Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/Analysis/Dominators.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/MemoryBuiltins.h"
     22 #include "llvm/Analysis/ProfileInfo.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/DIBuilder.h"
     25 #include "llvm/DebugInfo.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/GlobalAlias.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/IR/MDBuilder.h"
     36 #include "llvm/IR/Metadata.h"
     37 #include "llvm/IR/Operator.h"
     38 #include "llvm/Support/CFG.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/GetElementPtrTypeIterator.h"
     41 #include "llvm/Support/MathExtras.h"
     42 #include "llvm/Support/ValueHandle.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 using namespace llvm;
     45 
     46 //===----------------------------------------------------------------------===//
     47 //  Local constant propagation.
     48 //
     49 
     50 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     51 /// constant value, convert it into an unconditional branch to the constant
     52 /// destination.  This is a nontrivial operation because the successors of this
     53 /// basic block must have their PHI nodes updated.
     54 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     55 /// conditions and indirectbr addresses this might make dead if
     56 /// DeleteDeadConditions is true.
     57 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
     58                                   const TargetLibraryInfo *TLI) {
     59   TerminatorInst *T = BB->getTerminator();
     60   IRBuilder<> Builder(T);
     61 
     62   // Branch - See if we are conditional jumping on constant
     63   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     64     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     65     BasicBlock *Dest1 = BI->getSuccessor(0);
     66     BasicBlock *Dest2 = BI->getSuccessor(1);
     67 
     68     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     69       // Are we branching on constant?
     70       // YES.  Change to unconditional branch...
     71       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     72       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     73 
     74       //cerr << "Function: " << T->getParent()->getParent()
     75       //     << "\nRemoving branch from " << T->getParent()
     76       //     << "\n\nTo: " << OldDest << endl;
     77 
     78       // Let the basic block know that we are letting go of it.  Based on this,
     79       // it will adjust it's PHI nodes.
     80       OldDest->removePredecessor(BB);
     81 
     82       // Replace the conditional branch with an unconditional one.
     83       Builder.CreateBr(Destination);
     84       BI->eraseFromParent();
     85       return true;
     86     }
     87 
     88     if (Dest2 == Dest1) {       // Conditional branch to same location?
     89       // This branch matches something like this:
     90       //     br bool %cond, label %Dest, label %Dest
     91       // and changes it into:  br label %Dest
     92 
     93       // Let the basic block know that we are letting go of one copy of it.
     94       assert(BI->getParent() && "Terminator not inserted in block!");
     95       Dest1->removePredecessor(BI->getParent());
     96 
     97       // Replace the conditional branch with an unconditional one.
     98       Builder.CreateBr(Dest1);
     99       Value *Cond = BI->getCondition();
    100       BI->eraseFromParent();
    101       if (DeleteDeadConditions)
    102         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    103       return true;
    104     }
    105     return false;
    106   }
    107 
    108   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    109     // If we are switching on a constant, we can convert the switch into a
    110     // single branch instruction!
    111     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    112     BasicBlock *TheOnlyDest = SI->getDefaultDest();
    113     BasicBlock *DefaultDest = TheOnlyDest;
    114 
    115     // Figure out which case it goes to.
    116     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    117          i != e; ++i) {
    118       // Found case matching a constant operand?
    119       if (i.getCaseValue() == CI) {
    120         TheOnlyDest = i.getCaseSuccessor();
    121         break;
    122       }
    123 
    124       // Check to see if this branch is going to the same place as the default
    125       // dest.  If so, eliminate it as an explicit compare.
    126       if (i.getCaseSuccessor() == DefaultDest) {
    127         MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    128         // MD should have 2 + NumCases operands.
    129         if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
    130           // Collect branch weights into a vector.
    131           SmallVector<uint32_t, 8> Weights;
    132           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    133                ++MD_i) {
    134             ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
    135             assert(CI);
    136             Weights.push_back(CI->getValue().getZExtValue());
    137           }
    138           // Merge weight of this case to the default weight.
    139           unsigned idx = i.getCaseIndex();
    140           Weights[0] += Weights[idx+1];
    141           // Remove weight for this case.
    142           std::swap(Weights[idx+1], Weights.back());
    143           Weights.pop_back();
    144           SI->setMetadata(LLVMContext::MD_prof,
    145                           MDBuilder(BB->getContext()).
    146                           createBranchWeights(Weights));
    147         }
    148         // Remove this entry.
    149         DefaultDest->removePredecessor(SI->getParent());
    150         SI->removeCase(i);
    151         --i; --e;
    152         continue;
    153       }
    154 
    155       // Otherwise, check to see if the switch only branches to one destination.
    156       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    157       // destinations.
    158       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
    159     }
    160 
    161     if (CI && !TheOnlyDest) {
    162       // Branching on a constant, but not any of the cases, go to the default
    163       // successor.
    164       TheOnlyDest = SI->getDefaultDest();
    165     }
    166 
    167     // If we found a single destination that we can fold the switch into, do so
    168     // now.
