Home | History | Annotate | Download | only in pixman
      1 /* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
      2 /*
      3  *
      4  * Copyright  2000 Keith Packard, member of The XFree86 Project, Inc.
      5  * Copyright  2000 SuSE, Inc.
      6  *             2005 Lars Knoll & Zack Rusin, Trolltech
      7  * Copyright  2007 Red Hat, Inc.
      8  *
      9  *
     10  * Permission to use, copy, modify, distribute, and sell this software and its
     11  * documentation for any purpose is hereby granted without fee, provided that
     12  * the above copyright notice appear in all copies and that both that
     13  * copyright notice and this permission notice appear in supporting
     14  * documentation, and that the name of Keith Packard not be used in
     15  * advertising or publicity pertaining to distribution of the software without
     16  * specific, written prior permission.  Keith Packard makes no
     17  * representations about the suitability of this software for any purpose.  It
     18  * is provided "as is" without express or implied warranty.
     19  *
     20  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
     21  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
     22  * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
     23  * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     24  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
     25  * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
     26  * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
     27  * SOFTWARE.
     28  */
     29 
     30 #ifdef HAVE_CONFIG_H
     31 #include <config.h>
     32 #endif
     33 #include <stdlib.h>
     34 #include <math.h>
     35 #include "pixman-private.h"
     36 
     37 static inline pixman_fixed_32_32_t
     38 dot (pixman_fixed_48_16_t x1,
     39      pixman_fixed_48_16_t y1,
     40      pixman_fixed_48_16_t z1,
     41      pixman_fixed_48_16_t x2,
     42      pixman_fixed_48_16_t y2,
     43      pixman_fixed_48_16_t z2)
     44 {
     45     /*
     46      * Exact computation, assuming that the input values can
     47      * be represented as pixman_fixed_16_16_t
     48      */
     49     return x1 * x2 + y1 * y2 + z1 * z2;
     50 }
     51 
     52 static inline double
     53 fdot (double x1,
     54       double y1,
     55       double z1,
     56       double x2,
     57       double y2,
     58       double z2)
     59 {
     60     /*
     61      * Error can be unbound in some special cases.
     62      * Using clever dot product algorithms (for example compensated
     63      * dot product) would improve this but make the code much less
     64      * obvious
     65      */
     66     return x1 * x2 + y1 * y2 + z1 * z2;
     67 }
     68 
     69 static uint32_t
     70 radial_compute_color (double                    a,
     71 		      double                    b,
     72 		      double                    c,
     73 		      double                    inva,
     74 		      double                    dr,
     75 		      double                    mindr,
     76 		      pixman_gradient_walker_t *walker,
     77 		      pixman_repeat_t           repeat)
     78 {
     79     /*
     80      * In this function error propagation can lead to bad results:
     81      *  - discr can have an unbound error (if b*b-a*c is very small),
     82      *    potentially making it the opposite sign of what it should have been
     83      *    (thus clearing a pixel that would have been colored or vice-versa)
     84      *    or propagating the error to sqrtdiscr;
     85      *    if discr has the wrong sign or b is very small, this can lead to bad
     86      *    results
     87      *
     88      *  - the algorithm used to compute the solutions of the quadratic
     89      *    equation is not numerically stable (but saves one division compared
     90      *    to the numerically stable one);
     91      *    this can be a problem if a*c is much smaller than b*b
     92      *
     93      *  - the above problems are worse if a is small (as inva becomes bigger)
     94      */
     95     double discr;
     96 
     97     if (a == 0)
     98     {
     99 	double t;
    100 
    101 	if (b == 0)
    102 	    return 0;
    103 
    104 	t = pixman_fixed_1 / 2 * c / b;
    105 	if (repeat == PIXMAN_REPEAT_NONE)
    106 	{
    107 	    if (0 <= t && t <= pixman_fixed_1)
    108 		return _pixman_gradient_walker_pixel (walker, t);
    109 	}
    110 	else
    111 	{
    112 	    if (t * dr >= mindr)
    113 		return _pixman_gradient_walker_pixel (walker, t);
    114 	}
    115 
    116 	return 0;
    117     }
    118 
    119     discr = fdot (b, a, 0, b, -c, 0);
    120     if (discr >= 0)
    121     {
    122 	double sqrtdiscr, t0, t1;
    123 
    124 	sqrtdiscr = sqrt (discr);
    125 	t0 = (b + sqrtdiscr) * inva;
    126 	t1 = (b - sqrtdiscr) * inva;
    127 
    128 	/*
    129 	 * The root that must be used is the biggest one that belongs
    130 	 * to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any
    131 	 * solution that results in a positive radius otherwise).
