    426     }
    427 
    428     /**
    429      * Returns a {@code BigInteger} whose value is {@code this - value}.
    430      */
    431     public BigInteger subtract(BigInteger value) {
    432         BigInt lhs = getBigInt();
    433         BigInt rhs = value.getBigInt();
    434         if (rhs.sign() == 0) {
    435             return this;
    436         }
    437         return new BigInteger(BigInt.subtraction(lhs, rhs));
    438     }
    439 
    440     /**
    441      * Returns the sign of this {@code BigInteger}.
    442      *
    443      * @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0},
    444      *     {@code 1} if {@code this > 0}.
    445      */
    446     public int signum() {
    447         if (javaIsValid) {
    448             return sign;
    449         }
    450         return getBigInt().sign();
    451     }
    452 
    453     /**
    454      * Returns a {@code BigInteger} whose value is {@code this >> n}. For
    455      * negative arguments, the result is also negative. The shift distance may
    456      * be negative which means that {@code this} is shifted left.
    457      *
    458      * <p><b>Implementation Note:</b> Usage of this method on negative values is
    459      * not recommended as the current implementation is not efficient.
    460      *
    461      * @param n shift distance
    462      * @return {@code this >> n} if {@code n >= 0}; {@code this << (-n)}
    463      *     otherwise
    464      */
    465     public BigInteger shiftRight(int n) {
    466         return shiftLeft(-n);
    467     }
    468 
    469     /**
    470      * Returns a {@code BigInteger} whose value is {@code this << n}. The
    471      * result is equivalent to {@code this * pow(2, n)} if n >= 0. The shift
    472      * distance may be negative which means that {@code this} is shifted right.
    473      * The result then corresponds to {@code floor(this / pow(2, -n))}.
    474      *
    475      * <p><b>Implementation Note:</b> Usage of this method on negative values is
    476      * not recommended as the current implementation is not efficient.
    477      *
    478      * @param n shift distance.
    479      * @return {@code this << n} if {@code n >= 0}; {@code this >> (-n)}.
    480      *     otherwise
    481      */
    482     public BigInteger shiftLeft(int n) {
    483         if (n == 0) {
    484             return this;
    485         }
    486         int sign = signum();
    487         if (sign == 0) {
    488             return this;
    489         }
    490         if ((sign > 0) || (n >= 0)) {
    491             return new BigInteger(BigInt.shift(getBigInt(), n));
    492         } else {
    493             // Negative numbers faking 2's complement:
    494             // Not worth optimizing this:
    495             // Sticking to Harmony Java implementation.
    496             return BitLevel.shiftRight(this, -n);
    497         }
    498     }
    499 
    500     BigInteger shiftLeftOneBit() {
    501         return (signum() == 0) ? this : BitLevel.shiftLeftOneBit(this);
    502     }
    503 
    504     /**
    505      * Returns the length of the value's two's complement representation without
    506      * leading zeros for positive numbers / without leading ones for negative
    507      * values.
    508      *
    509      * <p>The two's complement representation of {@code this} will be at least
    510      * {@code bitLength() + 1} bits long.
    511      *
    512      * <p>The value will fit into an {@code int} if {@code bitLength() < 32} or
    513      * into a {@code long} if {@code bitLength() < 64}.
    514      *
    515      * @return the length of the minimal two's complement representation for
    516      *     {@code this} without the sign bit.
    517      */
    518     public int bitLength() {
    519         // Optimization to avoid unnecessary duplicate representation:
    520         if (!nativeIsValid && javaIsValid) {
    521             return BitLevel.bitLength(this);
    522         }
    523         return getBigInt().bitLength();
    524     }
    525 
    526     /**
    527      * Tests whether the bit at position n in {@code this} is set. The result is
    528      * equivalent to {@code this & pow(2, n) != 0}.
    529      *
    530      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    531      * the current implementation is not efficient.
    532      *
    533      * @param n position where the bit in {@code this} has to be inspected.
    534      * @throws ArithmeticException if {@code n < 0}.
