Home | History | Annotate | Download | only in ARM
      1 //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the JIT interfaces for the ARM target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jit"
     15 #include "ARMJITInfo.h"
     16 #include "ARM.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMRelocations.h"
     19 #include "ARMSubtarget.h"
     20 #include "llvm/CodeGen/JITCodeEmitter.h"
     21 #include "llvm/IR/Function.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/Support/Memory.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include <cstdlib>
     27 using namespace llvm;
     28 
     29 void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
     30   report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
     31 }
     32 
     33 /// JITCompilerFunction - This contains the address of the JIT function used to
     34 /// compile a function lazily.
     35 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
     36 
     37 // Get the ASMPREFIX for the current host.  This is often '_'.
     38 #ifndef __USER_LABEL_PREFIX__
     39 #define __USER_LABEL_PREFIX__
     40 #endif
     41 #define GETASMPREFIX2(X) #X
     42 #define GETASMPREFIX(X) GETASMPREFIX2(X)
     43 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
     44 
     45 // CompilationCallback stub - We can't use a C function with inline assembly in
     46 // it, because the prolog/epilog inserted by GCC won't work for us. (We need
     47 // to preserve more context and manipulate the stack directly).  Instead,
     48 // write our own wrapper, which does things our way, so we have complete
     49 // control over register saving and restoring.
     50 extern "C" {
     51 #if defined(__arm__)
     52   void ARMCompilationCallback();
     53   asm(
     54     ".text\n"
     55     ".align 2\n"
     56     ".globl " ASMPREFIX "ARMCompilationCallback\n"
     57     ASMPREFIX "ARMCompilationCallback:\n"
     58     // Save caller saved registers since they may contain stuff
     59     // for the real target function right now. We have to act as if this
     60     // whole compilation callback doesn't exist as far as the caller is
     61     // concerned, so we can't just preserve the callee saved regs.
     62     "stmdb sp!, {r0, r1, r2, r3, lr}\n"
     63 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
     64     "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
     65 #endif
     66     // The LR contains the address of the stub function on entry.
     67     // pass it as the argument to the C part of the callback
     68     "mov  r0, lr\n"
     69     "sub  sp, sp, #4\n"
     70     // Call the C portion of the callback
     71     "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
     72     "add  sp, sp, #4\n"
     73     // Restoring the LR to the return address of the function that invoked
     74     // the stub and de-allocating the stack space for it requires us to
     75     // swap the two saved LR values on the stack, as they're backwards
     76     // for what we need since the pop instruction has a pre-determined
     77     // order for the registers.
     78     //      +--------+
     79     //   0  | LR     | Original return address
     80     //      +--------+
     81     //   1  | LR     | Stub address (start of stub)
     82     // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
     83     // 6-20 | D0..D7 | Saved VFP registers
     84     //      +--------+
     85     //
     86 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
     87     // Restore VFP caller-saved registers.
     88     "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
     89 #endif
     90     //
     91     //      We need to exchange the values in slots 0 and 1 so we can
     92     //      return to the address in slot 1 with the address in slot 0
     93     //      restored to the LR.
     94     "ldr  r0, [sp,#20]\n"
     95     "ldr  r1, [sp,#16]\n"
     96     "str  r1, [sp,#20]\n"
     97     "str  r0, [sp,#16]\n"
     98     // Return to the (newly modified) stub to invoke the real function.
     99     // The above twiddling of the saved return addresses allows us to
    100     // deallocate everything, including the LR the stub saved, with two
    101     // updating load instructions.
    102     "ldmia  sp!, {r0, r1, r2, r3, lr}\n"
    103     "ldr    pc, [sp], #4\n"
    104       );
    105 #else  // Not an ARM host
    106   void ARMCompilationCallback() {
    107     llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
    108   }
    109 #endif
    110 }
    111 
    112 /// ARMCompilationCallbackC - This is the target-specific function invoked
    113 /// by the function stub when we did not know the real target of a call.
    114 /// This function must locate the start of the stub or call site and pass
    115 /// it into the JIT compiler function.
    116 extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
    117   // Get the address of the compiled code for this function.
