1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_ARM_CONSTANTS_ARM_H_ 29 #define V8_ARM_CONSTANTS_ARM_H_ 30 31 // ARM EABI is required. 32 #if defined(__arm__) && !defined(__ARM_EABI__) 33 #error ARM EABI support is required. 34 #endif 35 36 namespace v8 { 37 namespace internal { 38 39 // Constant pool marker. 40 // Use UDF, the permanently undefined instruction. 41 const int kConstantPoolMarkerMask = 0xfff000f0; 42 const int kConstantPoolMarker = 0xe7f000f0; 43 const int kConstantPoolLengthMaxMask = 0xffff; 44 inline int EncodeConstantPoolLength(int length) { 45 ASSERT((length & kConstantPoolLengthMaxMask) == length); 46 return ((length & 0xfff0) << 4) | (length & 0xf); 47 } 48 inline int DecodeConstantPoolLength(int instr) { 49 ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker); 50 return ((instr >> 4) & 0xfff0) | (instr & 0xf); 51 } 52 53 // Used in code age prologue - ldr(pc, MemOperand(pc, -4)) 54 const int kCodeAgeJumpInstruction = 0xe51ff004; 55 56 // Number of registers in normal ARM mode. 57 const int kNumRegisters = 16; 58 59 // VFP support. 60 const int kNumVFPSingleRegisters = 32; 61 const int kNumVFPDoubleRegisters = 32; 62 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters; 63 64 // PC is register 15. 65 const int kPCRegister = 15; 66 const int kNoRegister = -1; 67 68 // ----------------------------------------------------------------------------- 69 // Conditions. 70 71 // Defines constants and accessor classes to assemble, disassemble and 72 // simulate ARM instructions. 73 // 74 // Section references in the code refer to the "ARM Architecture Reference 75 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) 76 // 77 // Constants for specific fields are defined in their respective named enums. 78 // General constants are in an anonymous enum in class Instr. 79 80 // Values for the condition field as defined in section A3.2 81 enum Condition { 82 kNoCondition = -1, 83 84 eq = 0 << 28, // Z set Equal. 85 ne = 1 << 28, // Z clear Not equal. 86 cs = 2 << 28, // C set Unsigned higher or same. 87 cc = 3 << 28, // C clear Unsigned lower. 88 mi = 4 << 28, // N set Negative. 89 pl = 5 << 28, // N clear Positive or zero. 90 vs = 6 << 28, // V set Overflow. 91 vc = 7 << 28, // V clear No overflow. 92 hi = 8 << 28, // C set, Z clear Unsigned higher. 93 ls = 9 << 28, // C clear or Z set Unsigned lower or same. 94 ge = 10 << 28, // N == V Greater or equal. 95 lt = 11 << 28, // N != V Less than. 96 gt = 12 << 28, // Z clear, N == V Greater than. 97 le = 13 << 28, // Z set or N != V Less then or equal 98 al = 14 << 28, // Always. 99 100 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). 101 kNumberOfConditions = 16, 102 103 // Aliases. 104 hs = cs, // C set Unsigned higher or same. 105 lo = cc // C clear Unsigned lower. 106 }; 107 108 109 inline Condition NegateCondition(Condition cond) { 110 ASSERT(cond != al); 111 return static_cast<Condition>(cond ^ ne); 112 } 113 114 115 // Corresponds to transposing the operands of a comparison. 116 inline Condition ReverseCondition(Condition cond) { 117 switch (cond) { 118 case lo: 119 return hi; 120 case hi: 121 return lo; 122 case hs: 123 return ls; 124 case ls: 125 return hs; 126 case lt: 127 return gt; 128 case gt: 129 return lt; 130 case ge: 131 return le; 132 case le: 133 return ge; 134 default: 135 return cond; 136 }; 137 } 138 139 140 // ----------------------------------------------------------------------------- 141 // Instructions encoding. 142 143 // Instr is merely used by the Assembler to distinguish 32bit integers 144 // representing instructions from usual 32 bit values. 