    535      */
    536     public boolean testBit(int n) {
    537         if (n < 0) {
    538             throw new ArithmeticException("n < 0: " + n);
    539         }
    540         int sign = signum();
    541         if (sign > 0 && nativeIsValid && !javaIsValid) {
    542             return getBigInt().isBitSet(n);
    543         } else {
    544             // Negative numbers faking 2's complement:
    545             // Not worth optimizing this:
    546             // Sticking to Harmony Java implementation.
    547             prepareJavaRepresentation();
    548             if (n == 0) {
    549                 return ((digits[0] & 1) != 0);
    550             }
    551             int intCount = n >> 5;
    552             if (intCount >= numberLength) {
    553                 return (sign < 0);
    554             }
    555             int digit = digits[intCount];
    556             n = (1 << (n & 31)); // int with 1 set to the needed position
    557             if (sign < 0) {
    558                 int firstNonZeroDigit = getFirstNonzeroDigit();
    559                 if (intCount < firstNonZeroDigit) {
    560                     return false;
    561                 } else if (firstNonZeroDigit == intCount) {
    562                     digit = -digit;
    563                 } else {
    564                     digit = ~digit;
    565                 }
    566             }
    567             return ((digit & n) != 0);
    568         }
    569     }
    570 
    571     /**
    572      * Returns a {@code BigInteger} which has the same binary representation
    573      * as {@code this} but with the bit at position n set. The result is
    574      * equivalent to {@code this | pow(2, n)}.
    575      *
    576      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    577      * the current implementation is not efficient.
    578      *
    579      * @param n position where the bit in {@code this} has to be set.
    580      * @throws ArithmeticException if {@code n < 0}.
    581      */
    582     public BigInteger setBit(int n) {
    583         prepareJavaRepresentation();
    584         if (!testBit(n)) {
    585             return BitLevel.flipBit(this, n);
    586         } else {
    587             return this;
    588         }
    589     }
    590 
    591     /**
    592      * Returns a {@code BigInteger} which has the same binary representation
    593      * as {@code this} but with the bit at position n cleared. The result is
    594      * equivalent to {@code this & ~pow(2, n)}.
    595      *
    596      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    597      * the current implementation is not efficient.
    598      *
    599      * @param n position where the bit in {@code this} has to be cleared.
    600      * @throws ArithmeticException if {@code n < 0}.
    601      */
    602     public BigInteger clearBit(int n) {
    603         prepareJavaRepresentation();
    604         if (testBit(n)) {
    605             return BitLevel.flipBit(this, n);
    606         } else {
    607             return this;
    608         }
    609     }
    610 
    611     /**
    612      * Returns a {@code BigInteger} which has the same binary representation
    613      * as {@code this} but with the bit at position n flipped. The result is
    614      * equivalent to {@code this ^ pow(2, n)}.
    615      *
    616      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    617      * the current implementation is not efficient.
    618      *
    619      * @param n position where the bit in {@code this} has to be flipped.
    620      * @throws ArithmeticException if {@code n < 0}.
    621      */
    622     public BigInteger flipBit(int n) {
    623         prepareJavaRepresentation();
    624         if (n < 0) {
    625             throw new ArithmeticException("n < 0: " + n);
    626         }
    627         return BitLevel.flipBit(this, n);
    628     }
    629 
    630     /**
    631      * Returns the position of the lowest set bit in the two's complement
    632      * representation of this {@code BigInteger}. If all bits are zero (this==0)
    633      * then -1 is returned as result.
    634      *
    635      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    636      * the current implementation is not efficient.
    637      */
    638     public int getLowestSetBit() {
    639         prepareJavaRepresentation();
    640         if (sign == 0) {
    641             return -1;
    642         }
    643         // (sign != 0) implies that exists some non zero digit
    644         int i = getFirstNonzeroDigit();
    645         return ((i << 5) + Integer.numberOfTrailingZeros(digits[i]));
    646     }
    647 
    648     /**
    649      * Returns the number of bits in the two's complement representation of
    650      * {@code this} which differ from the sign bit. If {@code this} is negative,
    651      * the result is equivalent to the number of bits set in the two's
    652      * complement representation of {@code -this - 1}.