    118   intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
    119 
    120   // Rewrite the call target... so that we don't end up here every time we
    121   // execute the call. We're replacing the first two instructions of the
    122   // stub with:
    123   //   ldr pc, [pc,#-4]
    124   //   <addr>
    125   if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
    126     llvm_unreachable("ERROR: Unable to mark stub writable");
    127   }
    128   *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
    129   *(intptr_t *)(StubAddr+4) = NewVal;
    130   if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
    131     llvm_unreachable("ERROR: Unable to mark stub executable");
    132   }
    133 }
    134 
    135 TargetJITInfo::LazyResolverFn
    136 ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
    137   JITCompilerFunction = F;
    138   return ARMCompilationCallback;
    139 }
    140 
    141 void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
    142                                              JITCodeEmitter &JCE) {
    143   uint8_t Buffer[4];
    144   uint8_t *Cur = Buffer;
    145   MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
    146   void *PtrAddr = JCE.allocIndirectGV(
    147       GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
    148   addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
    149   return PtrAddr;
    150 }
    151 
    152 TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
    153   // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
    154   // 4-byte address.  See emitFunctionStub for details.
    155   StubLayout Result = {16, 4};
    156   return Result;
    157 }
    158 
    159 void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
    160                                    JITCodeEmitter &JCE) {
    161   void *Addr;
    162   // If this is just a call to an external function, emit a branch instead of a
    163   // call.  The code is the same except for one bit of the last instruction.
    164   if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
    165     // Branch to the corresponding function addr.
    166     if (IsPIC) {
    167       // The stub is 16-byte size and 4-aligned.
    168       intptr_t LazyPtr = getIndirectSymAddr(Fn);
    169       if (!LazyPtr) {
    170         // In PIC mode, the function stub is loading a lazy-ptr.
    171         LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
    172         DEBUG(if (F)
    173                 errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
    174                        << "] for GV '" << F->getName() << "'\n";
    175               else
    176                 errs() << "JIT: Stub emitted at [" << LazyPtr
    177                        << "] for external function at '" << Fn << "'\n");
    178       }
    179       JCE.emitAlignment(4);
    180       Addr = (void*)JCE.getCurrentPCValue();
    181       if (!sys::Memory::setRangeWritable(Addr, 16)) {
    182         llvm_unreachable("ERROR: Unable to mark stub writable");
    183       }
    184       JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4]
    185       JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
    186       JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
    187       JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8)
    188       sys::Memory::InvalidateInstructionCache(Addr, 16);
    189       if (!sys::Memory::setRangeExecutable(Addr, 16)) {
    190         llvm_unreachable("ERROR: Unable to mark stub executable");
    191       }
    192     } else {
    193       // The stub is 8-byte size and 4-aligned.
    194       JCE.emitAlignment(4);
    195       Addr = (void*)JCE.getCurrentPCValue();
    196       if (!sys::Memory::setRangeWritable(Addr, 8)) {
    197         llvm_unreachable("ERROR: Unable to mark stub writable");
    198       }
    199       JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
    200       JCE.emitWordLE((intptr_t)Fn);  // addr of function
    201       sys::Memory::InvalidateInstructionCache(Addr, 8);
    202       if (!sys::Memory::setRangeExecutable(Addr, 8)) {
    203         llvm_unreachable("ERROR: Unable to mark stub executable");
    204       }
    205     }
    206   } else {
    207     // The compilation callback will overwrite the first two words of this
    208     // stub with indirect branch instructions targeting the compiled code.
    209     // This stub sets the return address to restart the stub, so that
    210     // the new branch will be invoked when we come back.
    211     //
    212     // Branch and link to the compilation callback.
    213     // The stub is 16-byte size and 4-byte aligned.
    214     JCE.emitAlignment(4);
    215     Addr = (void*)JCE.getCurrentPCValue();
    216     if (!sys::Memory::setRangeWritable(Addr, 16)) {
    217       llvm_unreachable("ERROR: Unable to mark stub writable");
    218     }
    219     // Save LR so the callback can determine which stub called it.
    220     // The compilation callback is responsible for popping this prior
    221     // to returning.
    222     JCE.emitWordLE(0xe92d4000); // push {lr}
    223     // Set the return address to go back to the start of this stub.