    132 	 *
    133 	 * If a > 0, t0 is the biggest solution, so if it is valid, it
    134 	 * is the correct result.
    135 	 *
    136 	 * If a < 0, only one of the solutions can be valid, so the
    137 	 * order in which they are tested is not important.
    138 	 */
    139 	if (repeat == PIXMAN_REPEAT_NONE)
    140 	{
    141 	    if (0 <= t0 && t0 <= pixman_fixed_1)
    142 		return _pixman_gradient_walker_pixel (walker, t0);
    143 	    else if (0 <= t1 && t1 <= pixman_fixed_1)
    144 		return _pixman_gradient_walker_pixel (walker, t1);
    145 	}
    146 	else
    147 	{
    148 	    if (t0 * dr >= mindr)
    149 		return _pixman_gradient_walker_pixel (walker, t0);
    150 	    else if (t1 * dr >= mindr)
    151 		return _pixman_gradient_walker_pixel (walker, t1);
    152 	}
    153     }
    154 
    155     return 0;
    156 }
    157 
    158 static uint32_t *
    159 radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
    160 {
    161     /*
    162      * Implementation of radial gradients following the PDF specification.
    163      * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
    164      * Manual (PDF 32000-1:2008 at the time of this writing).
    165      *
    166      * In the radial gradient problem we are given two circles (c,r) and
    167      * (c,r) that define the gradient itself.
    168      *
    169      * Mathematically the gradient can be defined as the family of circles
    170      *
    171      *     ((1-t)c + t(c), (1-t)r + tr)
    172      *
    173      * excluding those circles whose radius would be < 0. When a point
    174      * belongs to more than one circle, the one with a bigger t is the only
    175      * one that contributes to its color. When a point does not belong
    176      * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
    177      * Further limitations on the range of values for t are imposed when
    178      * the gradient is not repeated, namely t must belong to [0,1].
    179      *
    180      * The graphical result is the same as drawing the valid (radius > 0)
    181      * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
    182      * is not repeated) using SOURCE operator composition.
    183      *
    184      * It looks like a cone pointing towards the viewer if the ending circle
    185      * is smaller than the starting one, a cone pointing inside the page if
    186      * the starting circle is the smaller one and like a cylinder if they
    187      * have the same radius.
    188      *
    189      * What we actually do is, given the point whose color we are interested
    190      * in, compute the t values for that point, solving for t in:
    191      *
    192      *     length((1-t)c + t(c) - p) = (1-t)r + tr
    193      *
    194      * Let's rewrite it in a simpler way, by defining some auxiliary
    195      * variables:
    196      *
    197      *     cd = c - c
    198      *     pd = p - c
    199      *     dr = r - r
    200      *     length(tcd - pd) = r + tdr
    201      *
    202      * which actually means
    203      *
    204      *     hypot(tcdx - pdx, tcdy - pdy) = r + tdr
    205      *
    206      * or
    207      *
    208      *     ((tcdx - pdx) + (tcdy - pdy)) = r + tdr.
    209      *
    210      * If we impose (as stated earlier) that r + tdr >= 0, it becomes:
    211      *
    212      *     (tcdx - pdx) + (tcdy - pdy) = (r + tdr)
    213      *
    214      * where we can actually expand the squares and solve for t:
    215      *
    216      *     tcdx - 2tcdxpdx + pdx + tcdy - 2tcdypdy + pdy =
    217      *       = r + 2rtdr + tdr
    218      *
    219      *     (cdx + cdy - dr)t - 2(cdxpdx + cdypdy + rdr)t +
    220      *         (pdx + pdy - r) = 0
    221      *
    222      *     A = cdx + cdy - dr
    223      *     B = pdxcdx + pdycdy + rdr
    224      *     C = pdx + pdy - r
    225      *     At - 2Bt + C = 0
    226      *
    227      * The solutions (unless the equation degenerates because of A = 0) are:
    228      *
    229      *     t = (B  (B - AC)) / A
    230      *
    231      * The solution we are going to prefer is the bigger one, unless the
    232      * radius associated to it is negative (or it falls outside the valid t
    233      * range).
