1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*************************** Fraunhofer IIS FDK Tools ********************** 85 86 Author(s): 87 Description: Scaling operations 88 89 ******************************************************************************/ 90 91 #include "common_fix.h" 92 93 #include "genericStds.h" 94 95 /************************************************** 96 * Inline definitions 97 **************************************************/ 98 99 #define SCALE_INLINE inline 100 101 102 #if defined(__mips__) /* cppp replaced: elif */ 103 #include "mips/scale.cpp" 104 105 #elif defined(__arm__) 106 #include "arm/scale_arm.cpp" 107 108 #endif 109 110 #ifndef FUNCTION_scaleValues_SGL 111 /*! 112 * 113 * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ 114 * \param len must be larger than 4 115 * \return void 116 * 117 */ 118 #define FUNCTION_scaleValues_SGL 119 SCALE_INLINE 120 void scaleValues(FIXP_SGL *vector, /*!< Vector */ 121 INT len, /*!< Length */ 122 INT scalefactor /*!< Scalefactor */ 123 ) 124 { 125 INT i; 126 127 /* Return if scalefactor is Zero */ 128 if (scalefactor==0) return; 129 130 if(scalefactor > 0){ 131 scalefactor = fixmin_I(scalefactor,(INT)(DFRACT_BITS-1)); 132 for (i = len&3; i--; ) 133 { 134 *(vector++) <<= scalefactor; 135 } 136 for (i = len>>2; i--; ) 137 { 138 *(vector++) <<= scalefactor; 139 *(vector++) <<= scalefactor; 140 *(vector++) <<= scalefactor; 141 *(vector++) <<= scalefactor; 142 } 143 } else { 144 INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1); 145 for (i = len&3; i--; ) 146 { 147 *(vector++) >>= negScalefactor; 148 } 149 for (i = len>>2; i--; ) 150 { 151 *(vector++) >>= negScalefactor; 152 *(vector++) >>= negScalefactor; 153 *(vector++) >>= negScalefactor; 154 *(vector++) >>= negScalefactor; 155 } 156 } 157 } 158 #endif 159 160 #ifndef FUNCTION_scaleValues_DBL 161 /*! 162 * 163 * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ 164 * \param len must be larger than 4 165 * \return void 166 * 167 */ 168 #define FUNCTION_scaleValues_DBL 169 SCALE_INLINE 170 void scaleValues(FIXP_DBL *vector, /*!< Vector */ 171 INT len, /*!< Length */ 172 INT scalefactor /*!< Scalefactor */ 173 ) 174 { 175 INT i; 176 177 /* Return if scalefactor is Zero */ 178 if (scalefactor==0) return; 179 180 if(scalefactor > 0){ 181 scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1); 182 for (i = len&3; i--; ) 183 { 184 *(vector++) <<= scalefactor; 185 } 186 for (i = len>>2; i--; ) 187 { 188 *(vector++) <<= scalefactor; 189 *(vector++) <<= scalefactor; 190 *(vector++) <<= scalefactor; 191 *(vector++) <<= scalefactor; 192 } 193 } else { 194 INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1); 195 for (i = len&3; i--; ) 196 { 197 *(vector++) >>= negScalefactor; 198 } 199 for (i = len>>2; i--; ) 200 { 201 *(vector++) >>= negScalefactor; 202 *(vector++) >>= negScalefactor; 203 *(vector++) >>= negScalefactor; 204 *(vector++) >>= negScalefactor; 205 } 206 } 207 } 208 #endif 209 210 #ifndef FUNCTION_scaleValues_DBLDBL 211 /*! 212 * 213 * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ 214 * and place result into dst 215 * \param dst detination buffer 216 * \param src source buffer 217 * \param len must be larger than 4 218 * \param scalefactor amount of left shifts to be applied 219 * \return void 220 * 221 */ 222 #define FUNCTION_scaleValues_DBLDBL 223 SCALE_INLINE 224 void scaleValues(FIXP_DBL *dst, /*!< dst Vector */ 225 const FIXP_DBL *src, /*!< src Vector */ 226 INT len, /*!< Length */ 227 INT scalefactor /*!< Scalefactor */ 228 ) 229 { 230 INT i; 231 232 /* Return if scalefactor is Zero */ 233 if (scalefactor==0) { 234 if (dst != src) 235 FDKmemmove(dst, src, len*sizeof(FIXP_DBL)); 236 } 237 else { 238 239 if(scalefactor > 0){ 240 scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1); 241 for (i = len&3; i--; ) 242 { 243 *(dst++) = *(src++) << scalefactor; 244 } 245 for (i = len>>2; i--; ) 246 { 247 *(dst++) = *(src++) << scalefactor; 248 *(dst++) = *(src++) << scalefactor; 249 *(dst++) = *(src++) << scalefactor; 250 *(dst++) = *(src++) << scalefactor; 251 } 252 } else { 253 INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1); 254 for (i = len&3; i--; ) 255 { 256 *(dst++) = *(src++) >> negScalefactor; 257 } 258 for (i = len>>2; i--; ) 259 { 260 *(dst++) = *(src++) >> negScalefactor; 261 *(dst++) = *(src++) >> negScalefactor; 262 *(dst++) = *(src++) >> negScalefactor; 263 *(dst++) = *(src++) >> negScalefactor; 264 } 265 } 266 } 267 } 268 #endif 269 270 #ifndef FUNCTION_scaleValuesWithFactor_DBL 271 /*! 