Home | History | Annotate | Download | only in ext
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <string.h>
      6 #include <time.h>
      7 #include <algorithm>
      8 #include <numeric>
      9 #include <vector>
     10 
     11 #include "base/basictypes.h"
     12 #include "base/logging.h"
     13 #include "base/time/time.h"
     14 #include "skia/ext/convolver.h"
     15 #include "testing/gtest/include/gtest/gtest.h"
     16 #include "third_party/skia/include/core/SkBitmap.h"
     17 #include "third_party/skia/include/core/SkColorPriv.h"
     18 #include "third_party/skia/include/core/SkRect.h"
     19 #include "third_party/skia/include/core/SkTypes.h"
     20 
     21 namespace skia {
     22 
     23 namespace {
     24 
     25 // Fills the given filter with impulse functions for the range 0->num_entries.
     26 void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
     27   float one = 1.0f;
     28   for (int i = 0; i < num_entries; i++)
     29     filter->AddFilter(i, &one, 1);
     30 }
     31 
     32 // Filters the given input with the impulse function, and verifies that it
     33 // does not change.
     34 void TestImpulseConvolution(const unsigned char* data, int width, int height) {
     35   int byte_count = width * height * 4;
     36 
     37   ConvolutionFilter1D filter_x;
     38   FillImpulseFilter(width, &filter_x);
     39 
     40   ConvolutionFilter1D filter_y;
     41   FillImpulseFilter(height, &filter_y);
     42 
     43   std::vector<unsigned char> output;
     44   output.resize(byte_count);
     45   BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
     46                  filter_x.num_values() * 4, &output[0], false);
     47 
     48   // Output should exactly match input.
     49   EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
     50 }
     51 
     52 // Fills the destination filter with a box filter averaging every two pixels
     53 // to produce the output.
     54 void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
     55   const float box[2] = { 0.5, 0.5 };
     56   for (int i = 0; i < size; i++)
     57     filter->AddFilter(i * 2, box, 2);
     58 }
     59 
     60 }  // namespace
     61 
     62 // Tests that each pixel, when set and run through the impulse filter, does
     63 // not change.
     64 TEST(Convolver, Impulse) {
     65   // We pick an "odd" size that is not likely to fit on any boundaries so that
     66   // we can see if all the widths and paddings are handled properly.
     67   int width = 15;
     68   int height = 31;
     69   int byte_count = width * height * 4;
     70   std::vector<unsigned char> input;
     71   input.resize(byte_count);
     72 
     73   unsigned char* input_ptr = &input[0];
     74   for (int y = 0; y < height; y++) {
     75     for (int x = 0; x < width; x++) {
     76       for (int channel = 0; channel < 3; channel++) {
     77         memset(input_ptr, 0, byte_count);
     78         input_ptr[(y * width + x) * 4 + channel] = 0xff;
     79         // Always set the alpha channel or it will attempt to "fix" it for us.
     80         input_ptr[(y * width + x) * 4 + 3] = 0xff;
     81         TestImpulseConvolution(input_ptr, width, height);
     82       }
     83     }
     84   }
     85 }
     86 
     87 // Tests that using a box filter to halve an image results in every square of 4
     88 // pixels in the original get averaged to a pixel in the output.
     89 TEST(Convolver, Halve) {
     90   static const int kSize = 16;
     91 
     92   int src_width = kSize;
     93   int src_height = kSize;
     94   int src_row_stride = src_width * 4;
     95   int src_byte_count = src_row_stride * src_height;
     96   std::vector<unsigned char> input;
     97   input.resize(src_byte_count);
     98 
     99   int dest_width = src_width / 2;
    100   int dest_height = src_height / 2;
    101   int dest_byte_count = dest_width * dest_height * 4;
    102   std::vector<unsigned char> output;
    103   output.resize(dest_byte_count);
    104 
    105   // First fill the array with a bunch of random data.
    106   srand(static_cast<unsigned>(time(NULL)));
    107   for (int i = 0; i < src_byte_count; i++)
    108     input[i] = rand() * 255 / RAND_MAX;
    109 
    110   // Compute the filters.
    111   ConvolutionFilter1D filter_x, filter_y;
    112   FillBoxFilter(dest_width, &filter_x);
    113   FillBoxFilter(dest_height, &filter_y);
    114 
    115   // Do the convolution.
    116   BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
    117                  filter_x.num_values() * 4, &output[0], false);
    118 
    119   // Compute the expected results and check, allowing for a small difference
    120   // to account for rounding errors.
