Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_ARM_CONSTANTS_ARM_H_
     29 #define V8_ARM_CONSTANTS_ARM_H_
     30 
     31 // ARM EABI is required.
     32 #if defined(__arm__) && !defined(__ARM_EABI__)
     33 #error ARM EABI support is required.
     34 #endif
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 // Constant pool marker.
     40 // Use UDF, the permanently undefined instruction.
     41 const int kConstantPoolMarkerMask = 0xfff000f0;
     42 const int kConstantPoolMarker = 0xe7f000f0;
     43 const int kConstantPoolLengthMaxMask = 0xffff;
     44 inline int EncodeConstantPoolLength(int length) {
     45   ASSERT((length & kConstantPoolLengthMaxMask) == length);
     46   return ((length & 0xfff0) << 4) | (length & 0xf);
     47 }
     48 inline int DecodeConstantPoolLength(int instr) {
     49   ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
     50   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
     51 }
     52 
     53 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
     54 const int kCodeAgeJumpInstruction = 0xe51ff004;
     55 
     56 // Number of registers in normal ARM mode.
     57 const int kNumRegisters = 16;
     58 
     59 // VFP support.
     60 const int kNumVFPSingleRegisters = 32;
     61 const int kNumVFPDoubleRegisters = 32;
     62 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
     63 
     64 // PC is register 15.
     65 const int kPCRegister = 15;
     66 const int kNoRegister = -1;
     67 
     68 // -----------------------------------------------------------------------------
     69 // Conditions.
     70 
     71 // Defines constants and accessor classes to assemble, disassemble and
     72 // simulate ARM instructions.
     73 //
     74 // Section references in the code refer to the "ARM Architecture Reference
     75 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
     76 //
     77 // Constants for specific fields are defined in their respective named enums.
     78 // General constants are in an anonymous enum in class Instr.
     79 
     80 // Values for the condition field as defined in section A3.2
     81 enum Condition {
     82   kNoCondition = -1,
     83 
     84   eq =  0 << 28,                 // Z set            Equal.
     85   ne =  1 << 28,                 // Z clear          Not equal.
     86   cs =  2 << 28,                 // C set            Unsigned higher or same.
     87   cc =  3 << 28,                 // C clear          Unsigned lower.
     88   mi =  4 << 28,                 // N set            Negative.
     89   pl =  5 << 28,                 // N clear          Positive or zero.
     90   vs =  6 << 28,                 // V set            Overflow.
     91   vc =  7 << 28,                 // V clear          No overflow.
     92   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
     93   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
     94   ge = 10 << 28,                 // N == V           Greater or equal.
     95   lt = 11 << 28,                 // N != V           Less than.
     96   gt = 12 << 28,                 // Z clear, N == V  Greater than.
     97   le = 13 << 28,                 // Z set or N != V  Less then or equal
     98   al = 14 << 28,                 //                  Always.
     99 
    100   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
    101   kNumberOfConditions = 16,
    102 
    103   // Aliases.
    104   hs = cs,                       // C set            Unsigned higher or same.
    105   lo = cc                        // C clear          Unsigned lower.
    106 };
    107 
    108 
    109 inline Condition NegateCondition(Condition cond) {
    110   ASSERT(cond != al);
    111   return static_cast<Condition>(cond ^ ne);
    112 }
    113 
    114 
    115 // Corresponds to transposing the operands of a comparison.
    116 inline Condition ReverseCondition(Condition cond) {
    117   switch (cond) {
    118     case lo:
    119       return hi;
    120     case hi:
    121       return lo;
    122     case hs:
    123       return ls;
    124     case ls:
    125       return hs;
    126     case lt:
    127       return gt;
    128     case gt:
    129       return lt;
    130     case ge:
    131       return le;
    132     case le:
    133       return ge;
    134     default:
    135       return cond;
    136   };
    137 }
    138 
    139 
    140 // -----------------------------------------------------------------------------
    141 // Instructions encoding.