145 // Instruction objects are pointers to 32bit values, and provide methods to 146 // access the various ISA fields. 147 typedef int32_t Instr; 148 149 150 // Opcodes for Data-processing instructions (instructions with a type 0 and 1) 151 // as defined in section A3.4 152 enum Opcode { 153 AND = 0 << 21, // Logical AND. 154 EOR = 1 << 21, // Logical Exclusive OR. 155 SUB = 2 << 21, // Subtract. 156 RSB = 3 << 21, // Reverse Subtract. 157 ADD = 4 << 21, // Add. 158 ADC = 5 << 21, // Add with Carry. 159 SBC = 6 << 21, // Subtract with Carry. 160 RSC = 7 << 21, // Reverse Subtract with Carry. 161 TST = 8 << 21, // Test. 162 TEQ = 9 << 21, // Test Equivalence. 163 CMP = 10 << 21, // Compare. 164 CMN = 11 << 21, // Compare Negated. 165 ORR = 12 << 21, // Logical (inclusive) OR. 166 MOV = 13 << 21, // Move. 167 BIC = 14 << 21, // Bit Clear. 168 MVN = 15 << 21 // Move Not. 169 }; 170 171 172 // The bits for bit 7-4 for some type 0 miscellaneous instructions. 173 enum MiscInstructionsBits74 { 174 // With bits 22-21 01. 175 BX = 1 << 4, 176 BXJ = 2 << 4, 177 BLX = 3 << 4, 178 BKPT = 7 << 4, 179 180 // With bits 22-21 11. 181 CLZ = 1 << 4 182 }; 183 184 185 // Instruction encoding bits and masks. 186 enum { 187 H = 1 << 5, // Halfword (or byte). 188 S6 = 1 << 6, // Signed (or unsigned). 189 L = 1 << 20, // Load (or store). 190 S = 1 << 20, // Set condition code (or leave unchanged). 191 W = 1 << 21, // Writeback base register (or leave unchanged). 192 A = 1 << 21, // Accumulate in multiply instruction (or not). 193 B = 1 << 22, // Unsigned byte (or word). 194 N = 1 << 22, // Long (or short). 195 U = 1 << 23, // Positive (or negative) offset/index. 196 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). 197 I = 1 << 25, // Immediate shifter operand (or not). 198 199 B4 = 1 << 4, 200 B5 = 1 << 5, 201 B6 = 1 << 6, 202 B7 = 1 << 7, 203 B8 = 1 << 8, 204 B9 = 1 << 9, 205 B12 = 1 << 12, 206 B16 = 1 << 16, 207 B18 = 1 << 18, 208 B19 = 1 << 19, 209 B20 = 1 << 20, 210 B21 = 1 << 21, 211 B22 = 1 << 22, 212 B23 = 1 << 23, 213 B24 = 1 << 24, 214 B25 = 1 << 25, 215 B26 = 1 << 26, 216 B27 = 1 << 27, 217 B28 = 1 << 28, 218 219 // Instruction bit masks. 220 kCondMask = 15 << 28, 221 kALUMask = 0x6f << 21, 222 kRdMask = 15 << 12, // In str instruction. 223 kCoprocessorMask = 15 << 8, 224 kOpCodeMask = 15 << 21, // In data-processing instructions. 225 kImm24Mask = (1 << 24) - 1, 226 kImm16Mask = (1 << 16) - 1, 227 kImm8Mask = (1 << 8) - 1, 228 kOff12Mask = (1 << 12) - 1, 229 kOff8Mask = (1 << 8) - 1 230 }; 231 232 233 // ----------------------------------------------------------------------------- 234 // Addressing modes and instruction variants. 235 236 // Condition code updating mode. 237 enum SBit { 238 SetCC = 1 << 20, // Set condition code. 239 LeaveCC = 0 << 20 // Leave condition code unchanged. 240 }; 241 242 243 // Status register selection. 244 enum SRegister { 245 CPSR = 0 << 22, 246 SPSR = 1 << 22 247 }; 248 249 250 // Shifter types for Data-processing operands as defined in section A5.1.2. 251 enum ShiftOp { 252 LSL = 0 << 5, // Logical shift left. 253 LSR = 1 << 5, // Logical shift right. 254 ASR = 2 << 5, // Arithmetic shift right. 255 ROR = 3 << 5, // Rotate right. 256 257 // RRX is encoded as ROR with shift_imm == 0. 258 // Use a special code to make the distinction. The RRX ShiftOp is only used 259 // as an argument, and will never actually be encoded. The Assembler will 260 // detect it and emit the correct ROR shift operand with shift_imm == 0. 