    224     JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
    225     // Invoke the compilation callback.
    226     JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
    227     // The address of the compilation callback.
    228     JCE.emitWordLE((intptr_t)ARMCompilationCallback);
    229     sys::Memory::InvalidateInstructionCache(Addr, 16);
    230     if (!sys::Memory::setRangeExecutable(Addr, 16)) {
    231       llvm_unreachable("ERROR: Unable to mark stub executable");
    232     }
    233   }
    234 
    235   return Addr;
    236 }
    237 
    238 intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
    239   ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
    240   switch (RT) {
    241   default:
    242     return (intptr_t)(MR->getResultPointer());
    243   case ARM::reloc_arm_pic_jt:
    244     // Destination address - jump table base.
    245     return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
    246   case ARM::reloc_arm_jt_base:
    247     // Jump table base address.
    248     return getJumpTableBaseAddr(MR->getJumpTableIndex());
    249   case ARM::reloc_arm_cp_entry:
    250   case ARM::reloc_arm_vfp_cp_entry:
    251     // Constant pool entry address.
    252     return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
    253   case ARM::reloc_arm_machine_cp_entry: {
    254     ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
    255     assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
    256            "Can't handle this machine constant pool entry yet!");
    257     intptr_t Addr = (intptr_t)(MR->getResultPointer());
    258     Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
    259     return Addr;
    260   }
    261   }
    262 }
    263 
    264 /// relocate - Before the JIT can run a block of code that has been emitted,
    265 /// it must rewrite the code to contain the actual addresses of any
    266 /// referenced global symbols.
    267 void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
    268                           unsigned NumRelocs, unsigned char* GOTBase) {
    269   for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
    270     void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
    271     intptr_t ResultPtr = resolveRelocDestAddr(MR);
    272     switch ((ARM::RelocationType)MR->getRelocationType()) {
    273     case ARM::reloc_arm_cp_entry:
    274     case ARM::reloc_arm_vfp_cp_entry:
    275     case ARM::reloc_arm_relative: {
    276       // It is necessary to calculate the correct PC relative value. We
    277       // subtract the base addr from the target addr to form a byte offset.
    278       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    279       // If the result is positive, set bit U(23) to 1.
    280       if (ResultPtr >= 0)
    281         *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
    282       else {
    283         // Otherwise, obtain the absolute value and set bit U(23) to 0.
    284         *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
    285         ResultPtr = - ResultPtr;
    286       }
    287       // Set the immed value calculated.
    288       // VFP immediate offset is multiplied by 4.
    289       if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
    290         ResultPtr = ResultPtr >> 2;
    291       *((intptr_t*)RelocPos) |= ResultPtr;
    292       // Set register Rn to PC (which is register 15 on all architectures).
    293       // FIXME: This avoids the need for register info in the JIT class.
    294       *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
    295       break;
    296     }
    297     case ARM::reloc_arm_pic_jt:
    298     case ARM::reloc_arm_machine_cp_entry:
    299     case ARM::reloc_arm_absolute: {
    300       // These addresses have already been resolved.
    301       *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
    302       break;
    303     }
    304     case ARM::reloc_arm_branch: {
    305       // It is necessary to calculate the correct value of signed_immed_24
    306       // field. We subtract the base addr from the target addr to form a
    307       // byte offset, which must be inside the range -33554432 and +33554428.
    308       // Then, we set the signed_immed_24 field of the instruction to bits
    309       // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
    310       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    311       ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
    312       assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
    313       *((intptr_t*)RelocPos) |= ResultPtr;
    314       break;
    315     }
    316     case ARM::reloc_arm_jt_base: {
    317       // JT base - (instruction addr + 8)
    318       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    319       *((intptr_t*)RelocPos) |= ResultPtr;
    320       break;
    321     }
    322     case ARM::reloc_arm_movw: {
    323       ResultPtr = ResultPtr & 0xFFFF;
    324       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
    325       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
    326       break;
    327     }
    328     case ARM::reloc_arm_movt: {
    329       ResultPtr = (ResultPtr >> 16) & 0xFFFF;
    330       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
    331       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
    332       break;
    333     }
    334     }
    335   }
    336 }
    337