Home | History | Annotate | Download | only in fts2
      1 /*
      2 ** 2001 September 22
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This is the implementation of generic hash-tables used in SQLite.
     13 ** We've modified it slightly to serve as a standalone hash table
     14 ** implementation for the full-text indexing module.
     15 */
     16 
     17 /*
     18 ** The code in this file is only compiled if:
     19 **
     20 **     * The FTS2 module is being built as an extension
     21 **       (in which case SQLITE_CORE is not defined), or
     22 **
     23 **     * The FTS2 module is being built into the core of
     24 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
     25 */
     26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
     27 
     28 #include <assert.h>
     29 #include <stdlib.h>
     30 #include <string.h>
     31 
     32 #include "sqlite3.h"
     33 #include "fts2_hash.h"
     34 
     35 /*
     36 ** Malloc and Free functions
     37 */
     38 static void *fts2HashMalloc(int n){
     39   void *p = sqlite3_malloc(n);
     40   if( p ){
     41     memset(p, 0, n);
     42   }
     43   return p;
     44 }
     45 static void fts2HashFree(void *p){
     46   sqlite3_free(p);
     47 }
     48 
     49 /* Turn bulk memory into a hash table object by initializing the
     50 ** fields of the Hash structure.
     51 **
     52 ** "pNew" is a pointer to the hash table that is to be initialized.
     53 ** keyClass is one of the constants
     54 ** FTS2_HASH_BINARY or FTS2_HASH_STRING.  The value of keyClass
     55 ** determines what kind of key the hash table will use.  "copyKey" is
     56 ** true if the hash table should make its own private copy of keys and
     57 ** false if it should just use the supplied pointer.
     58 */
     59 void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){
     60   assert( pNew!=0 );
     61   assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY );
     62   pNew->keyClass = keyClass;
     63   pNew->copyKey = copyKey;
     64   pNew->first = 0;
     65   pNew->count = 0;
     66   pNew->htsize = 0;
     67   pNew->ht = 0;
     68 }
     69 
     70 /* Remove all entries from a hash table.  Reclaim all memory.
     71 ** Call this routine to delete a hash table or to reset a hash table
     72 ** to the empty state.
     73 */
     74 void sqlite3Fts2HashClear(fts2Hash *pH){
     75   fts2HashElem *elem;         /* For looping over all elements of the table */
     76 
     77   assert( pH!=0 );
     78   elem = pH->first;
     79   pH->first = 0;
     80   fts2HashFree(pH->ht);
     81   pH->ht = 0;
     82   pH->htsize = 0;
     83   while( elem ){
     84     fts2HashElem *next_elem = elem->next;
     85     if( pH->copyKey && elem->pKey ){
     86       fts2HashFree(elem->pKey);
     87     }
     88     fts2HashFree(elem);
     89     elem = next_elem;
     90   }
     91   pH->count = 0;
     92 }
     93 
     94 /*
     95 ** Hash and comparison functions when the mode is FTS2_HASH_STRING
     96 */
     97 static int strHash(const void *pKey, int nKey){
     98   const char *z = (const char *)pKey;
     99   int h = 0;
    100   if( nKey<=0 ) nKey = (int) strlen(z);
    101   while( nKey > 0  ){
    102     h = (h<<3) ^ h ^ *z++;
    103     nKey--;
    104   }
    105   return h & 0x7fffffff;
    106 }
    107 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
    108   if( n1!=n2 ) return 1;
    109   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
    110 }
    111 
    112 /*
    113 ** Hash and comparison functions when the mode is FTS2_HASH_BINARY
    114 */
    115 static int binHash(const void *pKey, int nKey){
    116   int h = 0;
    117   const char *z = (const char *)pKey;
    118   while( nKey-- > 0 ){
    119     h = (h<<3) ^ h ^ *(z++);
    120   }
    121   return h & 0x7fffffff;
    122 }
    123 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
    124   if( n1!=n2 ) return 1;
    125   return memcmp(pKey1,pKey2,n1);
    126 }
    127 
    128 /*
    129 ** Return a pointer to the appropriate hash function given the key class.
    130 **
    131 ** The C syntax in this function definition may be unfamilar to some
    132 ** programmers, so we provide the following additional explanation:
    133 **
    134 ** The name of the function is "hashFunction".  The function takes a
    135 ** single parameter "keyClass".  The return value of hashFunction()
    136 ** is a pointer to another function.  Specifically, the return value
    137 ** of hashFunction() is a pointer to a function that takes two parameters
    138 ** with types "const void*" and "int" and returns an "int".