    169     if (TheOnlyDest) {
    170       // Insert the new branch.
    171       Builder.CreateBr(TheOnlyDest);
    172       BasicBlock *BB = SI->getParent();
    173 
    174       // Remove entries from PHI nodes which we no longer branch to...
    175       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    176         // Found case matching a constant operand?
    177         BasicBlock *Succ = SI->getSuccessor(i);
    178         if (Succ == TheOnlyDest)
    179           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
    180         else
    181           Succ->removePredecessor(BB);
    182       }
    183 
    184       // Delete the old switch.
    185       Value *Cond = SI->getCondition();
    186       SI->eraseFromParent();
    187       if (DeleteDeadConditions)
    188         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    189       return true;
    190     }
    191 
    192     if (SI->getNumCases() == 1) {
    193       // Otherwise, we can fold this switch into a conditional branch
    194       // instruction if it has only one non-default destination.
    195       SwitchInst::CaseIt FirstCase = SI->case_begin();
    196       IntegersSubset& Case = FirstCase.getCaseValueEx();
    197       if (Case.isSingleNumber()) {
    198         // FIXME: Currently work with ConstantInt based numbers.
    199         Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    200              Case.getSingleNumber(0).toConstantInt(),
    201             "cond");
    202 
    203         // Insert the new branch.
    204         BranchInst *NewBr = Builder.CreateCondBr(Cond,
    205                                 FirstCase.getCaseSuccessor(),
    206                                 SI->getDefaultDest());
    207         MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    208         if (MD && MD->getNumOperands() == 3) {
    209           ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
    210           ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
    211           assert(SICase && SIDef);
    212           // The TrueWeight should be the weight for the single case of SI.
    213           NewBr->setMetadata(LLVMContext::MD_prof,
    214                  MDBuilder(BB->getContext()).
    215                  createBranchWeights(SICase->getValue().getZExtValue(),
    216                                      SIDef->getValue().getZExtValue()));
    217         }
    218 
    219         // Delete the old switch.
    220         SI->eraseFromParent();
    221         return true;
    222       }
    223     }
    224     return false;
    225   }
    226 
    227   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    228     // indirectbr blockaddress(@F, @BB) -> br label @BB
    229     if (BlockAddress *BA =
    230           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    231       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    232       // Insert the new branch.
    233       Builder.CreateBr(TheOnlyDest);
    234 
    235       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    236         if (IBI->getDestination(i) == TheOnlyDest)
    237           TheOnlyDest = 0;
    238         else
    239           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    240       }
    241       Value *Address = IBI->getAddress();
    242       IBI->eraseFromParent();
    243       if (DeleteDeadConditions)
    244         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
    245 
    246       // If we didn't find our destination in the IBI successor list, then we
    247       // have undefined behavior.  Replace the unconditional branch with an
    248       // 'unreachable' instruction.
    249       if (TheOnlyDest) {
    250         BB->getTerminator()->eraseFromParent();
    251         new UnreachableInst(BB->getContext(), BB);
    252       }
    253 
    254       return true;
    255     }
    256   }
    257 
    258   return false;
    259 }
    260 
    261 
    262 //===----------------------------------------------------------------------===//
    263 //  Local dead code elimination.
    264 //
    265 
    266 /// isInstructionTriviallyDead - Return true if the result produced by the
    267 /// instruction is not used, and the instruction has no side effects.
    268 ///
    269 bool llvm::isInstructionTriviallyDead(Instruction *I,
    270                                       const TargetLibraryInfo *TLI) {
    271   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    272 
    273   // We don't want the landingpad instruction removed by anything this general.
    274   if (isa<LandingPadInst>(I))
    275     return false;
    276 
    277   // We don't want debug info removed by anything this general, unless
    278   // debug info is empty.
    279   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    280     if (DDI->getAddress())
    281       return false;
    282     return true;
    283   }
    284   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    285     if (DVI->getValue())
    286       return false;
    287     return true;
    288   }
    289 
    290   if (!I->mayHaveSideEffects()) return true;
    291 
    292   // Special case intrinsics that "may have side effects" but can be deleted
    293   // when dead.
    294   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    295     // Safe to delete llvm.stacksave if dead.
    296     if (II->getIntrinsicID() == Intrinsic::stacksave)
    297       return true;
    298 
    299     // Lifetime intrinsics are dead when their right-hand is undef.
    300     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    301         II->getIntrinsicID() == Intrinsic::lifetime_end)
    302       return isa<UndefValue>(II->getArgOperand(1));
    303   }
    304 
    305   if (isAllocLikeFn(I, TLI)) return true;
    306 
    307   if (CallInst *CI = isFreeCall(I, TLI))
    308     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
    309       return C->isNullValue() || isa<UndefValue>(C);
    310 
    311   return false;
    312 }
    313 
    314 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    315 /// trivially dead instruction, delete it.  If that makes any of its operands
    316 /// trivially dead, delete them too, recursively.  Return true if any
    317 /// instructions were deleted.