    142 
    143 // Instr is merely used by the Assembler to distinguish 32bit integers
    144 // representing instructions from usual 32 bit values.
    145 // Instruction objects are pointers to 32bit values, and provide methods to
    146 // access the various ISA fields.
    147 typedef int32_t Instr;
    148 
    149 
    150 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    151 // as defined in section A3.4
    152 enum Opcode {
    153   AND =  0 << 21,  // Logical AND.
    154   EOR =  1 << 21,  // Logical Exclusive OR.
    155   SUB =  2 << 21,  // Subtract.
    156   RSB =  3 << 21,  // Reverse Subtract.
    157   ADD =  4 << 21,  // Add.
    158   ADC =  5 << 21,  // Add with Carry.
    159   SBC =  6 << 21,  // Subtract with Carry.
    160   RSC =  7 << 21,  // Reverse Subtract with Carry.
    161   TST =  8 << 21,  // Test.
    162   TEQ =  9 << 21,  // Test Equivalence.
    163   CMP = 10 << 21,  // Compare.
    164   CMN = 11 << 21,  // Compare Negated.
    165   ORR = 12 << 21,  // Logical (inclusive) OR.
    166   MOV = 13 << 21,  // Move.
    167   BIC = 14 << 21,  // Bit Clear.
    168   MVN = 15 << 21   // Move Not.
    169 };
    170 
    171 
    172 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    173 enum MiscInstructionsBits74 {
    174   // With bits 22-21 01.
    175   BX   =  1 << 4,
    176   BXJ  =  2 << 4,
    177   BLX  =  3 << 4,
    178   BKPT =  7 << 4,
    179 
    180   // With bits 22-21 11.
    181   CLZ  =  1 << 4
    182 };
    183 
    184 
    185 // Instruction encoding bits and masks.
    186 enum {
    187   H   = 1 << 5,   // Halfword (or byte).
    188   S6  = 1 << 6,   // Signed (or unsigned).
    189   L   = 1 << 20,  // Load (or store).
    190   S   = 1 << 20,  // Set condition code (or leave unchanged).
    191   W   = 1 << 21,  // Writeback base register (or leave unchanged).
    192   A   = 1 << 21,  // Accumulate in multiply instruction (or not).
    193   B   = 1 << 22,  // Unsigned byte (or word).
    194   N   = 1 << 22,  // Long (or short).
    195   U   = 1 << 23,  // Positive (or negative) offset/index.
    196   P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    197   I   = 1 << 25,  // Immediate shifter operand (or not).
    198 
    199   B4  = 1 << 4,
    200   B5  = 1 << 5,
    201   B6  = 1 << 6,
    202   B7  = 1 << 7,
    203   B8  = 1 << 8,
    204   B9  = 1 << 9,
    205   B12 = 1 << 12,
    206   B16 = 1 << 16,
    207   B18 = 1 << 18,
    208   B19 = 1 << 19,
    209   B20 = 1 << 20,
    210   B21 = 1 << 21,
    211   B22 = 1 << 22,
    212   B23 = 1 << 23,
    213   B24 = 1 << 24,
    214   B25 = 1 << 25,
    215   B26 = 1 << 26,
    216   B27 = 1 << 27,
    217   B28 = 1 << 28,
    218 
    219   // Instruction bit masks.
    220   kCondMask   = 15 << 28,
    221   kALUMask    = 0x6f << 21,
    222   kRdMask     = 15 << 12,  // In str instruction.
    223   kCoprocessorMask = 15 << 8,
    224   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    225   kImm24Mask  = (1 << 24) - 1,
    226   kImm16Mask  = (1 << 16) - 1,
    227   kImm8Mask  = (1 << 8) - 1,
    228   kOff12Mask  = (1 << 12) - 1,
    229   kOff8Mask  = (1 << 8) - 1
    230 };
    231 
    232 
    233 // -----------------------------------------------------------------------------
    234 // Addressing modes and instruction variants.
    235 
    236 // Condition code updating mode.