272 * 273 * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ 274 * \param len must be larger than 4 275 * \return void 276 * 277 */ 278 #define FUNCTION_scaleValuesWithFactor_DBL 279 SCALE_INLINE 280 void scaleValuesWithFactor( 281 FIXP_DBL *vector, 282 FIXP_DBL factor, 283 INT len, 284 INT scalefactor 285 ) 286 { 287 INT i; 288 289 /* Compensate fMultDiv2 */ 290 scalefactor++; 291 292 if(scalefactor > 0){ 293 scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1); 294 for (i = len&3; i--; ) 295 { 296 *vector = fMultDiv2(*vector, factor) << scalefactor; 297 vector++; 298 } 299 for (i = len>>2; i--; ) 300 { 301 *vector = fMultDiv2(*vector, factor) << scalefactor; vector++; 302 *vector = fMultDiv2(*vector, factor) << scalefactor; vector++; 303 *vector = fMultDiv2(*vector, factor) << scalefactor; vector++; 304 *vector = fMultDiv2(*vector, factor) << scalefactor; vector++; 305 } 306 } else { 307 INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1); 308 for (i = len&3; i--; ) 309 { 310 *vector = fMultDiv2(*vector, factor) >> negScalefactor; 311 vector++; 312 } 313 for (i = len>>2; i--; ) 314 { 315 *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++; 316 *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++; 317 *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++; 318 *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++; 319 } 320 } 321 } 322 #endif /* FUNCTION_scaleValuesWithFactor_DBL */ 323 324 325 /******************************************* 326 327 IMPORTANT NOTE for usage of getScalefactor() 328 329 If the input array contains negative values too, then these functions may sometimes return 330 the actual maximum value minus 1, due to the nature of the applied algorithm. 331 So be careful with possible fractional -1 values that may lead to overflows when being fPow2()'ed. 332 333 ********************************************/ 334 335 336 337 #ifndef FUNCTION_getScalefactorShort 338 /*! 339 * 340 * \brief Calculate max possible scale factor for input vector of shorts 341 * 342 * \return Maximum scale factor / possible left shift 343 * 344 */ 345 #define FUNCTION_getScalefactorShort 346 SCALE_INLINE 347 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ 348 INT len /*!< Length of input vector */ 349 ) 350 { 351 INT i; 352 SHORT temp, maxVal = 0; 353 354 for(i=len;i!=0;i--){ 355 temp = (SHORT)(*vector++); 356 maxVal |= (temp^(temp>>(SHORT_BITS-1))); 357 } 358 359 return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SHORT_BITS))); 360 } 361 #endif 362 363 #ifndef FUNCTION_getScalefactorPCM 364 /*! 365 * 366 * \brief Calculate max possible scale factor for input vector of shorts 367 * 368 * \return Maximum scale factor 369 * 370 */ 371 #define FUNCTION_getScalefactorPCM 372 SCALE_INLINE 373 INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */ 374 INT len, /*!< Length of input vector */ 375 INT stride 376 ) 377 { 378 INT i; 379 INT_PCM temp, maxVal = 0; 380 381 for(i=len;i!=0;i--){ 382 temp = (INT_PCM)(*vector); vector+=stride; 383 maxVal |= (temp^(temp>>((sizeof(INT_PCM)*8)-1))); 384 } 385 return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SAMPLE_BITS))); 386 } 387 #endif 388 389 #ifndef FUNCTION_getScalefactorShort 390 /*! 391 * 392 * \brief Calculate max possible scale factor for input vector of shorts 393 * \param stride, item increment between vector members. 394 * \return Maximum scale factor 395 * 396 */ 397 #define FUNCTION_getScalefactorShort 398 SCALE_INLINE 399 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ 400 INT len, /*!< Length of input vector */ 401 INT stride 402 ) 403 { 404 INT i; 405 SHORT temp, maxVal = 0; 406 407 for(i=len;i!=0;i--){ 408 temp = (SHORT)(*vector); vector+=stride; 409 maxVal |= (temp^(temp>>(SHORT_BITS-1))); 410 } 411 412 return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SHORT_BITS))); 413 } 414 #endif 415 416 #ifndef FUNCTION_getScalefactor_DBL 417 /*! 418 * 419 * \brief Calculate max possible scale factor for input vector 420 * 421 * \return Maximum scale factor 422 * 423 * This function can constitute a significant amount of computational complexity - very much depending on the 424 * bitrate. Since it is a rather small function, effective assembler optimization might be possible. 425 * 426 */ 427 #define FUNCTION_getScalefactor_DBL 428 SCALE_INLINE 429 INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */ 430 INT len) /*!< Length of input vector */ 431 { 432 INT i; 433 FIXP_DBL temp, maxVal = (FIXP_DBL)0; 434 435 for(i=len;i!=0;i--){ 436 temp = (LONG)(*vector++); 437 maxVal |= (FIXP_DBL)((LONG)temp^(LONG)(temp>>(DFRACT_BITS-1))); 438 } 439 440 return fixmax_I((INT)0,(INT)(fixnormz_D(maxVal) - 1)); 441 } 442 #endif 443 444 #ifndef FUNCTION_getScalefactor_SGL 445 #define FUNCTION_getScalefactor_SGL 446 SCALE_INLINE 447 INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */ 448 INT len) /*!< Length of input vector */ 449 { 450 INT i; 451 SHORT temp, maxVal = (FIXP_SGL)0; 452 453 for(i=len;i!=0;i--){ 454 temp = (SHORT)(*vector++); 455 maxVal |= (temp^(temp>>(FRACT_BITS-1))); 456 } 457 458 return fixmax_I((INT)0,(INT)(fixnormz_D(FX_SGL2FX_DBL((FIXP_SGL)maxVal)) - 1)); 459 } 460 #endif 461 462