    318 bool
    319 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    320                                                  const TargetLibraryInfo *TLI) {
    321   Instruction *I = dyn_cast<Instruction>(V);
    322   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    323     return false;
    324 
    325   SmallVector<Instruction*, 16> DeadInsts;
    326   DeadInsts.push_back(I);
    327 
    328   do {
    329     I = DeadInsts.pop_back_val();
    330 
    331     // Null out all of the instruction's operands to see if any operand becomes
    332     // dead as we go.
    333     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    334       Value *OpV = I->getOperand(i);
    335       I->setOperand(i, 0);
    336 
    337       if (!OpV->use_empty()) continue;
    338 
    339       // If the operand is an instruction that became dead as we nulled out the
    340       // operand, and if it is 'trivially' dead, delete it in a future loop
    341       // iteration.
    342       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    343         if (isInstructionTriviallyDead(OpI, TLI))
    344           DeadInsts.push_back(OpI);
    345     }
    346 
    347     I->eraseFromParent();
    348   } while (!DeadInsts.empty());
    349 
    350   return true;
    351 }
    352 
    353 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    354 /// This is similar to Instruction::hasOneUse() except this will also return
    355 /// true when there are no uses or multiple uses that all refer to the same
    356 /// value.
    357 static bool areAllUsesEqual(Instruction *I) {
    358   Value::use_iterator UI = I->use_begin();
    359   Value::use_iterator UE = I->use_end();
    360   if (UI == UE)
    361     return true;
    362 
    363   User *TheUse = *UI;
    364   for (++UI; UI != UE; ++UI) {
    365     if (*UI != TheUse)
    366       return false;
    367   }
    368   return true;
    369 }
    370 
    371 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    372 /// dead PHI node, due to being a def-use chain of single-use nodes that
    373 /// either forms a cycle or is terminated by a trivially dead instruction,
    374 /// delete it.  If that makes any of its operands trivially dead, delete them
    375 /// too, recursively.  Return true if a change was made.
    376 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
    377                                         const TargetLibraryInfo *TLI) {
    378   SmallPtrSet<Instruction*, 4> Visited;
    379   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    380        I = cast<Instruction>(*I->use_begin())) {
    381     if (I->use_empty())
    382       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    383 
    384     // If we find an instruction more than once, we're on a cycle that
    385     // won't prove fruitful.
    386     if (!Visited.insert(I)) {
    387       // Break the cycle and delete the instruction and its operands.
    388       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    389       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    390       return true;
    391     }
    392   }
    393   return false;
    394 }
    395 
    396 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    397 /// simplify any instructions in it and recursively delete dead instructions.
    398 ///
    399 /// This returns true if it changed the code, note that it can delete
    400 /// instructions in other blocks as well in this block.
    401 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
    402                                        const TargetLibraryInfo *TLI) {
    403   bool MadeChange = false;
    404 
    405 #ifndef NDEBUG
    406   // In debug builds, ensure that the terminator of the block is never replaced
    407   // or deleted by these simplifications. The idea of simplification is that it
    408   // cannot introduce new instructions, and there is no way to replace the
    409   // terminator of a block without introducing a new instruction.
    410   AssertingVH<Instruction> TerminatorVH(--BB->end());
    411 #endif
    412 
    413   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
    414     assert(!BI->isTerminator());
    415     Instruction *Inst = BI++;
    416 
    417     WeakVH BIHandle(BI);
    418     if (recursivelySimplifyInstruction(Inst, TD)) {
    419       MadeChange = true;
    420       if (BIHandle != BI)
    421         BI = BB->begin();
    422       continue;
    423     }
    424 
    425     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
    426     if (BIHandle != BI)
    427       BI = BB->begin();
    428   }
    429   return MadeChange;
    430 }
    431 
    432 //===----------------------------------------------------------------------===//
    433 //  Control Flow Graph Restructuring.
    434 //
    435 
    436 
    437 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    438 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    439 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    440 ///
    441 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    442 /// nodes that collapse into identity values.  For example, if we have:
    443 ///   x = phi(1, 0, 0, 0)
    444 ///   y = and x, z
    445 ///
    446 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    447 /// recursively fold the and to 0.
    448 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    449                                         DataLayout *TD) {
    450   // This only adjusts blocks with PHI nodes.
    451   if (!isa<PHINode>(BB->begin()))
    452     return;
    453 
    454   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    455   // them down.  This will leave us with single entry phi nodes and other phis
    456   // that can be removed.
    457   BB->removePredecessor(Pred, true);
    458 
    459   WeakVH PhiIt = &BB->front();
    460   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    461     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    462     Value *OldPhiIt = PhiIt;
    463 
    464     if (!recursivelySimplifyInstruction(PN, TD))
    465       continue;
    466 
    467     // If recursive simplification ended up deleting the next PHI node we would
    468     // iterate to, then our iterator is invalid, restart scanning from the top
    469     // of the block.