    237 enum SBit {
    238   SetCC   = 1 << 20,  // Set condition code.
    239   LeaveCC = 0 << 20   // Leave condition code unchanged.
    240 };
    241 
    242 
    243 // Status register selection.
    244 enum SRegister {
    245   CPSR = 0 << 22,
    246   SPSR = 1 << 22
    247 };
    248 
    249 
    250 // Shifter types for Data-processing operands as defined in section A5.1.2.
    251 enum ShiftOp {
    252   LSL = 0 << 5,   // Logical shift left.
    253   LSR = 1 << 5,   // Logical shift right.
    254   ASR = 2 << 5,   // Arithmetic shift right.
    255   ROR = 3 << 5,   // Rotate right.
    256 
    257   // RRX is encoded as ROR with shift_imm == 0.
    258   // Use a special code to make the distinction. The RRX ShiftOp is only used
    259   // as an argument, and will never actually be encoded. The Assembler will
    260   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    261   RRX = -1,
    262   kNumberOfShifts = 4
    263 };
    264 
    265 
    266 // Status register fields.
    267 enum SRegisterField {
    268   CPSR_c = CPSR | 1 << 16,
    269   CPSR_x = CPSR | 1 << 17,
    270   CPSR_s = CPSR | 1 << 18,
    271   CPSR_f = CPSR | 1 << 19,
    272   SPSR_c = SPSR | 1 << 16,
    273   SPSR_x = SPSR | 1 << 17,
    274   SPSR_s = SPSR | 1 << 18,
    275   SPSR_f = SPSR | 1 << 19
    276 };
    277 
    278 // Status register field mask (or'ed SRegisterField enum values).
    279 typedef uint32_t SRegisterFieldMask;
    280 
    281 
    282 // Memory operand addressing mode.
    283 enum AddrMode {
    284   // Bit encoding P U W.
    285   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    286   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    287   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    288   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    289   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    290   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    291 };
    292 
    293 
    294 // Load/store multiple addressing mode.
    295 enum BlockAddrMode {
    296   // Bit encoding P U W .
    297   da           = (0|0|0) << 21,  // Decrement after.
    298   ia           = (0|4|0) << 21,  // Increment after.
    299   db           = (8|0|0) << 21,  // Decrement before.
    300   ib           = (8|4|0) << 21,  // Increment before.
    301   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    302   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    303   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    304   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    305 
    306   // Alias modes for comparison when writeback does not matter.
    307   da_x         = (0|0|0) << 21,  // Decrement after.
    308   ia_x         = (0|4|0) << 21,  // Increment after.
    309   db_x         = (8|0|0) << 21,  // Decrement before.
    310   ib_x         = (8|4|0) << 21,  // Increment before.
    311 
    312   kBlockAddrModeMask = (8|4|1) << 21
    313 };
    314 
    315 
    316 // Coprocessor load/store operand size.
    317 enum LFlag {
    318   Long  = 1 << 22,  // Long load/store coprocessor.
    319   Short = 0 << 22   // Short load/store coprocessor.
    320 };
    321 
    322 
    323 // NEON data type
    324 enum NeonDataType {
    325   NeonS8 = 0x1,   // U = 0, imm3 = 0b001
    326   NeonS16 = 0x2,  // U = 0, imm3 = 0b010
    327   NeonS32 = 0x4,  // U = 0, imm3 = 0b100
    328   NeonU8 = 1 << 24 | 0x1,   // U = 1, imm3 = 0b001
    329   NeonU16 = 1 << 24 | 0x2,  // U = 1, imm3 = 0b010
    330   NeonU32 = 1 << 24 | 0x4,   // U = 1, imm3 = 0b100
    331   NeonDataTypeSizeMask = 0x7,
    332   NeonDataTypeUMask = 1 << 24
    333 };
    334 
    335 enum NeonListType {
    336   nlt_1 = 0x7,
    337   nlt_2 = 0xA,
    338   nlt_3 = 0x6,
    339   nlt_4 = 0x2
    340 };
    341 
    342 enum NeonSize {
    343   Neon8 = 0x0,
    344   Neon16 = 0x1,
    345   Neon32 = 0x2,
    346   Neon64 = 0x4
    347 };
    348 
    349 // -----------------------------------------------------------------------------
    350 // Supervisor Call (svc) specific support.