    653      *
    654      * <p>Use {@code bitLength(0)} to find the length of the binary value in
    655      * bits.
    656      *
    657      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    658      * the current implementation is not efficient.
    659      */
    660     public int bitCount() {
    661         prepareJavaRepresentation();
    662         return BitLevel.bitCount(this);
    663     }
    664 
    665     /**
    666      * Returns a {@code BigInteger} whose value is {@code ~this}. The result
    667      * of this operation is {@code -this-1}.
    668      *
    669      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    670      * the current implementation is not efficient.
    671      */
    672     public BigInteger not() {
    673         this.prepareJavaRepresentation();
    674         return Logical.not(this);
    675     }
    676 
    677     /**
    678      * Returns a {@code BigInteger} whose value is {@code this & value}.
    679      *
    680      * <p><b>Implementation Note:</b> Usage of this method is not recommended
    681      * as the current implementation is not efficient.
    682      *
    683      * @param value value to be and'ed with {@code this}.
    684      * @throws NullPointerException if {@code value == null}.
    685      */
    686     public BigInteger and(BigInteger value) {
    687         this.prepareJavaRepresentation();
    688         value.prepareJavaRepresentation();
    689         return Logical.and(this, value);
    690     }
    691 
    692     /**
    693      * Returns a {@code BigInteger} whose value is {@code this | value}.
    694      *
    695      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    696      * the current implementation is not efficient.
    697      *
    698      * @param value value to be or'ed with {@code this}.
    699      * @throws NullPointerException if {@code value == null}.
    700      */
    701     public BigInteger or(BigInteger value) {
    702         this.prepareJavaRepresentation();
    703         value.prepareJavaRepresentation();
    704         return Logical.or(this, value);
    705     }
    706 
    707     /**
    708      * Returns a {@code BigInteger} whose value is {@code this ^ value}.
    709      *
    710      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
    711      * the current implementation is not efficient.
    712      *
    713      * @param value value to be xor'ed with {@code this}
    714      * @throws NullPointerException if {@code value == null}
    715      */
    716     public BigInteger xor(BigInteger value) {
    717         this.prepareJavaRepresentation();
    718         value.prepareJavaRepresentation();
    719         return Logical.xor(this, value);
    720     }
    721 
    722     /**
    723      * Returns a {@code BigInteger} whose value is {@code this & ~value}.
    724      * Evaluating {@code x.andNot(value)} returns the same result as {@code
    725      * x.and(value.not())}.
    726      *
    727      * <p><b>Implementation Note:</b> Usage of this method is not recommended
    728      * as the current implementation is not efficient.
    729      *
    730      * @param value value to be not'ed and then and'ed with {@code this}.
    731      * @throws NullPointerException if {@code value == null}.
    732      */
    733     public BigInteger andNot(BigInteger value) {
    734         this.prepareJavaRepresentation();
    735         value.prepareJavaRepresentation();
    736         return Logical.andNot(this, value);
    737     }
    738 
    739     /**
    740      * Returns this {@code BigInteger} as an int value. If {@code this} is too
    741      * big to be represented as an int, then {@code this % (1 << 32)} is
    742      * returned.
    743      */
    744     @Override
    745     public int intValue() {
    746         if (nativeIsValid && bigInt.twosCompFitsIntoBytes(4)) {
    747             return (int) bigInt.longInt();
    748         }
    749         this.prepareJavaRepresentation();
    750         return (sign * digits[0]);
    751     }
    752 
    753     /**
    754      * Returns this {@code BigInteger} as a long value. If {@code this} is too
    755      * big to be represented as a long, then {@code this % pow(2, 64)} is
    756      * returned.