    121   for (int y = 0; y < dest_height; y++) {
    122     for (int x = 0; x < dest_width; x++) {
    123       for (int channel = 0; channel < 4; channel++) {
    124         int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
    125         int value = input[src_offset] +  // Top left source pixel.
    126                     input[src_offset + 4] +  // Top right source pixel.
    127                     input[src_offset + src_row_stride] +  // Lower left.
    128                     input[src_offset + src_row_stride + 4];  // Lower right.
    129         value /= 4;  // Average.
    130         int difference = value - output[(y * dest_width + x) * 4 + channel];
    131         EXPECT_TRUE(difference >= -1 || difference <= 1);
    132       }
    133     }
    134   }
    135 }
    136 
    137 // Tests the optimization in Convolver1D::AddFilter that avoids storing
    138 // leading/trailing zeroes.
    139 TEST(Convolver, AddFilter) {
    140   skia::ConvolutionFilter1D filter;
    141 
    142   const skia::ConvolutionFilter1D::Fixed* values = NULL;
    143   int filter_offset = 0;
    144   int filter_length = 0;
    145 
    146   // An all-zero filter is handled correctly, all factors ignored
    147   static const float factors1[] = { 0.0f, 0.0f, 0.0f };
    148   filter.AddFilter(11, factors1, arraysize(factors1));
    149   ASSERT_EQ(0, filter.max_filter());
    150   ASSERT_EQ(1, filter.num_values());
    151 
    152   values = filter.FilterForValue(0, &filter_offset, &filter_length);
    153   ASSERT_TRUE(values == NULL);   // No values => NULL.
    154   ASSERT_EQ(11, filter_offset);  // Same as input offset.
    155   ASSERT_EQ(0, filter_length);   // But no factors since all are zeroes.
    156 
    157   // Zeroes on the left are ignored
    158   static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
    159   filter.AddFilter(22, factors2, arraysize(factors2));
    160   ASSERT_EQ(4, filter.max_filter());
    161   ASSERT_EQ(2, filter.num_values());
    162 
    163   values = filter.FilterForValue(1, &filter_offset, &filter_length);
    164   ASSERT_TRUE(values != NULL);
    165   ASSERT_EQ(23, filter_offset);  // 22 plus 1 leading zero
    166   ASSERT_EQ(4, filter_length);   // 5 - 1 leading zero
    167 
    168   // Zeroes on the right are ignored
    169   static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
    170   filter.AddFilter(33, factors3, arraysize(factors3));
    171   ASSERT_EQ(5, filter.max_filter());
    172   ASSERT_EQ(3, filter.num_values());
    173 
    174   values = filter.FilterForValue(2, &filter_offset, &filter_length);
    175   ASSERT_TRUE(values != NULL);
    176   ASSERT_EQ(33, filter_offset);  // 33, same as input due to no leading zero
    177   ASSERT_EQ(5, filter_length);   // 7 - 2 trailing zeroes
    178 
    179   // Zeroes in leading & trailing positions
    180   static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
    181   filter.AddFilter(44, factors4, arraysize(factors4));
    182   ASSERT_EQ(5, filter.max_filter());  // No change from existing value.
    183   ASSERT_EQ(4, filter.num_values());
    184 
    185   values = filter.FilterForValue(3, &filter_offset, &filter_length);
    186   ASSERT_TRUE(values != NULL);
    187   ASSERT_EQ(46, filter_offset);  // 44 plus 2 leading zeroes
    188   ASSERT_EQ(3, filter_length);   // 7 - (2 leading + 2 trailing) zeroes
    189 
    190   // Zeroes surrounded by non-zero values are ignored
    191   static const float factors5[] = { 0.0f, 0.0f,
    192                                     1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
    193                                     0.0f };
    194   filter.AddFilter(55, factors5, arraysize(factors5));
    195   ASSERT_EQ(6, filter.max_filter());
    196   ASSERT_EQ(5, filter.num_values());
    197 
    198   values = filter.FilterForValue(4, &filter_offset, &filter_length);
    199   ASSERT_TRUE(values != NULL);
    200   ASSERT_EQ(57, filter_offset);  // 55 plus 2 leading zeroes
    201   ASSERT_EQ(6, filter_length);   // 9 - (2 leading + 1 trailing) zeroes
    202 
    203   // All-zero filters after the first one also work
    204   static const float factors6[] = { 0.0f };
    205   filter.AddFilter(66, factors6, arraysize(factors6));
    206   ASSERT_EQ(6, filter.max_filter());
    207   ASSERT_EQ(6, filter.num_values());
    208 
    209   values = filter.FilterForValue(5, &filter_offset, &filter_length);
    210   ASSERT_TRUE(values == NULL);   // filter_length == 0 => values is NULL
    211   ASSERT_EQ(66, filter_offset);  // value passed in
    212   ASSERT_EQ(0, filter_length);
    213 }
    214 
    215 #if defined(THREAD_SANITIZER)
    216 // Times out under ThreadSanitizer, http://crbug.com/134400.