    139 */
    140 static int (*hashFunction(int keyClass))(const void*,int){
    141   if( keyClass==FTS2_HASH_STRING ){
    142     return &strHash;
    143   }else{
    144     assert( keyClass==FTS2_HASH_BINARY );
    145     return &binHash;
    146   }
    147 }
    148 
    149 /*
    150 ** Return a pointer to the appropriate hash function given the key class.
    151 **
    152 ** For help in interpreted the obscure C code in the function definition,
    153 ** see the header comment on the previous function.
    154 */
    155 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
    156   if( keyClass==FTS2_HASH_STRING ){
    157     return &strCompare;
    158   }else{
    159     assert( keyClass==FTS2_HASH_BINARY );
    160     return &binCompare;
    161   }
    162 }
    163 
    164 /* Link an element into the hash table
    165 */
    166 static void insertElement(
    167   fts2Hash *pH,            /* The complete hash table */
    168   struct _fts2ht *pEntry,  /* The entry into which pNew is inserted */
    169   fts2HashElem *pNew       /* The element to be inserted */
    170 ){
    171   fts2HashElem *pHead;     /* First element already in pEntry */
    172   pHead = pEntry->chain;
    173   if( pHead ){
    174     pNew->next = pHead;
    175     pNew->prev = pHead->prev;
    176     if( pHead->prev ){ pHead->prev->next = pNew; }
    177     else             { pH->first = pNew; }
    178     pHead->prev = pNew;
    179   }else{
    180     pNew->next = pH->first;
    181     if( pH->first ){ pH->first->prev = pNew; }
    182     pNew->prev = 0;
    183     pH->first = pNew;
    184   }
    185   pEntry->count++;
    186   pEntry->chain = pNew;
    187 }
    188 
    189 
    190 /* Resize the hash table so that it cantains "new_size" buckets.
    191 ** "new_size" must be a power of 2.  The hash table might fail
    192 ** to resize if sqliteMalloc() fails.
    193 */
    194 static void rehash(fts2Hash *pH, int new_size){
    195   struct _fts2ht *new_ht;          /* The new hash table */
    196   fts2HashElem *elem, *next_elem;  /* For looping over existing elements */
    197   int (*xHash)(const void*,int);   /* The hash function */
    198 
    199   assert( (new_size & (new_size-1))==0 );
    200   new_ht = (struct _fts2ht *)fts2HashMalloc( new_size*sizeof(struct _fts2ht) );
    201   if( new_ht==0 ) return;
    202   fts2HashFree(pH->ht);
    203   pH->ht = new_ht;
    204   pH->htsize = new_size;
    205   xHash = hashFunction(pH->keyClass);
    206   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
    207     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
    208     next_elem = elem->next;
    209     insertElement(pH, &new_ht[h], elem);
    210   }
    211 }
    212 
    213 /* This function (for internal use only) locates an element in an
    214 ** hash table that matches the given key.  The hash for this key has
    215 ** already been computed and is passed as the 4th parameter.
    216 */
    217 static fts2HashElem *findElementGivenHash(
    218   const fts2Hash *pH, /* The pH to be searched */
    219   const void *pKey,   /* The key we are searching for */
    220   int nKey,
    221   int h               /* The hash for this key. */
    222 ){
    223   fts2HashElem *elem;            /* Used to loop thru the element list */
    224   int count;                     /* Number of elements left to test */
    225   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
    226 
    227   if( pH->ht ){
    228     struct _fts2ht *pEntry = &pH->ht[h];
    229     elem = pEntry->chain;
    230     count = pEntry->count;
    231     xCompare = compareFunction(pH->keyClass);
    232     while( count-- && elem ){
    233       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
    234         return elem;
    235       }
    236       elem = elem->next;
    237     }
    238   }
    239   return 0;
    240 }
    241 
    242 /* Remove a single entry from the hash table given a pointer to that
    243 ** element and a hash on the element's key.