    470     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    471   }
    472 }
    473 
    474 
    475 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    476 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    477 /// between them, moving the instructions in the predecessor into DestBB and
    478 /// deleting the predecessor block.
    479 ///
    480 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
    481   // If BB has single-entry PHI nodes, fold them.
    482   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    483     Value *NewVal = PN->getIncomingValue(0);
    484     // Replace self referencing PHI with undef, it must be dead.
    485     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    486     PN->replaceAllUsesWith(NewVal);
    487     PN->eraseFromParent();
    488   }
    489 
    490   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    491   assert(PredBB && "Block doesn't have a single predecessor!");
    492 
    493   // Zap anything that took the address of DestBB.  Not doing this will give the
    494   // address an invalid value.
    495   if (DestBB->hasAddressTaken()) {
    496     BlockAddress *BA = BlockAddress::get(DestBB);
    497     Constant *Replacement =
    498       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    499     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    500                                                      BA->getType()));
    501     BA->destroyConstant();
    502   }
    503 
    504   // Anything that branched to PredBB now branches to DestBB.
    505   PredBB->replaceAllUsesWith(DestBB);
    506 
    507   // Splice all the instructions from PredBB to DestBB.
    508   PredBB->getTerminator()->eraseFromParent();
    509   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    510 
    511   if (P) {
    512     DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
    513     if (DT) {
    514       BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
    515       DT->changeImmediateDominator(DestBB, PredBBIDom);
    516       DT->eraseNode(PredBB);
    517     }
    518     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
    519     if (PI) {
    520       PI->replaceAllUses(PredBB, DestBB);
    521       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
    522     }
    523   }
    524   // Nuke BB.
    525   PredBB->eraseFromParent();
    526 }
    527 
    528 /// CanMergeValues - Return true if we can choose one of these values to use
    529 /// in place of the other. Note that we will always choose the non-undef
    530 /// value to keep.
    531 static bool CanMergeValues(Value *First, Value *Second) {
    532   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
    533 }
    534 
    535 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    536 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
    537 ///
    538 /// Assumption: Succ is the single successor for BB.
    539 ///
    540 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    541   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    542 
    543   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    544         << Succ->getName() << "\n");
    545   // Shortcut, if there is only a single predecessor it must be BB and merging
    546   // is always safe
    547   if (Succ->getSinglePredecessor()) return true;
    548 
    549   // Make a list of the predecessors of BB
    550   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    551 
    552   // Look at all the phi nodes in Succ, to see if they present a conflict when
    553   // merging these blocks
    554   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    555     PHINode *PN = cast<PHINode>(I);
    556 
    557     // If the incoming value from BB is again a PHINode in
    558     // BB which has the same incoming value for *PI as PN does, we can
    559     // merge the phi nodes and then the blocks can still be merged
    560     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    561     if (BBPN && BBPN->getParent() == BB) {
    562       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    563         BasicBlock *IBB = PN->getIncomingBlock(PI);
    564         if (BBPreds.count(IBB) &&
    565             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
    566                             PN->getIncomingValue(PI))) {
    567           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    568                 << Succ->getName() << " is conflicting with "
    569                 << BBPN->getName() << " with regard to common predecessor "
    570                 << IBB->getName() << "\n");
    571           return false;
    572         }
    573       }
    574     } else {
    575       Value* Val = PN->getIncomingValueForBlock(BB);
    576       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    577         // See if the incoming value for the common predecessor is equal to the
    578         // one for BB, in which case this phi node will not prevent the merging
    579         // of the block.
    580         BasicBlock *IBB = PN->getIncomingBlock(PI);
    581         if (BBPreds.count(IBB) &&
    582             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
    583           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    584                 << Succ->getName() << " is conflicting with regard to common "
    585                 << "predecessor " << IBB->getName() << "\n");
    586           return false;
    587         }
    588       }
    589     }
    590   }
    591 
    592   return true;
    593 }
    594 
    595 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
    596 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
    597 
    598 /// \brief Determines the value to use as the phi node input for a block.
    599 ///
    600 /// Select between \p OldVal any value that we know flows from \p BB
    601 /// to a particular phi on the basis of which one (if either) is not
    602 /// undef. Update IncomingValues based on the selected value.
    603 ///
    604 /// \param OldVal The value we are considering selecting.
    605 /// \param BB The block that the value flows in from.
    606 /// \param IncomingValues A map from block-to-value for other phi inputs
    607 /// that we have examined.
    608 ///
    609 /// \returns the selected value.
    610 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
    611                                           IncomingValueMap &IncomingValues) {
    612   if (!isa<UndefValue>(OldVal)) {
    613     assert((!IncomingValues.count(BB) ||
    614             IncomingValues.find(BB)->second == OldVal) &&
    615            "Expected OldVal to match incoming value from BB!");
    616 
    617     IncomingValues.insert(std::make_pair(BB, OldVal));
    618     return OldVal;
    619   }
    620 
    621   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    622   if (It != IncomingValues.end()) return It->second;
    623 
    624   return OldVal;
    625 }
    626 
    627 /// \brief Create a map from block to value for the operands of a
    628 /// given phi.