    217 #define MAYBE_SIMDVerification DISABLED_SIMDVerification
    218 #else
    219 #define MAYBE_SIMDVerification SIMDVerification
    220 #endif
    221 TEST(Convolver, MAYBE_SIMDVerification) {
    222   int source_sizes[][2] = {
    223     {1,1}, {1,2}, {1,3}, {1,4}, {1,5},
    224     {2,1}, {2,2}, {2,3}, {2,4}, {2,5},
    225     {3,1}, {3,2}, {3,3}, {3,4}, {3,5},
    226     {4,1}, {4,2}, {4,3}, {4,4}, {4,5},
    227     {1920, 1080},
    228     {720, 480},
    229     {1377, 523},
    230     {325, 241} };
    231   int dest_sizes[][2] = { {1280, 1024}, {480, 270}, {177, 123} };
    232   float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };
    233 
    234   srand(static_cast<unsigned int>(time(0)));
    235 
    236   // Loop over some specific source and destination dimensions.
    237   for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
    238     unsigned int source_width = source_sizes[i][0];
    239     unsigned int source_height = source_sizes[i][1];
    240     for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
    241       unsigned int dest_width = dest_sizes[j][0];
    242       unsigned int dest_height = dest_sizes[j][1];
    243 
    244       // Preparing convolve coefficients.
    245       ConvolutionFilter1D x_filter, y_filter;
    246       for (unsigned int p = 0; p < dest_width; ++p) {
    247         unsigned int offset = source_width * p / dest_width;
    248         EXPECT_LT(offset, source_width);
    249         x_filter.AddFilter(offset, filter,
    250                            std::min<int>(arraysize(filter),
    251                                          source_width - offset));
    252       }
    253       x_filter.PaddingForSIMD();
    254       for (unsigned int p = 0; p < dest_height; ++p) {
    255         unsigned int offset = source_height * p / dest_height;
    256         y_filter.AddFilter(offset, filter,
    257                            std::min<int>(arraysize(filter),
    258                                          source_height - offset));
    259       }
    260       y_filter.PaddingForSIMD();
    261 
    262       // Allocate input and output skia bitmap.
    263       SkBitmap source, result_c, result_sse;
    264       source.setConfig(SkBitmap::kARGB_8888_Config,
    265                        source_width, source_height);
    266       source.allocPixels();
    267       result_c.setConfig(SkBitmap::kARGB_8888_Config,
    268                          dest_width, dest_height);
    269       result_c.allocPixels();
    270       result_sse.setConfig(SkBitmap::kARGB_8888_Config,
    271                            dest_width, dest_height);
    272       result_sse.allocPixels();
    273 
    274       // Randomize source bitmap for testing.
    275       unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
    276       for (int y = 0; y < source.height(); y++) {
    277         for (unsigned int x = 0; x < source.rowBytes(); x++)
    278           src_ptr[x] = rand() % 255;
    279         src_ptr += source.rowBytes();
    280       }
    281 
    282       // Test both cases with different has_alpha.
    283       for (int alpha = 0; alpha < 2; alpha++) {
    284         // Convolve using C code.
    285         base::TimeTicks resize_start;
    286         base::TimeDelta delta_c, delta_sse;
    287         unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
    288         unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());
    289 
    290         resize_start = base::TimeTicks::Now();
    291         BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
    292                        static_cast<int>(source.rowBytes()),
    293                        (alpha != 0), x_filter, y_filter,
    294                        static_cast<int>(result_c.rowBytes()), r1, false);
    295         delta_c = base::TimeTicks::Now() - resize_start;
    296 
    297         resize_start = base::TimeTicks::Now();
    298         // Convolve using SSE2 code
    299         BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
    300                        static_cast<int>(source.rowBytes()),
    301                        (alpha != 0), x_filter, y_filter,
    302                        static_cast<int>(result_sse.rowBytes()), r2, true);
    303         delta_sse = base::TimeTicks::Now() - resize_start;
    304 
    305         // Unfortunately I could not enable the performance check now.