    757      */
    758     @Override
    759     public long longValue() {
    760         if (nativeIsValid && bigInt.twosCompFitsIntoBytes(8)) {
    761             return bigInt.longInt();
    762         }
    763         prepareJavaRepresentation();
    764         long value = numberLength > 1
    765                 ? ((long) digits[1]) << 32 | digits[0] & 0xFFFFFFFFL
    766                 : digits[0] & 0xFFFFFFFFL;
    767         return sign * value;
    768     }
    769 
    770     /**
    771      * Returns this {@code BigInteger} as a float. If {@code this} is too big to
    772      * be represented as a float, then {@code Float.POSITIVE_INFINITY} or
    773      * {@code Float.NEGATIVE_INFINITY} is returned. Note that not all integers
    774      * in the range {@code [-Float.MAX_VALUE, Float.MAX_VALUE]} can be exactly
    775      * represented as a float.
    776      */
    777     @Override
    778     public float floatValue() {
    779         return (float) doubleValue();
    780     }
    781 
    782     /**
    783      * Returns this {@code BigInteger} as a double. If {@code this} is too big
    784      * to be represented as a double, then {@code Double.POSITIVE_INFINITY} or
    785      * {@code Double.NEGATIVE_INFINITY} is returned. Note that not all integers
    786      * in the range {@code [-Double.MAX_VALUE, Double.MAX_VALUE]} can be exactly
    787      * represented as a double.
    788      */
    789     @Override
    790     public double doubleValue() {
    791         return Conversion.bigInteger2Double(this);
    792     }
    793 
    794     /**
    795      * Compares this {@code BigInteger} with {@code value}. Returns {@code -1}
    796      * if {@code this < value}, {@code 0} if {@code this == value} and {@code 1}
    797      * if {@code this > value}, .
    798      *
    799      * @param value value to be compared with {@code this}.
    800      * @throws NullPointerException if {@code value == null}.
    801      */
    802     public int compareTo(BigInteger value) {
    803         return BigInt.cmp(getBigInt(), value.getBigInt());
    804     }
    805 
    806     /**
    807      * Returns the minimum of this {@code BigInteger} and {@code value}.
    808      *
    809      * @param value value to be used to compute the minimum with {@code this}.
    810      * @throws NullPointerException if {@code value == null}.
    811      */
    812     public BigInteger min(BigInteger value) {
    813         return this.compareTo(value) == -1 ? this : value;
    814     }
    815 
    816     /**
    817      * Returns the maximum of this {@code BigInteger} and {@code value}.
    818      *
    819      * @param value value to be used to compute the maximum with {@code this}
    820      * @throws NullPointerException if {@code value == null}
    821      */
    822     public BigInteger max(BigInteger value) {
    823         return this.compareTo(value) == 1 ? this : value;
    824     }
    825 
    826     @Override
    827     public int hashCode() {
    828         if (hashCode != 0) {
    829             return hashCode;
    830         }
    831         prepareJavaRepresentation();
    832         for (int i = 0; i < numberLength; ++i) {
    833             hashCode = hashCode * 33 + digits[i];
    834         }
    835         hashCode = hashCode * sign;
    836         return hashCode;
    837     }
    838 
    839     @Override
    840     public boolean equals(Object x) {
    841         if (this == x) {
    842             return true;
    843         }
    844         if (x instanceof BigInteger) {
    845             return this.compareTo((BigInteger) x) == 0;
    846         }
    847         return false;
    848     }
    849 
    850     /**
    851      * Returns a string representation of this {@code BigInteger} in decimal
    852      * form.
    853      */
    854     @Override
    855     public String toString() {
    856         return getBigInt().decString();
    857     }
    858 
    859     /**
    860      * Returns a string containing a string representation of this {@code
    861      * BigInteger} with base radix. If {@code radix < Character.MIN_RADIX} or
    862      * {@code radix > Character.MAX_RADIX} then a decimal representation is
    863      * returned. The characters of the string representation are generated with
    864      * method {@code Character.forDigit}.
    865      *
    866      * @param radix base to be used for the string representation.
    867      */
    868     public String toString(int radix) {
    869         if (radix == 10) {
    870             return getBigInt().decString();
    871         } else {
    872             prepareJavaRepresentation();
    873             return Conversion.bigInteger2String(this, radix);
    874         }
    875     }
    876 
    877     /**
    878      * Returns a {@code BigInteger} whose value is greatest common divisor
    879      * of {@code this} and {@code value}. If {@code this == 0} and {@code
    880      * value == 0} then zero is returned, otherwise the result is positive.