    629 ///
    630 /// Create a map from block to value for each non-undef value flowing
    631 /// into \p PN.
    632 ///
    633 /// \param PN The phi we are collecting the map for.
    634 /// \param IncomingValues [out] The map from block to value for this phi.
    635 static void gatherIncomingValuesToPhi(PHINode *PN,
    636                                       IncomingValueMap &IncomingValues) {
    637   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    638     BasicBlock *BB = PN->getIncomingBlock(i);
    639     Value *V = PN->getIncomingValue(i);
    640 
    641     if (!isa<UndefValue>(V))
    642       IncomingValues.insert(std::make_pair(BB, V));
    643   }
    644 }
    645 
    646 /// \brief Replace the incoming undef values to a phi with the values
    647 /// from a block-to-value map.
    648 ///
    649 /// \param PN The phi we are replacing the undefs in.
    650 /// \param IncomingValues A map from block to value.
    651 static void replaceUndefValuesInPhi(PHINode *PN,
    652                                     const IncomingValueMap &IncomingValues) {
    653   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    654     Value *V = PN->getIncomingValue(i);
    655 
    656     if (!isa<UndefValue>(V)) continue;
    657 
    658     BasicBlock *BB = PN->getIncomingBlock(i);
    659     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    660     if (It == IncomingValues.end()) continue;
    661 
    662     PN->setIncomingValue(i, It->second);
    663   }
    664 }
    665 
    666 /// \brief Replace a value flowing from a block to a phi with
    667 /// potentially multiple instances of that value flowing from the
    668 /// block's predecessors to the phi.
    669 ///
    670 /// \param BB The block with the value flowing into the phi.
    671 /// \param BBPreds The predecessors of BB.
    672 /// \param PN The phi that we are updating.
    673 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
    674                                                 const PredBlockVector &BBPreds,
    675                                                 PHINode *PN) {
    676   Value *OldVal = PN->removeIncomingValue(BB, false);
    677   assert(OldVal && "No entry in PHI for Pred BB!");
    678 
    679   IncomingValueMap IncomingValues;
    680 
    681   // We are merging two blocks - BB, and the block containing PN - and
    682   // as a result we need to redirect edges from the predecessors of BB
    683   // to go to the block containing PN, and update PN
    684   // accordingly. Since we allow merging blocks in the case where the
    685   // predecessor and successor blocks both share some predecessors,
    686   // and where some of those common predecessors might have undef
    687   // values flowing into PN, we want to rewrite those values to be
    688   // consistent with the non-undef values.
    689 
    690   gatherIncomingValuesToPhi(PN, IncomingValues);
    691 
    692   // If this incoming value is one of the PHI nodes in BB, the new entries
    693   // in the PHI node are the entries from the old PHI.
    694   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    695     PHINode *OldValPN = cast<PHINode>(OldVal);
    696     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
    697       // Note that, since we are merging phi nodes and BB and Succ might
    698       // have common predecessors, we could end up with a phi node with
    699       // identical incoming branches. This will be cleaned up later (and
    700       // will trigger asserts if we try to clean it up now, without also
    701       // simplifying the corresponding conditional branch).
    702       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
    703       Value *PredVal = OldValPN->getIncomingValue(i);
    704       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
    705                                                     IncomingValues);
    706 
    707       // And add a new incoming value for this predecessor for the
    708       // newly retargeted branch.
    709       PN->addIncoming(Selected, PredBB);
    710     }
    711   } else {
    712     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
    713       // Update existing incoming values in PN for this
    714       // predecessor of BB.
    715       BasicBlock *PredBB = BBPreds[i];
    716       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
    717                                                     IncomingValues);
    718 
    719       // And add a new incoming value for this predecessor for the
    720       // newly retargeted branch.
    721       PN->addIncoming(Selected, PredBB);
    722     }
    723   }
    724 
    725   replaceUndefValuesInPhi(PN, IncomingValues);
    726 }
    727 
    728 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    729 /// unconditional branch, and contains no instructions other than PHI nodes,
    730 /// potential side-effect free intrinsics and the branch.  If possible,
    731 /// eliminate BB by rewriting all the predecessors to branch to the successor
    732 /// block and return true.  If we can't transform, return false.
    733 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    734   assert(BB != &BB->getParent()->getEntryBlock() &&
    735          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    736 
    737   // We can't eliminate infinite loops.
    738   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    739   if (BB == Succ) return false;
    740 
    741   // Check to see if merging these blocks would cause conflicts for any of the
    742   // phi nodes in BB or Succ. If not, we can safely merge.