    351 
    352 // Special Software Interrupt codes when used in the presence of the ARM
    353 // simulator.
    354 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    355 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    356 enum SoftwareInterruptCodes {
    357   // transition to C code
    358   kCallRtRedirected= 0x10,
    359   // break point
    360   kBreakpoint= 0x20,
    361   // stop
    362   kStopCode = 1 << 23
    363 };
    364 const uint32_t kStopCodeMask = kStopCode - 1;
    365 const uint32_t kMaxStopCode = kStopCode - 1;
    366 const int32_t  kDefaultStopCode = -1;
    367 
    368 
    369 // Type of VFP register. Determines register encoding.
    370 enum VFPRegPrecision {
    371   kSinglePrecision = 0,
    372   kDoublePrecision = 1
    373 };
    374 
    375 
    376 // VFP FPSCR constants.
    377 enum VFPConversionMode {
    378   kFPSCRRounding = 0,
    379   kDefaultRoundToZero = 1
    380 };
    381 
    382 // This mask does not include the "inexact" or "input denormal" cumulative
    383 // exceptions flags, because we usually don't want to check for it.
    384 const uint32_t kVFPExceptionMask = 0xf;
    385 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    386 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    387 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    388 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    389 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    390 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
    391 
    392 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    393 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    394 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    395 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    396 
    397 
    398 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    399 enum VFPRoundingMode {
    400   RN = 0 << 22,   // Round to Nearest.
    401   RP = 1 << 22,   // Round towards Plus Infinity.
    402   RM = 2 << 22,   // Round towards Minus Infinity.
    403   RZ = 3 << 22,   // Round towards zero.
    404 
    405   // Aliases.
    406   kRoundToNearest = RN,
    407   kRoundToPlusInf = RP,
    408   kRoundToMinusInf = RM,
    409   kRoundToZero = RZ
    410 };
    411 
    412 const uint32_t kVFPRoundingModeMask = 3 << 22;
    413 
    414 enum CheckForInexactConversion {
    415   kCheckForInexactConversion,
    416   kDontCheckForInexactConversion
    417 };
    418 
    419 // -----------------------------------------------------------------------------
    420 // Hints.
    421 
    422 // Branch hints are not used on the ARM.  They are defined so that they can
    423 // appear in shared function signatures, but will be ignored in ARM
    424 // implementations.
    425 enum Hint { no_hint };
    426 
    427 // Hints are not used on the arm.  Negating is trivial.
    428 inline Hint NegateHint(Hint ignored) { return no_hint; }
    429 
    430 
    431 // -----------------------------------------------------------------------------
    432 // Specific instructions, constants, and masks.
    433 // These constants are declared in assembler-arm.cc, as they use named registers
    434 // and other constants.
    435 
    436 
    437 // add(sp, sp, 4) instruction (aka Pop())
    438 extern const Instr kPopInstruction;
    439 
    440 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    441 // register r is not encoded.
    442 extern const Instr kPushRegPattern;
    443 
    444 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    445 // register r is not encoded.
    446 extern const Instr kPopRegPattern;
    447 
    448 // mov lr, pc
    449 extern const Instr kMovLrPc;
    450 // ldr rd, [pc, #offset]
    451 extern const Instr kLdrPCMask;
    452 extern const Instr kLdrPCPattern;
    453 // vldr dd, [pc, #offset]
    454 extern const Instr kVldrDPCMask;
    455 extern const Instr kVldrDPCPattern;
    456 // blxcc rm
    457 extern const Instr kBlxRegMask;
    458 
    459 extern const Instr kBlxRegPattern;
    460 
    461 extern const Instr kMovMvnMask;
    462 extern const Instr kMovMvnPattern;
    463 extern const Instr kMovMvnFlip;
    464 extern const Instr kMovLeaveCCMask;
    465 extern const Instr kMovLeaveCCPattern;
    466 extern const Instr kMovwMask;
    467 extern const Instr kMovwPattern;
    468 extern const Instr kMovwLeaveCCFlip;
    469 extern const Instr kCmpCmnMask;
    470 extern const Instr kCmpCmnPattern;
    471 extern const Instr kCmpCmnFlip;
    472 extern const Instr kAddSubFlip;
    473 extern const Instr kAndBicFlip;
    474 
    475 // A mask for the Rd register for push, pop, ldr, str instructions.