261 RRX = -1, 262 kNumberOfShifts = 4 263 }; 264 265 266 // Status register fields. 267 enum SRegisterField { 268 CPSR_c = CPSR | 1 << 16, 269 CPSR_x = CPSR | 1 << 17, 270 CPSR_s = CPSR | 1 << 18, 271 CPSR_f = CPSR | 1 << 19, 272 SPSR_c = SPSR | 1 << 16, 273 SPSR_x = SPSR | 1 << 17, 274 SPSR_s = SPSR | 1 << 18, 275 SPSR_f = SPSR | 1 << 19 276 }; 277 278 // Status register field mask (or'ed SRegisterField enum values). 279 typedef uint32_t SRegisterFieldMask; 280 281 282 // Memory operand addressing mode. 283 enum AddrMode { 284 // Bit encoding P U W. 285 Offset = (8|4|0) << 21, // Offset (without writeback to base). 286 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback. 287 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback. 288 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base). 289 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback. 290 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback. 291 }; 292 293 294 // Load/store multiple addressing mode. 295 enum BlockAddrMode { 296 // Bit encoding P U W . 297 da = (0|0|0) << 21, // Decrement after. 298 ia = (0|4|0) << 21, // Increment after. 299 db = (8|0|0) << 21, // Decrement before. 300 ib = (8|4|0) << 21, // Increment before. 301 da_w = (0|0|1) << 21, // Decrement after with writeback to base. 302 ia_w = (0|4|1) << 21, // Increment after with writeback to base. 303 db_w = (8|0|1) << 21, // Decrement before with writeback to base. 304 ib_w = (8|4|1) << 21, // Increment before with writeback to base. 305 306 // Alias modes for comparison when writeback does not matter. 307 da_x = (0|0|0) << 21, // Decrement after. 308 ia_x = (0|4|0) << 21, // Increment after. 309 db_x = (8|0|0) << 21, // Decrement before. 310 ib_x = (8|4|0) << 21, // Increment before. 311 312 kBlockAddrModeMask = (8|4|1) << 21 313 }; 314 315 316 // Coprocessor load/store operand size. 317 enum LFlag { 318 Long = 1 << 22, // Long load/store coprocessor. 319 Short = 0 << 22 // Short load/store coprocessor. 320 }; 321 322 323 // NEON data type 324 enum NeonDataType { 325 NeonS8 = 0x1, // U = 0, imm3 = 0b001 326 NeonS16 = 0x2, // U = 0, imm3 = 0b010 327 NeonS32 = 0x4, // U = 0, imm3 = 0b100 328 NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001 329 NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010 330 NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100 331 NeonDataTypeSizeMask = 0x7, 332 NeonDataTypeUMask = 1 << 24 333 }; 334 335 enum NeonListType { 336 nlt_1 = 0x7, 337 nlt_2 = 0xA, 338 nlt_3 = 0x6, 339 nlt_4 = 0x2 340 }; 341 342 enum NeonSize { 343 Neon8 = 0x0, 344 Neon16 = 0x1, 345 Neon32 = 0x2, 346 Neon64 = 0x4 347 }; 348 349 // ----------------------------------------------------------------------------- 350 // Supervisor Call (svc) specific support. 351 352 // Special Software Interrupt codes when used in the presence of the ARM 353 // simulator. 354 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for 355 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. 356 enum SoftwareInterruptCodes { 357 // transition to C code 358 kCallRtRedirected= 0x10, 359 // break point 360 kBreakpoint= 0x20, 361 // stop 362 kStopCode = 1 << 23 363 }; 364 const uint32_t kStopCodeMask = kStopCode - 1; 365 const uint32_t kMaxStopCode = kStopCode - 1; 366 const int32_t kDefaultStopCode = -1; 367 368 369 // Type of VFP register. Determines register encoding. 370 enum VFPRegPrecision { 371 kSinglePrecision = 0, 372 kDoublePrecision = 1 373 }; 374 375 376 // VFP FPSCR constants. 