    743   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    744 
    745   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    746   // has uses which will not disappear when the PHI nodes are merged.  It is
    747   // possible to handle such cases, but difficult: it requires checking whether
    748   // BB dominates Succ, which is non-trivial to calculate in the case where
    749   // Succ has multiple predecessors.  Also, it requires checking whether
    750   // constructing the necessary self-referential PHI node doesn't introduce any
    751   // conflicts; this isn't too difficult, but the previous code for doing this
    752   // was incorrect.
    753   //
    754   // Note that if this check finds a live use, BB dominates Succ, so BB is
    755   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    756   // folding the branch isn't profitable in that case anyway.
    757   if (!Succ->getSinglePredecessor()) {
    758     BasicBlock::iterator BBI = BB->begin();
    759     while (isa<PHINode>(*BBI)) {
    760       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
    761            UI != E; ++UI) {
    762         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
    763           if (PN->getIncomingBlock(UI) != BB)
    764             return false;
    765         } else {
    766           return false;
    767         }
    768       }
    769       ++BBI;
    770     }
    771   }
    772 
    773   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    774 
    775   if (isa<PHINode>(Succ->begin())) {
    776     // If there is more than one pred of succ, and there are PHI nodes in
    777     // the successor, then we need to add incoming edges for the PHI nodes
    778     //
    779     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
    780 
    781     // Loop over all of the PHI nodes in the successor of BB.
    782     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    783       PHINode *PN = cast<PHINode>(I);
    784 
    785       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
    786     }
    787   }
    788 
    789   if (Succ->getSinglePredecessor()) {
    790     // BB is the only predecessor of Succ, so Succ will end up with exactly
    791     // the same predecessors BB had.
    792 
    793     // Copy over any phi, debug or lifetime instruction.
    794     BB->getTerminator()->eraseFromParent();
    795     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
    796   } else {
    797     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    798       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    799       assert(PN->use_empty() && "There shouldn't be any uses here!");
    800       PN->eraseFromParent();
    801     }
    802   }
    803 
    804   // Everything that jumped to BB now goes to Succ.
    805   BB->replaceAllUsesWith(Succ);
    806   if (!Succ->hasName()) Succ->takeName(BB);
    807   BB->eraseFromParent();              // Delete the old basic block.
    808   return true;
    809 }
    810 
    811 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    812 /// nodes in this block. This doesn't try to be clever about PHI nodes
    813 /// which differ only in the order of the incoming values, but instcombine
    814 /// orders them so it usually won't matter.
    815 ///
    816 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    817   bool Changed = false;
    818 
    819   // This implementation doesn't currently consider undef operands
    820   // specially. Theoretically, two phis which are identical except for
    821   // one having an undef where the other doesn't could be collapsed.
    822 
    823   // Map from PHI hash values to PHI nodes. If multiple PHIs have
    824   // the same hash value, the element is the first PHI in the
    825   // linked list in CollisionMap.
    826   DenseMap<uintptr_t, PHINode *> HashMap;
    827 
    828   // Maintain linked lists of PHI nodes with common hash values.
    829   DenseMap<PHINode *, PHINode *> CollisionMap;
    830 
    831   // Examine each PHI.
    832   for (BasicBlock::iterator I = BB->begin();
    833        PHINode *PN = dyn_cast<PHINode>(I++); ) {
    834     // Compute a hash value on the operands. Instcombine will likely have sorted
    835     // them, which helps expose duplicates, but we have to check all the
    836     // operands to be safe in case instcombine hasn't run.
    837     uintptr_t Hash = 0;
    838     // This hash algorithm is quite weak as hash functions go, but it seems
    839     // to do a good enough job for this particular purpose, and is very quick.
    840     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
    841       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
    842       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    843     }
    844     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
    845          I != E; ++I) {
    846       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
    847       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    848     }
    849     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
    850     Hash >>= 1;
    851     // If we've never seen this hash value before, it's a unique PHI.
    852     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
    853       HashMap.insert(std::make_pair(Hash, PN));
    854     if (Pair.second) continue;
    855     // Otherwise it's either a duplicate or a hash collision.
    856     for (PHINode *OtherPN = Pair.first->second; ; ) {
    857       if (OtherPN->isIdenticalTo(PN)) {
    858         // A duplicate. Replace this PHI with its duplicate.
    859         PN->replaceAllUsesWith(OtherPN);
    860         PN->eraseFromParent();
    861         Changed = true;
    862         break;
    863       }
    864       // A non-duplicate hash collision.
    865       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
    866       if (I == CollisionMap.end()) {
    867         // Set this PHI to be the head of the linked list of colliding PHIs.
    868         PHINode *Old = Pair.first->second;
    869         Pair.first->second = PN;
    870         CollisionMap[PN] = Old;
    871         break;
    872       }
    873       // Proceed to the next PHI in the list.
    874       OtherPN = I->second;
    875     }
    876   }
    877 
    878   return Changed;
    879 }
    880 
    881 /// enforceKnownAlignment - If the specified pointer points to an object that
    882 /// we control, modify the object's alignment to PrefAlign. This isn't
    883 /// often possible though. If alignment is important, a more reliable approach
    884 /// is to simply align all global variables and allocation instructions to
    885 /// their preferred alignment from the beginning.