    476 extern const Instr kLdrRegFpOffsetPattern;
    477 
    478 extern const Instr kStrRegFpOffsetPattern;
    479 
    480 extern const Instr kLdrRegFpNegOffsetPattern;
    481 
    482 extern const Instr kStrRegFpNegOffsetPattern;
    483 
    484 extern const Instr kLdrStrInstrTypeMask;
    485 extern const Instr kLdrStrInstrArgumentMask;
    486 extern const Instr kLdrStrOffsetMask;
    487 
    488 
    489 // -----------------------------------------------------------------------------
    490 // Instruction abstraction.
    491 
    492 // The class Instruction enables access to individual fields defined in the ARM
    493 // architecture instruction set encoding as described in figure A3-1.
    494 // Note that the Assembler uses typedef int32_t Instr.
    495 //
    496 // Example: Test whether the instruction at ptr does set the condition code
    497 // bits.
    498 //
    499 // bool InstructionSetsConditionCodes(byte* ptr) {
    500 //   Instruction* instr = Instruction::At(ptr);
    501 //   int type = instr->TypeValue();
    502 //   return ((type == 0) || (type == 1)) && instr->HasS();
    503 // }
    504 //
    505 class Instruction {
    506  public:
    507   enum {
    508     kInstrSize = 4,
    509     kInstrSizeLog2 = 2,
    510     kPCReadOffset = 8
    511   };
    512 
    513   // Helper macro to define static accessors.
    514   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    515   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    516     static inline return_type Name(Instr instr) {                              \
    517       char* temp = reinterpret_cast<char*>(&instr);                            \
    518       return reinterpret_cast<Instruction*>(temp)->Name();                     \
    519     }
    520 
    521   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    522 
    523   // Get the raw instruction bits.
    524   inline Instr InstructionBits() const {
    525     return *reinterpret_cast<const Instr*>(this);
    526   }
    527 
    528   // Set the raw instruction bits to value.
    529   inline void SetInstructionBits(Instr value) {
    530     *reinterpret_cast<Instr*>(this) = value;
    531   }
    532 
    533   // Read one particular bit out of the instruction bits.
    534   inline int Bit(int nr) const {
    535     return (InstructionBits() >> nr) & 1;
    536   }
    537 
    538   // Read a bit field's value out of the instruction bits.
    539   inline int Bits(int hi, int lo) const {
    540     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    541   }
    542 
    543   // Read a bit field out of the instruction bits.
    544   inline int BitField(int hi, int lo) const {
    545     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    546   }
    547 
    548   // Static support.
    549 
    550   // Read one particular bit out of the instruction bits.
    551   static inline int Bit(Instr instr, int nr) {
    552     return (instr >> nr) & 1;
    553   }
    554 
    555   // Read the value of a bit field out of the instruction bits.
    556   static inline int Bits(Instr instr, int hi, int lo) {
    557     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    558   }
    559 
    560 
    561   // Read a bit field out of the instruction bits.
    562   static inline int BitField(Instr instr, int hi, int lo) {
    563     return instr & (((2 << (hi - lo)) - 1) << lo);
    564   }
    565 
    566 
    567   // Accessors for the different named fields used in the ARM encoding.
    568   // The naming of these accessor corresponds to figure A3-1.
    569   //
    570   // Two kind of accessors are declared:
    571   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    572   //   original place in the instruction encoding.