377 enum VFPConversionMode { 378 kFPSCRRounding = 0, 379 kDefaultRoundToZero = 1 380 }; 381 382 // This mask does not include the "inexact" or "input denormal" cumulative 383 // exceptions flags, because we usually don't want to check for it. 384 const uint32_t kVFPExceptionMask = 0xf; 385 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; 386 const uint32_t kVFPOverflowExceptionBit = 1 << 2; 387 const uint32_t kVFPUnderflowExceptionBit = 1 << 3; 388 const uint32_t kVFPInexactExceptionBit = 1 << 4; 389 const uint32_t kVFPFlushToZeroMask = 1 << 24; 390 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; 391 392 const uint32_t kVFPNConditionFlagBit = 1 << 31; 393 const uint32_t kVFPZConditionFlagBit = 1 << 30; 394 const uint32_t kVFPCConditionFlagBit = 1 << 29; 395 const uint32_t kVFPVConditionFlagBit = 1 << 28; 396 397 398 // VFP rounding modes. See ARM DDI 0406B Page A2-29. 399 enum VFPRoundingMode { 400 RN = 0 << 22, // Round to Nearest. 401 RP = 1 << 22, // Round towards Plus Infinity. 402 RM = 2 << 22, // Round towards Minus Infinity. 403 RZ = 3 << 22, // Round towards zero. 404 405 // Aliases. 406 kRoundToNearest = RN, 407 kRoundToPlusInf = RP, 408 kRoundToMinusInf = RM, 409 kRoundToZero = RZ 410 }; 411 412 const uint32_t kVFPRoundingModeMask = 3 << 22; 413 414 enum CheckForInexactConversion { 415 kCheckForInexactConversion, 416 kDontCheckForInexactConversion 417 }; 418 419 // ----------------------------------------------------------------------------- 420 // Hints. 421 422 // Branch hints are not used on the ARM. They are defined so that they can 423 // appear in shared function signatures, but will be ignored in ARM 424 // implementations. 425 enum Hint { no_hint }; 426 427 // Hints are not used on the arm. Negating is trivial. 428 inline Hint NegateHint(Hint ignored) { return no_hint; } 429 430 431 // ----------------------------------------------------------------------------- 432 // Specific instructions, constants, and masks. 433 // These constants are declared in assembler-arm.cc, as they use named registers 434 // and other constants. 435 436 437 // add(sp, sp, 4) instruction (aka Pop()) 438 extern const Instr kPopInstruction; 439 440 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) 441 // register r is not encoded. 442 extern const Instr kPushRegPattern; 443 444 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) 445 // register r is not encoded. 446 extern const Instr kPopRegPattern; 447 448 // mov lr, pc 449 extern const Instr kMovLrPc; 450 // ldr rd, [pc, #offset] 451 extern const Instr kLdrPCMask; 452 extern const Instr kLdrPCPattern; 453 // vldr dd, [pc, #offset] 454 extern const Instr kVldrDPCMask; 455 extern const Instr kVldrDPCPattern; 456 // blxcc rm 457 extern const Instr kBlxRegMask; 458 459 extern const Instr kBlxRegPattern; 460 461 extern const Instr kMovMvnMask; 462 extern const Instr kMovMvnPattern; 463 extern const Instr kMovMvnFlip; 464 extern const Instr kMovLeaveCCMask; 465 extern const Instr kMovLeaveCCPattern; 466 extern const Instr kMovwMask; 467 extern const Instr kMovwPattern; 468 extern const Instr kMovwLeaveCCFlip; 469 extern const Instr kCmpCmnMask; 470 extern const Instr kCmpCmnPattern; 471 extern const Instr kCmpCmnFlip; 472 extern const Instr kAddSubFlip; 473 extern const Instr kAndBicFlip; 474 475 // A mask for the Rd register for push, pop, ldr, str instructions. 476 extern const Instr kLdrRegFpOffsetPattern; 477 478 extern const Instr kStrRegFpOffsetPattern; 479 480 extern const Instr kLdrRegFpNegOffsetPattern; 481 482 extern const Instr kStrRegFpNegOffsetPattern; 483 484 extern const Instr kLdrStrInstrTypeMask; 485 extern const Instr kLdrStrInstrArgumentMask; 486 extern const Instr kLdrStrOffsetMask; 487 488 489 // ----------------------------------------------------------------------------- 490 // Instruction abstraction. 