    886 ///
    887 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    888                                       unsigned PrefAlign, const DataLayout *TD) {
    889   V = V->stripPointerCasts();
    890 
    891   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    892     // If the preferred alignment is greater than the natural stack alignment
    893     // then don't round up. This avoids dynamic stack realignment.
    894     if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
    895       return Align;
    896     // If there is a requested alignment and if this is an alloca, round up.
    897     if (AI->getAlignment() >= PrefAlign)
    898       return AI->getAlignment();
    899     AI->setAlignment(PrefAlign);
    900     return PrefAlign;
    901   }
    902 
    903   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    904     // If there is a large requested alignment and we can, bump up the alignment
    905     // of the global.
    906     if (GV->isDeclaration()) return Align;
    907     // If the memory we set aside for the global may not be the memory used by
    908     // the final program then it is impossible for us to reliably enforce the
    909     // preferred alignment.
    910     if (GV->isWeakForLinker()) return Align;
    911 
    912     if (GV->getAlignment() >= PrefAlign)
    913       return GV->getAlignment();
    914     // We can only increase the alignment of the global if it has no alignment
    915     // specified or if it is not assigned a section.  If it is assigned a
    916     // section, the global could be densely packed with other objects in the
    917     // section, increasing the alignment could cause padding issues.
    918     if (!GV->hasSection() || GV->getAlignment() == 0)
    919       GV->setAlignment(PrefAlign);
    920     return GV->getAlignment();
    921   }
    922 
    923   return Align;
    924 }
    925 
    926 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    927 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    928 /// and it is more than the alignment of the ultimate object, see if we can
    929 /// increase the alignment of the ultimate object, making this check succeed.
    930 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    931                                           const DataLayout *DL) {
    932   assert(V->getType()->isPointerTy() &&
    933          "getOrEnforceKnownAlignment expects a pointer!");
    934   unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
    935 
    936   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    937   ComputeMaskedBits(V, KnownZero, KnownOne, DL);
    938   unsigned TrailZ = KnownZero.countTrailingOnes();
    939 
    940   // Avoid trouble with ridiculously large TrailZ values, such as
    941   // those computed from a null pointer.
    942   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
    943 
    944   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
    945 
    946   // LLVM doesn't support alignments larger than this currently.
    947   Align = std::min(Align, +Value::MaximumAlignment);
    948 
    949   if (PrefAlign > Align)
    950     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
    951 
    952   // We don't need to make any adjustment.
    953   return Align;
    954 }
    955 
    956 ///===---------------------------------------------------------------------===//
    957 ///  Dbg Intrinsic utilities
    958 ///
    959 
    960 /// See if there is a dbg.value intrinsic for DIVar before I.
    961 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
    962   // Since we can't guarantee that the original dbg.declare instrinsic
    963   // is removed by LowerDbgDeclare(), we need to make sure that we are
    964   // not inserting the same dbg.value intrinsic over and over.
    965   llvm::BasicBlock::InstListType::iterator PrevI(I);
    966   if (PrevI != I->getParent()->getInstList().begin()) {
    967     --PrevI;
    968     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
    969       if (DVI->getValue() == I->getOperand(0) &&
    970           DVI->getOffset() == 0 &&
    971           DVI->getVariable() == DIVar)
    972         return true;
    973   }
    974   return false;
    975 }
    976 
    977 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    978 /// that has an associated llvm.dbg.decl intrinsic.
    979 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    980                                            StoreInst *SI, DIBuilder &Builder) {
    981   DIVariable DIVar(DDI->getVariable());
    982   assert((!DIVar || DIVar.isVariable()) &&
    983          "Variable in DbgDeclareInst should be either null or a DIVariable.");
    984   if (!DIVar)
    985     return false;
    986 
    987   if (LdStHasDebugValue(DIVar, SI))
    988     return true;
    989 
    990   Instruction *DbgVal = NULL;
    991   // If an argument is zero extended then use argument directly. The ZExt
    992   // may be zapped by an optimization pass in future.
    993   Argument *ExtendedArg = NULL;
    994   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    995     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
    996   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    997     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
    998   if (ExtendedArg)
    999     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
   1000   else
   1001     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
   1002 
   1003   // Propagate any debug metadata from the store onto the dbg.value.
   1004   DebugLoc SIDL = SI->getDebugLoc();
   1005   if (!SIDL.isUnknown())
   1006     DbgVal->setDebugLoc(SIDL);
   1007   // Otherwise propagate debug metadata from dbg.declare.
   1008   else
   1009     DbgVal->setDebugLoc(DDI->getDebugLoc());
   1010   return true;
   1011 }
   1012 
   1013 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
   1014 /// that has an associated llvm.dbg.decl intrinsic.