    881      *
    882      * @param value value with which the greatest common divisor is computed.
    883      * @throws NullPointerException if {@code value == null}.
    884      */
    885     public BigInteger gcd(BigInteger value) {
    886         return new BigInteger(BigInt.gcd(getBigInt(), value.getBigInt()));
    887     }
    888 
    889     /**
    890      * Returns a {@code BigInteger} whose value is {@code this * value}.
    891      *
    892      * @throws NullPointerException if {@code value == null}.
    893      */
    894     public BigInteger multiply(BigInteger value) {
    895         return new BigInteger(BigInt.product(getBigInt(), value.getBigInt()));
    896     }
    897 
    898     /**
    899      * Returns a {@code BigInteger} whose value is {@code pow(this, exp)}.
    900      *
    901      * @throws ArithmeticException if {@code exp < 0}.
    902      */
    903     public BigInteger pow(int exp) {
    904         if (exp < 0) {
    905             throw new ArithmeticException("exp < 0: " + exp);
    906         }
    907         return new BigInteger(BigInt.exp(getBigInt(), exp));
    908     }
    909 
    910     /**
    911      * Returns a two element {@code BigInteger} array containing
    912      * {@code this / divisor} at index 0 and {@code this % divisor} at index 1.
    913      *
    914      * @param divisor value by which {@code this} is divided.
    915      * @throws NullPointerException if {@code divisor == null}.
    916      * @throws ArithmeticException if {@code divisor == 0}.
    917      * @see #divide
    918      * @see #remainder
    919      */
    920     public BigInteger[] divideAndRemainder(BigInteger divisor) {
    921         BigInt divisorBigInt = divisor.getBigInt();
    922         BigInt quotient = new BigInt();
    923         BigInt remainder = new BigInt();
    924         BigInt.division(getBigInt(), divisorBigInt, quotient, remainder);
    925         return new BigInteger[] {new BigInteger(quotient), new BigInteger(remainder) };
    926     }
    927 
    928     /**
    929      * Returns a {@code BigInteger} whose value is {@code this / divisor}.
    930      *
    931      * @param divisor value by which {@code this} is divided.
    932      * @return {@code this / divisor}.
    933      * @throws NullPointerException if {@code divisor == null}.
    934      * @throws ArithmeticException if {@code divisor == 0}.
    935      */
    936     public BigInteger divide(BigInteger divisor) {
    937         BigInt quotient = new BigInt();
    938         BigInt.division(getBigInt(), divisor.getBigInt(), quotient, null);
    939         return new BigInteger(quotient);
    940     }
    941 
    942     /**
    943      * Returns a {@code BigInteger} whose value is {@code this % divisor}.
    944      * Regarding signs this methods has the same behavior as the % operator on
    945      * ints: the sign of the remainder is the same as the sign of this.
    946      *
    947      * @param divisor value by which {@code this} is divided.
    948      * @throws NullPointerException if {@code divisor == null}.
    949      * @throws ArithmeticException if {@code divisor == 0}.
    950      */
    951     public BigInteger remainder(BigInteger divisor) {
    952         BigInt remainder = new BigInt();
    953         BigInt.division(getBigInt(), divisor.getBigInt(), null, remainder);
    954         return new BigInteger(remainder);
    955     }
    956 
    957     /**
    958      * Returns a {@code BigInteger} whose value is {@code 1/this mod m}. The
    959      * modulus {@code m} must be positive. The result is guaranteed to be in the
    960      * interval {@code [0, m)} (0 inclusive, m exclusive). If {@code this} is
    961      * not relatively prime to m, then an exception is thrown.
    962      *
    963      * @param m the modulus.