    244 */
    245 static void removeElementGivenHash(
    246   fts2Hash *pH,         /* The pH containing "elem" */
    247   fts2HashElem* elem,   /* The element to be removed from the pH */
    248   int h                 /* Hash value for the element */
    249 ){
    250   struct _fts2ht *pEntry;
    251   if( elem->prev ){
    252     elem->prev->next = elem->next;
    253   }else{
    254     pH->first = elem->next;
    255   }
    256   if( elem->next ){
    257     elem->next->prev = elem->prev;
    258   }
    259   pEntry = &pH->ht[h];
    260   if( pEntry->chain==elem ){
    261     pEntry->chain = elem->next;
    262   }
    263   pEntry->count--;
    264   if( pEntry->count<=0 ){
    265     pEntry->chain = 0;
    266   }
    267   if( pH->copyKey && elem->pKey ){
    268     fts2HashFree(elem->pKey);
    269   }
    270   fts2HashFree( elem );
    271   pH->count--;
    272   if( pH->count<=0 ){
    273     assert( pH->first==0 );
    274     assert( pH->count==0 );
    275     fts2HashClear(pH);
    276   }
    277 }
    278 
    279 /* Attempt to locate an element of the hash table pH with a key
    280 ** that matches pKey,nKey.  Return the data for this element if it is
    281 ** found, or NULL if there is no match.
    282 */
    283 void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
    284   int h;                 /* A hash on key */
    285   fts2HashElem *elem;    /* The element that matches key */
    286   int (*xHash)(const void*,int);  /* The hash function */
    287 
    288   if( pH==0 || pH->ht==0 ) return 0;
    289   xHash = hashFunction(pH->keyClass);
    290   assert( xHash!=0 );
    291   h = (*xHash)(pKey,nKey);
    292   assert( (pH->htsize & (pH->htsize-1))==0 );
    293   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
    294   return elem ? elem->data : 0;
    295 }
    296 
    297 /* Insert an element into the hash table pH.  The key is pKey,nKey
    298 ** and the data is "data".
    299 **
    300 ** If no element exists with a matching key, then a new
    301 ** element is created.  A copy of the key is made if the copyKey
    302 ** flag is set.  NULL is returned.
    303 **
    304 ** If another element already exists with the same key, then the
    305 ** new data replaces the old data and the old data is returned.
    306 ** The key is not copied in this instance.  If a malloc fails, then
    307 ** the new data is returned and the hash table is unchanged.
    308 **
    309 ** If the "data" parameter to this function is NULL, then the
    310 ** element corresponding to "key" is removed from the hash table.
    311 */
    312 void *sqlite3Fts2HashInsert(
    313   fts2Hash *pH,        /* The hash table to insert into */
    314   const void *pKey,    /* The key */
    315   int nKey,            /* Number of bytes in the key */
    316   void *data           /* The data */
    317 ){
    318   int hraw;                 /* Raw hash value of the key */
    319   int h;                    /* the hash of the key modulo hash table size */
    320   fts2HashElem *elem;       /* Used to loop thru the element list */
    321   fts2HashElem *new_elem;   /* New element added to the pH */
    322   int (*xHash)(const void*,int);  /* The hash function */
    323 
    324   assert( pH!=0 );
    325   xHash = hashFunction(pH->keyClass);
    326   assert( xHash!=0 );
    327   hraw = (*xHash)(pKey, nKey);
    328   assert( (pH->htsize & (pH->htsize-1))==0 );
    329   h = hraw & (pH->htsize-1);
    330   elem = findElementGivenHash(pH,pKey,nKey,h);
    331   if( elem ){
    332     void *old_data = elem->data;
    333     if( data==0 ){
    334       removeElementGivenHash(pH,elem,h);
    335     }else{
    336       elem->data = data;
    337     }
    338     return old_data;
    339   }
    340   if( data==0 ) return 0;
    341   new_elem = (fts2HashElem*)fts2HashMalloc( sizeof(fts2HashElem) );
    342   if( new_elem==0 ) return data;
    343   if( pH->copyKey && pKey!=0 ){
    344     new_elem->pKey = fts2HashMalloc( nKey );
    345     if( new_elem->pKey==0 ){
    346       fts2HashFree(new_elem);
    347       return data;
    348     }
    349     memcpy((void*)new_elem->pKey, pKey, nKey);
    350   }else{
    351     new_elem->pKey = (void*)pKey;
    352   }
    353   new_elem->nKey = nKey;
    354   pH->count++;
    355   if( pH->htsize==0 ){
    356     rehash(pH,8);
    357     if( pH->htsize==0 ){
    358       pH->count = 0;
    359       fts2HashFree(new_elem);
    360       return data;
    361     }
    362   }
    363   if( pH->count > pH->htsize ){
    364     rehash(pH,pH->htsize*2);
    365   }
    366   assert( pH->htsize>0 );
    367   assert( (pH->htsize & (pH->htsize-1))==0 );
    368   h = hraw & (pH->htsize-1);
    369   insertElement(pH, &pH->ht[h], new_elem);
    370   new_elem->data = data;
    371   return 0;
    372 }
    373 
    374 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
    375