    573   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    574   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    575   // - <Name>Value() will return the field value, shifted back to bit 0.
    576   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    577   //   0xC0810002 ConditionField(instr) will return 0xC.
    578 
    579 
    580   // Generally applicable fields
    581   inline Condition ConditionValue() const {
    582     return static_cast<Condition>(Bits(31, 28));
    583   }
    584   inline Condition ConditionField() const {
    585     return static_cast<Condition>(BitField(31, 28));
    586   }
    587   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
    588   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    589 
    590   inline int TypeValue() const { return Bits(27, 25); }
    591   inline int SpecialValue() const { return Bits(27, 23); }
    592 
    593   inline int RnValue() const { return Bits(19, 16); }
    594   DECLARE_STATIC_ACCESSOR(RnValue);
    595   inline int RdValue() const { return Bits(15, 12); }
    596   DECLARE_STATIC_ACCESSOR(RdValue);
    597 
    598   inline int CoprocessorValue() const { return Bits(11, 8); }
    599   // Support for VFP.
    600   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    601   inline int VnValue() const { return Bits(19, 16); }
    602   inline int VmValue() const { return Bits(3, 0); }
    603   inline int VdValue() const { return Bits(15, 12); }
    604   inline int NValue() const { return Bit(7); }
    605   inline int MValue() const { return Bit(5); }
    606   inline int DValue() const { return Bit(22); }
    607   inline int RtValue() const { return Bits(15, 12); }
    608   inline int PValue() const { return Bit(24); }
    609   inline int UValue() const { return Bit(23); }
    610   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    611   inline int Opc2Value() const { return Bits(19, 16); }
    612   inline int Opc3Value() const { return Bits(7, 6); }
    613   inline int SzValue() const { return Bit(8); }
    614   inline int VLValue() const { return Bit(20); }
    615   inline int VCValue() const { return Bit(8); }
    616   inline int VAValue() const { return Bits(23, 21); }
    617   inline int VBValue() const { return Bits(6, 5); }
    618   inline int VFPNRegValue(VFPRegPrecision pre) {
    619     return VFPGlueRegValue(pre, 16, 7);
    620   }
    621   inline int VFPMRegValue(VFPRegPrecision pre) {
    622     return VFPGlueRegValue(pre, 0, 5);
    623   }
    624   inline int VFPDRegValue(VFPRegPrecision pre) {
    625     return VFPGlueRegValue(pre, 12, 22);
    626   }
    627 
    628   // Fields used in Data processing instructions
    629   inline int OpcodeValue() const {
    630     return static_cast<Opcode>(Bits(24, 21));
    631   }
    632   inline Opcode OpcodeField() const {
    633     return static_cast<Opcode>(BitField(24, 21));
    634   }
    635   inline int SValue() const { return Bit(20); }
    636     // with register
    637   inline int RmValue() const { return Bits(3, 0); }
    638   DECLARE_STATIC_ACCESSOR(RmValue);
    639   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    640   inline ShiftOp ShiftField() const {
    641     return static_cast<ShiftOp>(BitField(6, 5));
    642   }
    643   inline int RegShiftValue() const { return Bit(4); }
    644   inline int RsValue() const { return Bits(11, 8); }
    645   inline int ShiftAmountValue() const { return Bits(11, 7); }
    646     // with immediate
    647   inline int RotateValue() const { return Bits(11, 8); }
    648   inline int Immed8Value() const { return Bits(7, 0); }
    649   inline int Immed4Value() const { return Bits(19, 16); }
    650   inline int ImmedMovwMovtValue() const {
    651       return Immed4Value() << 12 | Offset12Value(); }
    652 
    653   // Fields used in Load/Store instructions
    654   inline int PUValue() const { return Bits(24, 23); }
    655   inline int PUField() const { return BitField(24, 23); }
    656   inline int  BValue() const { return Bit(22); }
    657   inline int  WValue() const { return Bit(21); }
    658   inline int  LValue() const { return Bit(20); }
    659     // with register uses same fields as Data processing instructions above
    660     // with immediate
    661   inline int Offset12Value() const { return Bits(11, 0); }
    662     // multiple
    663   inline int RlistValue() const { return Bits(15, 0); }
    664     // extra loads and stores
    665   inline int SignValue() const { return Bit(6); }
    666   inline int HValue() const { return Bit(5); }
    667   inline int ImmedHValue() const { return Bits(11, 8); }
    668   inline int ImmedLValue() const { return Bits(3, 0); }
    669 
    670   // Fields used in Branch instructions
    671   inline int LinkValue() const { return Bit(24); }
    672   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
    673 
    674   // Fields used in Software interrupt instructions
    675   inline SoftwareInterruptCodes SvcValue() const {
    676     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    677   }
    678 
    679   // Test for special encodings of type 0 instructions (extra loads and stores,
    680   // as well as multiplications).