    964      * @throws NullPointerException if {@code m == null}
    965      * @throws ArithmeticException if {@code m < 0 or} if {@code this} is not
    966      *     relatively prime to {@code m}
    967      */
    968     public BigInteger modInverse(BigInteger m) {
    969         if (m.signum() <= 0) {
    970             throw new ArithmeticException("modulus not positive");
    971         }
    972         return new BigInteger(BigInt.modInverse(getBigInt(), m.getBigInt()));
    973     }
    974 
    975     /**
    976      * Returns a {@code BigInteger} whose value is {@code
    977      * pow(this, exponent) mod modulus}. The modulus must be positive. The
    978      * result is guaranteed to be in the interval {@code [0, modulus)}.
    979      * If the exponent is negative, then
    980      * {@code pow(this.modInverse(modulus), -exponent) mod modulus} is computed.
    981      * The inverse of this only exists if {@code this} is relatively prime to the modulus,
    982      * otherwise an exception is thrown.
    983      *
    984      * @throws NullPointerException if {@code modulus == null} or {@code exponent == null}.
    985      * @throws ArithmeticException if {@code modulus < 0} or if {@code exponent < 0} and
    986      *     not relatively prime to {@code modulus}.
    987      */
    988     public BigInteger modPow(BigInteger exponent, BigInteger modulus) {
    989         if (modulus.signum() <= 0) {
    990             throw new ArithmeticException("modulus.signum() <= 0");
    991         }
    992         int exponentSignum = exponent.signum();
    993         if (exponentSignum == 0) { // OpenSSL gets this case wrong; http://b/8574367.
    994             return ONE.mod(modulus);
    995         }
    996         BigInteger base = exponentSignum < 0 ? modInverse(modulus) : this;
    997         return new BigInteger(BigInt.modExp(base.getBigInt(), exponent.getBigInt(), modulus.getBigInt()));
    998     }
    999 
   1000     /**
   1001      * Returns a {@code BigInteger} whose value is {@code this mod m}. The
   1002      * modulus {@code m} must be positive. The result is guaranteed to be in the
   1003      * interval {@code [0, m)} (0 inclusive, m exclusive). The behavior of this
   1004      * function is not equivalent to the behavior of the % operator defined for
   1005      * the built-in {@code int}'s.
   1006      *
   1007      * @param m the modulus.
   1008      * @return {@code this mod m}.
   1009      * @throws NullPointerException if {@code m == null}.
   1010      * @throws ArithmeticException if {@code m < 0}.
   1011      */
   1012     public BigInteger mod(BigInteger m) {
   1013         if (m.signum() <= 0) {
   1014             throw new ArithmeticException("m.signum() <= 0");
   1015         }
   1016         return new BigInteger(BigInt.modulus(getBigInt(), m.getBigInt()));
   1017     }
   1018 
   1019     /**
   1020      * Tests whether this {@code BigInteger} is probably prime. If {@code true}
   1021      * is returned, then this is prime with a probability greater than
   1022      * {@code 1 - 1/2<sup>certainty</sup>)}. If {@code false} is returned, then this
   1023      * is definitely composite. If the argument {@code certainty} <= 0, then
   1024      * this method returns true.
   1025      *
   1026      * @param certainty tolerated primality uncertainty.
   1027      * @return {@code true}, if {@code this} is probably prime, {@code false}
   1028      *     otherwise.
   1029      */
   1030     public boolean isProbablePrime(int certainty) {
   1031         if (certainty <= 0) {
   1032             return true;
   1033         }
   1034         return getBigInt().isPrime(certainty);
   1035     }
   1036 
   1037     /**
   1038      * Returns the smallest integer x > {@code this} which is probably prime as
   1039      * a {@code BigInteger} instance. The probability that the returned {@code
   1040      * BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>}.
   1041      *
   1042      * @return smallest integer > {@code this} which is probably prime.
   1043      * @throws ArithmeticException if {@code this < 0}.
   1044      */
   1045     public BigInteger nextProbablePrime() {
   1046         if (sign < 0) {
   1047             throw new ArithmeticException("sign < 0");
   1048         }
   1049         return Primality.nextProbablePrime(this);
   1050     }
   1051 
   1052     /**
   1053      * Returns a random positive {@code BigInteger} instance in the range {@code
   1054      * [0, pow(2, bitLength)-1]} which is probably prime. The probability that
   1055      * the returned {@code BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>)}.