491 492 // The class Instruction enables access to individual fields defined in the ARM 493 // architecture instruction set encoding as described in figure A3-1. 494 // Note that the Assembler uses typedef int32_t Instr. 495 // 496 // Example: Test whether the instruction at ptr does set the condition code 497 // bits. 498 // 499 // bool InstructionSetsConditionCodes(byte* ptr) { 500 // Instruction* instr = Instruction::At(ptr); 501 // int type = instr->TypeValue(); 502 // return ((type == 0) || (type == 1)) && instr->HasS(); 503 // } 504 // 505 class Instruction { 506 public: 507 enum { 508 kInstrSize = 4, 509 kInstrSizeLog2 = 2, 510 kPCReadOffset = 8 511 }; 512 513 // Helper macro to define static accessors. 514 // We use the cast to char* trick to bypass the strict anti-aliasing rules. 515 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ 516 static inline return_type Name(Instr instr) { \ 517 char* temp = reinterpret_cast<char*>(&instr); \ 518 return reinterpret_cast<Instruction*>(temp)->Name(); \ 519 } 520 521 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) 522 523 // Get the raw instruction bits. 524 inline Instr InstructionBits() const { 525 return *reinterpret_cast<const Instr*>(this); 526 } 527 528 // Set the raw instruction bits to value. 529 inline void SetInstructionBits(Instr value) { 530 *reinterpret_cast<Instr*>(this) = value; 531 } 532 533 // Read one particular bit out of the instruction bits. 534 inline int Bit(int nr) const { 535 return (InstructionBits() >> nr) & 1; 536 } 537 538 // Read a bit field's value out of the instruction bits. 539 inline int Bits(int hi, int lo) const { 540 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); 541 } 542 543 // Read a bit field out of the instruction bits. 544 inline int BitField(int hi, int lo) const { 545 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); 546 } 547 548 // Static support. 549 550 // Read one particular bit out of the instruction bits. 551 static inline int Bit(Instr instr, int nr) { 552 return (instr >> nr) & 1; 553 } 554 555 // Read the value of a bit field out of the instruction bits. 556 static inline int Bits(Instr instr, int hi, int lo) { 557 return (instr >> lo) & ((2 << (hi - lo)) - 1); 558 } 559 560 561 // Read a bit field out of the instruction bits. 562 static inline int BitField(Instr instr, int hi, int lo) { 563 return instr & (((2 << (hi - lo)) - 1) << lo); 564 } 565 566 567 // Accessors for the different named fields used in the ARM encoding. 568 // The naming of these accessor corresponds to figure A3-1. 569 // 570 // Two kind of accessors are declared: 571 // - <Name>Field() will return the raw field, i.e. the field's bits at their 572 // original place in the instruction encoding. 573 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as 574 // 0xC0810002 ConditionField(instr) will return 0xC0000000. 575 // - <Name>Value() will return the field value, shifted back to bit 0. 