    681   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    682 
    683   // Test for miscellaneous instructions encodings of type 0 instructions.
    684   inline bool IsMiscType0() const { return (Bit(24) == 1)
    685                                            && (Bit(23) == 0)
    686                                            && (Bit(20) == 0)
    687                                            && ((Bit(7) == 0)); }
    688 
    689   // Test for a nop instruction, which falls under type 1.
    690   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
    691 
    692   // Test for a stop instruction.
    693   inline bool IsStop() const {
    694     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    695   }
    696 
    697   // Special accessors that test for existence of a value.
    698   inline bool HasS()    const { return SValue() == 1; }
    699   inline bool HasB()    const { return BValue() == 1; }
    700   inline bool HasW()    const { return WValue() == 1; }
    701   inline bool HasL()    const { return LValue() == 1; }
    702   inline bool HasU()    const { return UValue() == 1; }
    703   inline bool HasSign() const { return SignValue() == 1; }
    704   inline bool HasH()    const { return HValue() == 1; }
    705   inline bool HasLink() const { return LinkValue() == 1; }
    706 
    707   // Decoding the double immediate in the vmov instruction.
    708   double DoubleImmedVmov() const;
    709 
    710   // Instructions are read of out a code stream. The only way to get a
    711   // reference to an instruction is to convert a pointer. There is no way
    712   // to allocate or create instances of class Instruction.
    713   // Use the At(pc) function to create references to Instruction.
    714   static Instruction* At(byte* pc) {
    715     return reinterpret_cast<Instruction*>(pc);
    716   }
    717 
    718 
    719  private:
    720   // Join split register codes, depending on single or double precision.
    721   // four_bit is the position of the least-significant bit of the four
    722   // bit specifier. one_bit is the position of the additional single bit
    723   // specifier.
    724   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    725     if (pre == kSinglePrecision) {
    726       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    727     }
    728     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    729   }
    730 
    731   // We need to prevent the creation of instances of class Instruction.
    732   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    733 };
    734 
    735 
    736 // Helper functions for converting between register numbers and names.
    737 class Registers {
    738  public:
    739   // Return the name of the register.
    740   static const char* Name(int reg);
    741 
    742   // Lookup the register number for the name provided.
    743   static int Number(const char* name);
    744 
    745   struct RegisterAlias {
    746     int reg;
    747     const char* name;
    748   };
    749 
    750  private:
    751   static const char* names_[kNumRegisters];
    752   static const RegisterAlias aliases_[];
    753 };
    754 
    755 // Helper functions for converting between VFP register numbers and names.
    756 class VFPRegisters {
    757  public:
    758   // Return the name of the register.
    759   static const char* Name(int reg, bool is_double);
    760 
    761   // Lookup the register number for the name provided.
    762   // Set flag pointed by is_double to true if register
    763   // is double-precision.
    764   static int Number(const char* name, bool* is_double);
    765 
    766  private:
    767   static const char* names_[kNumVFPRegisters];
    768 };
    769 
    770 
    771 } }  // namespace v8::internal
    772 
    773 #endif  // V8_ARM_CONSTANTS_ARM_H_
    774