   1056      *
   1057      * @param bitLength length of the new {@code BigInteger} in bits.
   1058      * @return probably prime random {@code BigInteger} instance.
   1059      * @throws IllegalArgumentException if {@code bitLength < 2}.
   1060      */
   1061     public static BigInteger probablePrime(int bitLength, Random random) {
   1062         return new BigInteger(bitLength, 100, random);
   1063     }
   1064 
   1065     /* Private Methods */
   1066 
   1067     /**
   1068      * Returns the two's complement representation of this BigInteger in a byte
   1069      * array.
   1070      */
   1071     private byte[] twosComplement() {
   1072         prepareJavaRepresentation();
   1073         if (this.sign == 0) {
   1074             return new byte[] { 0 };
   1075         }
   1076         BigInteger temp = this;
   1077         int bitLen = bitLength();
   1078         int iThis = getFirstNonzeroDigit();
   1079         int bytesLen = (bitLen >> 3) + 1;
   1080         /* Puts the little-endian int array representing the magnitude
   1081          * of this BigInteger into the big-endian byte array. */
   1082         byte[] bytes = new byte[bytesLen];
   1083         int firstByteNumber = 0;
   1084         int highBytes;
   1085         int bytesInInteger = 4;
   1086         int hB;
   1087 
   1088         if (bytesLen - (numberLength << 2) == 1) {
   1089             bytes[0] = (byte) ((sign < 0) ? -1 : 0);
   1090             highBytes = 4;
   1091             firstByteNumber++;
   1092         } else {
   1093             hB = bytesLen & 3;
   1094             highBytes = (hB == 0) ? 4 : hB;
   1095         }
   1096 
   1097         int digitIndex = iThis;
   1098         bytesLen -= iThis << 2;
   1099 
   1100         if (sign < 0) {
   1101             int digit = -temp.digits[digitIndex];
   1102             digitIndex++;
   1103             if (digitIndex == numberLength) {
   1104                 bytesInInteger = highBytes;
   1105             }
   1106             for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
   1107                 bytes[--bytesLen] = (byte) digit;
   1108             }
   1109             while (bytesLen > firstByteNumber) {
   1110                 digit = ~temp.digits[digitIndex];
   1111                 digitIndex++;
   1112                 if (digitIndex == numberLength) {
   1113                     bytesInInteger = highBytes;
   1114                 }
   1115                 for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
   1116                     bytes[--bytesLen] = (byte) digit;
   1117                 }
   1118             }
   1119         } else {
   1120             while (bytesLen > firstByteNumber) {
   1121                 int digit = temp.digits[digitIndex];
   1122                 digitIndex++;
   1123                 if (digitIndex == numberLength) {
   1124                     bytesInInteger = highBytes;
   1125                 }
   1126                 for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
   1127                     bytes[--bytesLen] = (byte) digit;
   1128                 }
   1129             }
   1130         }
   1131         return bytes;
   1132     }
   1133 
   1134 
   1135     static int multiplyByInt(int[] res, int[] a, int aSize, int factor) {
   1136         long carry = 0;
   1137 
   1138         for (int i = 0; i < aSize; i++) {
   1139             carry += (a[i] & 0xFFFFFFFFL) * (factor & 0xFFFFFFFFL);
   1140             res[i] = (int) carry;
   1141             carry >>>= 32;
   1142         }
   1143         return (int) carry;
   1144     }
   1145 
   1146     static int inplaceAdd(int[] a, int aSize, int addend) {
   1147         long carry = addend & 0xFFFFFFFFL;
   1148 
   1149         for (int i = 0; (carry != 0) && (i < aSize); i++) {
   1150             carry += a[i] & 0xFFFFFFFFL;
   1151             a[i] = (int) carry;
   1152             carry >>= 32;
   1153         }
   1154         return (int) carry;
   1155     }
   1156 
   1157     /** @see BigInteger#BigInteger(String, int) */
   1158     private static void parseFromString(BigInteger bi, String value, int radix) {
   1159         int stringLength = value.length();
   1160         int endChar = stringLength;
   1161 
   1162         int sign;
   1163         int startChar;
   1164         if (value.charAt(0) == '-') {
   1165             sign = -1;
   1166             startChar = 1;
   1167             stringLength--;
   1168         } else {
   1169             sign = 1;
   1170             startChar = 0;
   1171         }
   1172 
   1173         /*
   1174          * We use the following algorithm: split a string into portions of n
   1175          * characters and convert each portion to an integer according to the
   1176          * radix. Then convert an pow(radix, n) based number to binary using the
   1177          * multiplication method. See D. Knuth, The Art of Computer Programming,
   1178          * vol. 2.