576 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as 577 // 0xC0810002 ConditionField(instr) will return 0xC. 578 579 580 // Generally applicable fields 581 inline Condition ConditionValue() const { 582 return static_cast<Condition>(Bits(31, 28)); 583 } 584 inline Condition ConditionField() const { 585 return static_cast<Condition>(BitField(31, 28)); 586 } 587 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue); 588 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField); 589 590 inline int TypeValue() const { return Bits(27, 25); } 591 inline int SpecialValue() const { return Bits(27, 23); } 592 593 inline int RnValue() const { return Bits(19, 16); } 594 DECLARE_STATIC_ACCESSOR(RnValue); 595 inline int RdValue() const { return Bits(15, 12); } 596 DECLARE_STATIC_ACCESSOR(RdValue); 597 598 inline int CoprocessorValue() const { return Bits(11, 8); } 599 // Support for VFP. 600 // Vn(19-16) | Vd(15-12) | Vm(3-0) 601 inline int VnValue() const { return Bits(19, 16); } 602 inline int VmValue() const { return Bits(3, 0); } 603 inline int VdValue() const { return Bits(15, 12); } 604 inline int NValue() const { return Bit(7); } 605 inline int MValue() const { return Bit(5); } 606 inline int DValue() const { return Bit(22); } 607 inline int RtValue() const { return Bits(15, 12); } 608 inline int PValue() const { return Bit(24); } 609 inline int UValue() const { return Bit(23); } 610 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } 611 inline int Opc2Value() const { return Bits(19, 16); } 612 inline int Opc3Value() const { return Bits(7, 6); } 613 inline int SzValue() const { return Bit(8); } 614 inline int VLValue() const { return Bit(20); } 615 inline int VCValue() const { return Bit(8); } 616 inline int VAValue() const { return Bits(23, 21); } 617 inline int VBValue() const { return Bits(6, 5); } 618 inline int VFPNRegValue(VFPRegPrecision pre) { 619 return VFPGlueRegValue(pre, 16, 7); 620 } 621 inline int VFPMRegValue(VFPRegPrecision pre) { 622 return VFPGlueRegValue(pre, 0, 5); 623 } 624 inline int VFPDRegValue(VFPRegPrecision pre) { 625 return VFPGlueRegValue(pre, 12, 22); 626 } 627 628 // Fields used in Data processing instructions 629 inline int OpcodeValue() const { 630 return static_cast<Opcode>(Bits(24, 21)); 631 } 632 inline Opcode OpcodeField() const { 633 return static_cast<Opcode>(BitField(24, 21)); 634 } 635 inline int SValue() const { return Bit(20); } 636 // with register 637 inline int RmValue() const { return Bits(3, 0); } 638 DECLARE_STATIC_ACCESSOR(RmValue); 639 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } 640 inline ShiftOp ShiftField() const { 641 return static_cast<ShiftOp>(BitField(6, 5)); 642 } 643 inline int RegShiftValue() const { return Bit(4); } 644 inline int RsValue() const { return Bits(11, 8); } 645 inline int ShiftAmountValue() const { return Bits(11, 7); } 646 // with immediate 647 inline int RotateValue() const { return Bits(11, 8); } 648 inline int Immed8Value() const { return Bits(7, 0); } 649 inline int Immed4Value() const { return Bits(19, 16); } 650 inline int ImmedMovwMovtValue() const { 651 return Immed4Value() << 12 | Offset12Value(); } 652 653 // Fields used in Load/Store instructions 654 inline int PUValue() const { return Bits(24, 23); } 655 inline int PUField() const { return BitField(24, 23); } 656 inline int BValue() const { return Bit(22); } 657 inline int WValue() const { return Bit(21); } 658 inline int LValue() const { return Bit(20); } 659 // with register uses same fields as Data processing instructions above 660 // with immediate 661 inline int Offset12Value() const { return Bits(11, 0); } 662 // multiple 663 inline int RlistValue() const { return Bits(15, 0); } 664 // extra loads and stores 665 inline int SignValue() const { return Bit(6); } 666 inline int HValue() const { return Bit(5); } 667 inline int ImmedHValue() const { return Bits(11, 8); } 668 inline int ImmedLValue() const { return Bits(3, 0); } 669 670 // Fields used in Branch instructions 671 inline int LinkValue() const { return Bit(24); } 672 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); } 673 674 // Fields used in Software interrupt instructions 675 inline SoftwareInterruptCodes SvcValue() const { 676 return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); 677 } 678 679 // Test for special encodings of type 0 instructions (extra loads and stores, 680 // as well as multiplications). 