    306         // Most bots use debug version, and there are great difference between
    307         // the code generation for intrinsic, etc. In release version speed
    308         // difference was 150%-200% depend on alpha channel presence;
    309         // while in debug version speed difference was 96%-120%.
    310         // TODO(jiesun): optimize further until we could enable this for
    311         // debug version too.
    312         // EXPECT_LE(delta_sse, delta_c);
    313 
    314         int64 c_us = delta_c.InMicroseconds();
    315         int64 sse_us = delta_sse.InMicroseconds();
    316         VLOG(1) << "from:" << source_width << "x" << source_height
    317                 << " to:" << dest_width << "x" << dest_height
    318                 << (alpha ? " with alpha" : " w/o alpha");
    319         VLOG(1) << "c:" << c_us << " sse:" << sse_us;
    320         VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;
    321 
    322         // Comparing result.
    323         for (unsigned int i = 0; i < dest_height; i++) {
    324           for (unsigned int x = 0; x < dest_width * 4; x++) {  // RGBA always.
    325             EXPECT_EQ(r1[x], r2[x]);
    326           }
    327           r1 += result_c.rowBytes();
    328           r2 += result_sse.rowBytes();
    329         }
    330       }
    331     }
    332   }
    333 }
    334 
    335 TEST(Convolver, SeparableSingleConvolution) {
    336   static const int kImgWidth = 1024;
    337   static const int kImgHeight = 1024;
    338   static const int kChannelCount = 3;
    339   static const int kStrideSlack = 22;
    340   ConvolutionFilter1D filter;
    341   const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
    342   filter.AddFilter(0, box, 5);
    343 
    344   // Allocate a source image and set to 0.
    345   const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
    346   int src_byte_count = src_row_stride * kImgHeight;
    347   std::vector<unsigned char> input;
    348   const int signal_x = kImgWidth / 2;
    349   const int signal_y = kImgHeight / 2;
    350   input.resize(src_byte_count, 0);
    351   // The image has a single impulse pixel in channel 1, smack in the middle.
    352   const int non_zero_pixel_index =
    353       signal_y * src_row_stride + signal_x * kChannelCount + 1;
    354   input[non_zero_pixel_index] = 255;
    355 
    356   // Destination will be a single channel image with stide matching width.
    357   const int dest_row_stride = kImgWidth;
    358   const int dest_byte_count = dest_row_stride * kImgHeight;
    359   std::vector<unsigned char> output;
    360   output.resize(dest_byte_count);
    361 
    362   // Apply convolution in X.
    363   SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
    364                            filter, SkISize::Make(kImgWidth, kImgHeight),
    365                            &output[0], dest_row_stride, 0, 1, false);
    366   for (int x = signal_x - 2; x <= signal_x + 2; ++x)
    367     EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
    368 
    369   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
    370   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
    371 
    372   // Apply convolution in Y.
    373   SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
    374                            filter, SkISize::Make(kImgWidth, kImgHeight),
    375                            &output[0], dest_row_stride, 0, 1, false);
    376   for (int y = signal_y - 2; y <= signal_y + 2; ++y)
    377     EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
    378 
    379   EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
    380   EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
    381 
    382   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
    383   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
    384 
    385   // The main point of calling this is to invoke the routine on input without
    386   // padding.
    387   std::vector<unsigned char> output2;
    388   output2.resize(dest_byte_count);
    389   SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
    390                            filter, SkISize::Make(kImgWidth, kImgHeight),
    391                            &output2[0], dest_row_stride, 0, 1, false);
    392   // This should be a result of 2D convolution.
    393   for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
    394     for (int y = signal_y - 2; y <= signal_y + 2; ++y)
    395       EXPECT_GT(output2[y * dest_row_stride + x], 0);
    396   }
    397   EXPECT_EQ(output2[0], 0);
    398   EXPECT_EQ(output2[dest_row_stride - 1], 0);
    399   EXPECT_EQ(output2[dest_byte_count - 1], 0);
    400 }
    401 
    402 TEST(Convolver, SeparableSingleConvolutionEdges) {
    403   // The purpose of this test is to check if the implementation treats correctly
    404   // edges of the image.
    405   static const int kImgWidth = 600;
    406   static const int kImgHeight = 800;
    407   static const int kChannelCount = 3;
    408   static const int kStrideSlack = 22;
    409   static const int kChannel = 1;
    410   ConvolutionFilter1D filter;
    411   const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
    412   filter.AddFilter(0, box, 5);
    413 
    414   // Allocate a source image and set to 0.