   1179          */
   1180 
   1181         int charsPerInt = Conversion.digitFitInInt[radix];
   1182         int bigRadixDigitsLength = stringLength / charsPerInt;
   1183         int topChars = stringLength % charsPerInt;
   1184 
   1185         if (topChars != 0) {
   1186             bigRadixDigitsLength++;
   1187         }
   1188         int[] digits = new int[bigRadixDigitsLength];
   1189         // Get the maximal power of radix that fits in int
   1190         int bigRadix = Conversion.bigRadices[radix - 2];
   1191         // Parse an input string and accumulate the BigInteger's magnitude
   1192         int digitIndex = 0; // index of digits array
   1193         int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars);
   1194 
   1195         for (int substrStart = startChar; substrStart < endChar;
   1196                 substrStart = substrEnd, substrEnd = substrStart + charsPerInt) {
   1197             int bigRadixDigit = Integer.parseInt(value.substring(substrStart, substrEnd), radix);
   1198             int newDigit = multiplyByInt(digits, digits, digitIndex, bigRadix);
   1199             newDigit += inplaceAdd(digits, digitIndex, bigRadixDigit);
   1200             digits[digitIndex++] = newDigit;
   1201         }
   1202         int numberLength = digitIndex;
   1203         bi.setJavaRepresentation(sign, numberLength, digits);
   1204     }
   1205 
   1206     int getFirstNonzeroDigit() {
   1207         if (firstNonzeroDigit == -2) {
   1208             int i;
   1209             if (this.sign == 0) {
   1210                 i = -1;
   1211             } else {
   1212                 for (i = 0; digits[i] == 0; i++) {
   1213                     ;
   1214                 }
   1215             }
   1216             firstNonzeroDigit = i;
   1217         }
   1218         return firstNonzeroDigit;
   1219     }
   1220 
   1221     /**
   1222      * Returns a copy of the current instance to achieve immutability
   1223      */
   1224     BigInteger copy() {
   1225         prepareJavaRepresentation();
   1226         int[] copyDigits = new int[numberLength];
   1227         System.arraycopy(digits, 0, copyDigits, 0, numberLength);
   1228         return new BigInteger(sign, numberLength, copyDigits);
   1229     }
   1230 
   1231     /**
   1232      * Assigns all transient fields upon deserialization of a {@code BigInteger}
   1233      * instance.
   1234      */
   1235     private void readObject(ObjectInputStream in)
   1236             throws IOException, ClassNotFoundException {
   1237         in.defaultReadObject();
   1238         BigInt bigInt = new BigInt();
   1239         bigInt.putBigEndian(magnitude, signum < 0);
   1240         setBigInt(bigInt);
   1241     }
   1242 
   1243     /**
   1244      * Prepares this {@code BigInteger} for serialization, i.e. the
   1245      * non-transient fields {@code signum} and {@code magnitude} are assigned.
   1246      */
   1247     private void writeObject(ObjectOutputStream out) throws IOException {
   1248         BigInt bigInt = getBigInt();
   1249         signum = bigInt.sign();
   1250         magnitude = bigInt.bigEndianMagnitude();
   1251         out.defaultWriteObject();
   1252     }
   1253 }
   1254