681 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } 682 683 // Test for miscellaneous instructions encodings of type 0 instructions. 684 inline bool IsMiscType0() const { return (Bit(24) == 1) 685 && (Bit(23) == 0) 686 && (Bit(20) == 0) 687 && ((Bit(7) == 0)); } 688 689 // Test for a nop instruction, which falls under type 1. 690 inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; } 691 692 // Test for a stop instruction. 693 inline bool IsStop() const { 694 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); 695 } 696 697 // Special accessors that test for existence of a value. 698 inline bool HasS() const { return SValue() == 1; } 699 inline bool HasB() const { return BValue() == 1; } 700 inline bool HasW() const { return WValue() == 1; } 701 inline bool HasL() const { return LValue() == 1; } 702 inline bool HasU() const { return UValue() == 1; } 703 inline bool HasSign() const { return SignValue() == 1; } 704 inline bool HasH() const { return HValue() == 1; } 705 inline bool HasLink() const { return LinkValue() == 1; } 706 707 // Decoding the double immediate in the vmov instruction. 708 double DoubleImmedVmov() const; 709 710 // Instructions are read of out a code stream. The only way to get a 711 // reference to an instruction is to convert a pointer. There is no way 712 // to allocate or create instances of class Instruction. 713 // Use the At(pc) function to create references to Instruction. 714 static Instruction* At(byte* pc) { 715 return reinterpret_cast<Instruction*>(pc); 716 } 717 718 719 private: 720 // Join split register codes, depending on single or double precision. 721 // four_bit is the position of the least-significant bit of the four 722 // bit specifier. one_bit is the position of the additional single bit 723 // specifier. 724 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { 725 if (pre == kSinglePrecision) { 726 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); 727 } 728 return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); 729 } 730 731 // We need to prevent the creation of instances of class Instruction. 732 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); 733 }; 734 735 736 // Helper functions for converting between register numbers and names. 737 class Registers { 738 public: 739 // Return the name of the register. 740 static const char* Name(int reg); 741 742 // Lookup the register number for the name provided. 743 static int Number(const char* name); 744 745 struct RegisterAlias { 746 int reg; 747 const char* name; 748 }; 749 750 private: 751 static const char* names_[kNumRegisters]; 752 static const RegisterAlias aliases_[]; 753 }; 754 755 // Helper functions for converting between VFP register numbers and names. 756 class VFPRegisters { 757 public: 758 // Return the name of the register. 759 static const char* Name(int reg, bool is_double); 760 761 // Lookup the register number for the name provided. 762 // Set flag pointed by is_double to true if register 763 // is double-precision. 764 static int Number(const char* name, bool* is_double); 765 766 private: 767 static const char* names_[kNumVFPRegisters]; 768 }; 769 770 771 } } // namespace v8::internal 772 773 #endif // V8_ARM_CONSTANTS_ARM_H_ 774