    415   int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
    416   int src_byte_count = src_row_stride * kImgHeight;
    417   std::vector<unsigned char> input(src_byte_count);
    418 
    419   // Draw a frame around the image.
    420   for (int i = 0; i < src_byte_count; ++i) {
    421     int row = i / src_row_stride;
    422     int col = i % src_row_stride / kChannelCount;
    423     int channel = i % src_row_stride % kChannelCount;
    424     if (channel != kChannel || col > kImgWidth) {
    425       input[i] = 255;
    426     } else if (row == 0 || col == 0 ||
    427                col == kImgWidth - 1 || row == kImgHeight - 1) {
    428       input[i] = 100;
    429     } else if (row == 1 || col == 1 ||
    430                col == kImgWidth - 2 || row == kImgHeight - 2) {
    431       input[i] = 200;
    432     } else {
    433       input[i] = 0;
    434     }
    435   }
    436 
    437   // Destination will be a single channel image with stide matching width.
    438   int dest_row_stride = kImgWidth;
    439   int dest_byte_count = dest_row_stride * kImgHeight;
    440   std::vector<unsigned char> output;
    441   output.resize(dest_byte_count);
    442 
    443   // Apply convolution in X.
    444   SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
    445                            filter, SkISize::Make(kImgWidth, kImgHeight),
    446                            &output[0], dest_row_stride, 0, 1, false);
    447 
    448   // Sadly, comparison is not as simple as retaining all values.
    449   int invalid_values = 0;
    450   const unsigned char first_value = output[0];
    451   EXPECT_NEAR(first_value, 100, 1);
    452   for (int i = 0; i < dest_row_stride; ++i) {
    453     if (output[i] != first_value)
    454       ++invalid_values;
    455   }
    456   EXPECT_EQ(0, invalid_values);
    457 
    458   int test_row = 22;
    459   EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
    460   EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
    461   EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
    462   EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
    463   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
    464   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
    465   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
    466   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
    467 
    468   SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
    469                            filter, SkISize::Make(kImgWidth, kImgHeight),
    470                            &output[0], dest_row_stride, 0, 1, false);
    471 
    472   int test_column = 42;
    473   EXPECT_NEAR(output[test_column], 100, 1);
    474   EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
    475   EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
    476   EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
    477 
    478   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
    479   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
    480   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
    481   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
    482 }
    483 
    484 TEST(Convolver, SetUpGaussianConvolutionFilter) {
    485   ConvolutionFilter1D smoothing_filter;
    486   ConvolutionFilter1D gradient_filter;
    487   SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
    488   SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);
    489 
    490   int specified_filter_length;
    491   int filter_offset;
    492   int filter_length;
    493 
    494   const ConvolutionFilter1D::Fixed* smoothing_kernel =
    495       smoothing_filter.GetSingleFilter(
    496           &specified_filter_length, &filter_offset, &filter_length);
    497   EXPECT_TRUE(smoothing_kernel);
    498   std::vector<float> fp_smoothing_kernel(filter_length);
    499   std::transform(smoothing_kernel,
    500                  smoothing_kernel + filter_length,
    501                  fp_smoothing_kernel.begin(),
    502                  ConvolutionFilter1D::FixedToFloat);
    503   // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
    504   EXPECT_NEAR(std::accumulate(
    505       fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f),
    506               1.0f, 0.01f);
    507   EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(),
    508                               fp_smoothing_kernel.end()), 0.0f);
    509   EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(),
    510                               fp_smoothing_kernel.end()), 1.0f);
    511 
    512   const ConvolutionFilter1D::Fixed* gradient_kernel =
    513       gradient_filter.GetSingleFilter(
    514           &specified_filter_length, &filter_offset, &filter_length);
    515   EXPECT_TRUE(gradient_kernel);
    516   std::vector<float> fp_gradient_kernel(filter_length);
    517   std::transform(gradient_kernel,
    518                  gradient_kernel + filter_length,
    519                  fp_gradient_kernel.begin(),
    520                  ConvolutionFilter1D::FixedToFloat);
    521   // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
    522   EXPECT_NEAR(std::accumulate(
    523       fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f),
    524               0.0f, 0.01f);
    525   EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(),
    526                               fp_gradient_kernel.end()), -1.5f);
    527   EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(),
    528                               fp_gradient_kernel.end()), 0.0f);
    529   EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(),
    530                               fp_gradient_kernel.end()), 1.5f);
    531   EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(),
    532                               fp_gradient_kernel.end()), 0.0f);
    533 }
    534 
    535 }  // namespace skia
    536