    234      *
    235      * Additional observations (useful for optimizations):
    236      * A does not depend on p
    237      *
    238      * A < 0 <=> one of the two circles completely contains the other one
    239      *   <=> for every p, the radiuses associated with the two t solutions
    240      *       have opposite sign
    241      */
    242     pixman_image_t *image = iter->image;
    243     int x = iter->x;
    244     int y = iter->y;
    245     int width = iter->width;
    246     uint32_t *buffer = iter->buffer;
    247 
    248     gradient_t *gradient = (gradient_t *)image;
    249     radial_gradient_t *radial = (radial_gradient_t *)image;
    250     uint32_t *end = buffer + width;
    251     pixman_gradient_walker_t walker;
    252     pixman_vector_t v, unit;
    253 
    254     /* reference point is the center of the pixel */
    255     v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
    256     v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
    257     v.vector[2] = pixman_fixed_1;
    258 
    259     _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
    260 
    261     if (image->common.transform)
    262     {
    263 	if (!pixman_transform_point_3d (image->common.transform, &v))
    264 	    return iter->buffer;
    265 
    266 	unit.vector[0] = image->common.transform->matrix[0][0];
    267 	unit.vector[1] = image->common.transform->matrix[1][0];
    268 	unit.vector[2] = image->common.transform->matrix[2][0];
    269     }
    270     else
    271     {
    272 	unit.vector[0] = pixman_fixed_1;
    273 	unit.vector[1] = 0;
    274 	unit.vector[2] = 0;
    275     }
    276 
    277     if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
    278     {
    279 	/*
    280 	 * Given:
    281 	 *
    282 	 * t = (B  (B - AC)) / A
    283 	 *
    284 	 * where
    285 	 *
    286 	 * A = cdx + cdy - dr
    287 	 * B = pdxcdx + pdycdy + rdr
    288 	 * C = pdx + pdy - r
    289 	 * det = B - AC
    290 	 *
    291 	 * Since we have an affine transformation, we know that (pdx, pdy)
    292 	 * increase linearly with each pixel,
    293 	 *
    294 	 * pdx = pdx + nux,
    295 	 * pdy = pdy + nuy,
    296 	 *
    297 	 * we can then express B, C and det through multiple differentiation.
    298 	 */
    299 	pixman_fixed_32_32_t b, db, c, dc, ddc;
    300 
    301 	/* warning: this computation may overflow */
    302 	v.vector[0] -= radial->c1.x;
    303 	v.vector[1] -= radial->c1.y;
    304 
    305 	/*
    306 	 * B and C are computed and updated exactly.
    307 	 * If fdot was used instead of dot, in the worst case it would
    308 	 * lose 11 bits of precision in each of the multiplication and
    309 	 * summing up would zero out all the bit that were preserved,
    310 	 * thus making the result 0 instead of the correct one.
    311 	 * This would mean a worst case of unbound relative error or
    312 	 * about 2^10 absolute error
    313 	 */
    314 	b = dot (v.vector[0], v.vector[1], radial->c1.radius,
    315 		 radial->delta.x, radial->delta.y, radial->delta.radius);
    316 	db = dot (unit.vector[0], unit.vector[1], 0,
    317 		  radial->delta.x, radial->delta.y, 0);
    318 
    319 	c = dot (v.vector[0], v.vector[1],
    320 		 -((pixman_fixed_48_16_t) radial->c1.radius),
    321 		 v.vector[0], v.vector[1], radial->c1.radius);
    322 	dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
    323 		  2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
    324 		  0,
    325 		  unit.vector[0], unit.vector[1], 0);
    326 	ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
    327 		       unit.vector[0], unit.vector[1], 0);
    328 
    329 	while (buffer < end)
    330 	{
    331 	    if (!mask || *mask++)
    332 	    {
    333 		*buffer = radial_compute_color (radial->a, b, c,
    334 						radial->inva,
    335 						radial->delta.radius,
    336 						radial->mindr,
    337 						&walker,
    338 						image->common.repeat);
    339 	    }
    340 
    341 	    b += db;
    342 	    c += dc;
    343 	    dc += ddc;
    344 	    ++buffer;
    345 	}
    346     }
    347     else
    348     {
    349 	/* projective */