   1015 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1016                                            LoadInst *LI, DIBuilder &Builder) {
   1017   DIVariable DIVar(DDI->getVariable());
   1018   assert((!DIVar || DIVar.isVariable()) &&
   1019          "Variable in DbgDeclareInst should be either null or a DIVariable.");
   1020   if (!DIVar)
   1021     return false;
   1022 
   1023   if (LdStHasDebugValue(DIVar, LI))
   1024     return true;
   1025 
   1026   Instruction *DbgVal =
   1027     Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
   1028                                     DIVar, LI);
   1029 
   1030   // Propagate any debug metadata from the store onto the dbg.value.
   1031   DebugLoc LIDL = LI->getDebugLoc();
   1032   if (!LIDL.isUnknown())
   1033     DbgVal->setDebugLoc(LIDL);
   1034   // Otherwise propagate debug metadata from dbg.declare.
   1035   else
   1036     DbgVal->setDebugLoc(DDI->getDebugLoc());
   1037   return true;
   1038 }
   1039 
   1040 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
   1041 /// of llvm.dbg.value intrinsics.
   1042 bool llvm::LowerDbgDeclare(Function &F) {
   1043   DIBuilder DIB(*F.getParent());
   1044   SmallVector<DbgDeclareInst *, 4> Dbgs;
   1045   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
   1046     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
   1047       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
   1048         Dbgs.push_back(DDI);
   1049     }
   1050   if (Dbgs.empty())
   1051     return false;
   1052 
   1053   for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
   1054          E = Dbgs.end(); I != E; ++I) {
   1055     DbgDeclareInst *DDI = *I;
   1056     if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
   1057       // We only remove the dbg.declare intrinsic if all uses are
   1058       // converted to dbg.value intrinsics.
   1059       bool RemoveDDI = true;
   1060       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
   1061            UI != E; ++UI)
   1062         if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
   1063           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1064         else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
   1065           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
   1066         else
   1067           RemoveDDI = false;
   1068       if (RemoveDDI)
   1069         DDI->eraseFromParent();
   1070     }
   1071   }
   1072   return true;
   1073 }
   1074 
   1075 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
   1076 /// alloca 'V', if any.
   1077 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
   1078   if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
   1079     for (Value::use_iterator UI = DebugNode->use_begin(),
   1080          E = DebugNode->use_end(); UI != E; ++UI)
   1081       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
   1082         return DDI;
   1083 
   1084   return 0;
   1085 }
   1086 
   1087 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
   1088                                       DIBuilder &Builder) {
   1089   DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
   1090   if (!DDI)
   1091     return false;
   1092   DIVariable DIVar(DDI->getVariable());
   1093   assert((!DIVar || DIVar.isVariable()) &&
   1094          "Variable in DbgDeclareInst should be either null or a DIVariable.");
   1095   if (!DIVar)
   1096     return false;
   1097 
   1098   // Create a copy of the original DIDescriptor for user variable, appending
   1099   // "deref" operation to a list of address elements, as new llvm.dbg.declare
   1100   // will take a value storing address of the memory for variable, not
   1101   // alloca itself.
   1102   Type *Int64Ty = Type::getInt64Ty(AI->getContext());
   1103   SmallVector<Value*, 4> NewDIVarAddress;
   1104   if (DIVar.hasComplexAddress()) {
   1105     for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
   1106       NewDIVarAddress.push_back(
   1107           ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
   1108     }
   1109   }
   1110   NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
   1111   DIVariable NewDIVar = Builder.createComplexVariable(
   1112       DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
   1113       DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
   1114       NewDIVarAddress, DIVar.getArgNumber());
   1115 
   1116   // Insert llvm.dbg.declare in the same basic block as the original alloca,
   1117   // and remove old llvm.dbg.declare.
   1118   BasicBlock *BB = AI->getParent();
   1119   Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
   1120   DDI->eraseFromParent();
   1121   return true;
   1122 }
   1123 
   1124 bool llvm::removeUnreachableBlocks(Function &F) {
   1125   SmallPtrSet<BasicBlock*, 16> Reachable;
   1126   SmallVector<BasicBlock*, 128> Worklist;
   1127   Worklist.push_back(&F.getEntryBlock());
   1128   Reachable.insert(&F.getEntryBlock());
   1129   do {
   1130     BasicBlock *BB = Worklist.pop_back_val();
   1131     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1132       if (Reachable.insert(*SI))
   1133         Worklist.push_back(*SI);
   1134   } while (!Worklist.empty());
   1135 
   1136   if (Reachable.size() == F.size())
   1137     return false;
   1138 
   1139   assert(Reachable.size() < F.size());
   1140   for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
   1141     if (Reachable.count(I))
   1142       continue;
   1143 
   1144     for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
   1145       if (Reachable.count(*SI))
   1146         (*SI)->removePredecessor(I);
   1147     I->dropAllReferences();
   1148   }
   1149 
   1150   for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;)
   1151     if (!Reachable.count(I))
   1152       I = F.getBasicBlockList().erase(I);
   1153     else
   1154       ++I;
   1155 
   1156   return true;
   1157 }
   1158