    350 	/* Warning:
    351 	 * error propagation guarantees are much looser than in the affine case
    352 	 */
    353 	while (buffer < end)
    354 	{
    355 	    if (!mask || *mask++)
    356 	    {
    357 		if (v.vector[2] != 0)
    358 		{
    359 		    double pdx, pdy, invv2, b, c;
    360 
    361 		    invv2 = 1. * pixman_fixed_1 / v.vector[2];
    362 
    363 		    pdx = v.vector[0] * invv2 - radial->c1.x;
    364 		    /*    / pixman_fixed_1 */
    365 
    366 		    pdy = v.vector[1] * invv2 - radial->c1.y;
    367 		    /*    / pixman_fixed_1 */
    368 
    369 		    b = fdot (pdx, pdy, radial->c1.radius,
    370 			      radial->delta.x, radial->delta.y,
    371 			      radial->delta.radius);
    372 		    /*  / pixman_fixed_1 / pixman_fixed_1 */
    373 
    374 		    c = fdot (pdx, pdy, -radial->c1.radius,
    375 			      pdx, pdy, radial->c1.radius);
    376 		    /*  / pixman_fixed_1 / pixman_fixed_1 */
    377 
    378 		    *buffer = radial_compute_color (radial->a, b, c,
    379 						    radial->inva,
    380 						    radial->delta.radius,
    381 						    radial->mindr,
    382 						    &walker,
    383 						    image->common.repeat);
    384 		}
    385 		else
    386 		{
    387 		    *buffer = 0;
    388 		}
    389 	    }
    390 
    391 	    ++buffer;
    392 
    393 	    v.vector[0] += unit.vector[0];
    394 	    v.vector[1] += unit.vector[1];
    395 	    v.vector[2] += unit.vector[2];
    396 	}
    397     }
    398 
    399     iter->y++;
    400     return iter->buffer;
    401 }
    402 
    403 static uint32_t *
    404 radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
    405 {
    406     uint32_t *buffer = radial_get_scanline_narrow (iter, NULL);
    407 
    408     pixman_expand_to_float (
    409 	(argb_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width);
    410 
    411     return buffer;
    412 }
    413 
    414 void
    415 _pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
    416 {
    417     if (iter->iter_flags & ITER_NARROW)
    418 	iter->get_scanline = radial_get_scanline_narrow;
    419     else
    420 	iter->get_scanline = radial_get_scanline_wide;
    421 }
    422 
    423 PIXMAN_EXPORT pixman_image_t *
    424 pixman_image_create_radial_gradient (const pixman_point_fixed_t *  inner,
    425                                      const pixman_point_fixed_t *  outer,
    426                                      pixman_fixed_t                inner_radius,
    427                                      pixman_fixed_t                outer_radius,
    428                                      const pixman_gradient_stop_t *stops,
    429                                      int                           n_stops)
    430 {
    431     pixman_image_t *image;
    432     radial_gradient_t *radial;
    433 
    434     image = _pixman_image_allocate ();
    435 
    436     if (!image)
    437 	return NULL;
    438 
    439     radial = &image->radial;
    440 
    441     if (!_pixman_init_gradient (&radial->common, stops, n_stops))
    442     {
    443 	free (image);
    444 	return NULL;
    445     }
    446 
    447     image->type = RADIAL;
    448 
    449     radial->c1.x = inner->x;
    450     radial->c1.y = inner->y;
    451     radial->c1.radius = inner_radius;
    452     radial->c2.x = outer->x;
    453     radial->c2.y = outer->y;
    454     radial->c2.radius = outer_radius;
    455 
    456     /* warning: this computations may overflow */
    457     radial->delta.x = radial->c2.x - radial->c1.x;
    458     radial->delta.y = radial->c2.y - radial->c1.y;
    459     radial->delta.radius = radial->c2.radius - radial->c1.radius;
    460 
    461     /* computed exactly, then cast to double -> every bit of the double
    462        representation is correct (53 bits) */
    463     radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius,
    464 		     radial->delta.x, radial->delta.y, radial->delta.radius);
    465     if (radial->a != 0)
    466 	radial->inva = 1. * pixman_fixed_1 / radial->a;
    467 
    468     radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius;
    469 
    470     return image;
    471 }
    472